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Abstract

Purpose — Sorting is a very important algorithm to solve problems in computer science. The most well-known
divide and conquer sorting algorithm is quicksort. It starts with dividing the data into subarrays and finally
sorting them.

Design/methodology/approach — In this paper, the algorithm named Dual Parallel Partition Sorting
(DPPSort) is analyzed and optimized. It consists of a partitioning algorithm named Dual Parallel Partition
(DPPartition). The DPPartition is analyzed and optimized in this paper and sorted with standard sorting
functions named gsort and STLSort which are quicksort, and introsort algorithms, respectively. This
algorithm is run on any shared memory/multicore systems. OpenMP library which supports multiprocessing
programming is developed to be compatible with C/C++ standard library function. The authors’ algorithm
recursively divides an unsorted array into two halves equally in parallel with Lomuto’s partitioning and merge
without compare-and-swap instructions. Then, gsort/STLSort is executed in parallel while the subarray is
smaller than the sorting cutoff.

Findings — In the authors’ experiments, the 4-core Intel i7-6770 with Ubuntu Linux system is implemented.
DPPSort s faster than gsort and STLSort up to 6.82X and 5.88 X on Uint64 random distributions, respectively.
Originality/value — The authors can improve the performance of the parallel sorting algorithm by reducing
the compare-and-swap instructions in the algorithm. This concept can be used to develop related problems to
increase speedup of algorithms.

Keywords Multithreading, Parallel processing, Partitioning algorithm, Sorting, OpenMP
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1. Introduction
The well-known algorithm for solving biological, scientific applications including big data is
sorting. Quicksort [1, 2] is the important sorting algorithm which is a divide and conquer
technique. The unsorted array is divided into smaller subarrays and sorted independently. It
consists of partitioning and sorting steps in this technique. Initially, the partitioning step
divides the unsorted array recursively using pivot(s) into subarrays (divide). It runs until each
subarray is shorter than cutoff size. Note that, the popular partitioning algorithm is Hoare’s
partitioning algorithm[3]. Then, the sorter executes the sorting step independently (conquer).
The partitioning step is very important for sorting the data in parallel. The parallel
partitioning which divides the unsorted array into two subarrays is proposed in this paper.
Then, the partitioned subarrays on each side are merged to their position. Note that, the data
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are only swapped to their correct positions without compare-and-swap instructions in our
merge algorithm. Finally, the pivot is moved to its correct position and this algorithm is
executed recursively.

The partitioning step which is the part of divide and conquer concept is focused. OpenMP
Task in the OpenMP library [4] is implemented using this algorithm. Run time, Speedup and
Speedup per core/thread results compared with their original algorithms are presented. We
optimized this algorithm using sorting cutoff size that affects run time on each data
distribution. Perf profiling tool [5] is used to measure and analyze cache misses, branch
misprediction and other metrics. Finally, we compare our proposed partitioning algorithm
with Hoare’s partitioning algorithm.

The contributions of this paper are summarized as follows:

(1) We proposed the parallel sorting algorithm named Dual Parallel Partition Sorting
(DPPSort) algorithm which consists of partitioning and sorting steps using OpenMP.

(2) The parallel partitioning algorithm called Dual Parallel Partition Phase which divides
the array into 2 subarrays. Then, partition them using Lomuto’s partitioning
algorithm independently. Finally, those two subarrays are merged without compare-
and-swap instructions using Multi-Swap Phase is proposed.

(3) The performance metrics such as Run time, Speedup, Speedup/core, Speedup/thread,
cache misses and branch load misses of DPPSort and the others are compared and
analyzed.

This paper is organized as follows: Section 2 shows Background and Related work. Section 3
proposes our Dual Parallel Partition for sorting. In section 4, the results are shown and
compared with any distributions. Finally, sections 5 shows conclusion and future work.

2. Background and related work

In this section, OpenMP [4] which is a parallel application programming interface is proposed.
Moreover, sequential standard sorting algorithms named gsort and STLSort are proposed.
Finally, several parallel sorting algorithms are proposed and compared with standard sorting
algorithms in this section.

2.1 OpenMP library

OpenMP [4] is an application programming interface (API) which supports parallel
programming on a shared memory system. It consists of complier directives, environment
variables and functions that support C/C++ and Fortran. The execution model of OpenMP is
the fork-join model. It starts with the master thread in sequential part. Then, worker threads
are forked in parallel . Finally, all threads are joined while their works are finished. The
overhead between CPU cores of this APl is very low compared with other libraries.

The constructs of OpenMP consist of single program multiple data (SPMD) constructs,
tasking constructs, device constructs, work sharing constructs and synchronization
constructs. The tasking construct is implemented in the recursion function in this paper.
A task unit is executed by a thread independently.

2.2 Standard sorting algorithm Libvary

The well-known standard sorting algorithm libraries called gsort and STLSort are presented
in this paper. gsort is a standard library for sorting the data. It is a well-known quicksort
algorithm which consists of partitioning and sorting steps. < stdlib.h > directive must be
included in C language to use this function.



STLSort [6] is a sorting standard library function that can sort the data. It consists of 3
algorithms. Introsort algorithm which is combined with quicksort and heapsort is performed.
Then, insertion sort is executed to sort subarray. To implement this function in
C++, < algorithm > directive must be declared.

In the quicksort algorithm, there are 2 well-known partitioning algorithms which are used
to sort the data. The first algorithm is Hoare’s partitioning algorithm [3]. It is the most popular
algorithm that indices traverse from left to right and right to left to compare and swap data.
The second algorithm is Lomuto’s partitioning algorithm. Its indices traverse in the same
direction. The first index is used to scan the array and the second index is used to divide the
data that is less than pivot or greater than pivot. These indices run to compare and swap data
until the first index is at the last data of the array.

2.3 Related works

There are several parallel quicksort algorithms which can be run on shared memory system.
Many algorithm concepts start with dividing the data into blocks and partitioning the data in
parallel. Then, the data in each block is merged to the correct position. We classify the related
work into 4 categories as follows:

2.3.1 Parallel quicksort using fetch-and-add instruction and block-based techniques.
Heidelberger et al [7] proposed parallel quicksort on an ideal Parallel Random Access
Machine using Fetch-and-add instruction. Speedup of 400X with 500 processors can be
obtained from sorting 2%° data. PQuicksort, which is a fine-grain parallel quicksort algorithm,
was proposed by Tsigas and Zhang [8]. Their algorithm uses neutralized blocks technique in
parallel. Speedup of 11X can be obtained with 32 processor cores. Stil and Leopold [9]
presented the implementation of pthreads and OpenMP 2.0 library to their parallel quicksort.
Its speedup is 3.24X on a 4-core AMD Opteron processor. Traore et al. [10] showed work-
stealing technique of deque-free parallel introspective sorting algorithm. Speedup of 8.1X on
a 16-core processor can be achieved. Ayguade et al. [9] presented MultiSort which divides the
input and sorts them with quicksort. After that, sorted data are merged in parallel. The best
speedup is 13.6X on a 32-core CPU. Kim et @l [11] developed an Introspective quicksort and
executed on embedded dual core OMAP-4430. Speedup of their parallel Introspective
quicksort is 1.47X. Saleem et al [12] estimated speedup of both quick and merge sort
algorithms using Intel Cilk Plus. Ranokpanuwat and Kittitornkun [13] developed Parallel
Partition and Merge Quick sort (PPMQSort). Speedup of 12.29X is achieved on 8-core
Hyperthread Xeon E5520 for sorting 200 million random integer data.

Recently, MultiStack Parallel Partition (MSP) which is a block-based partitioning
algorithm was proposed [14]. Threads are forked to compare and swap the data in parallel
using stacks. MSPSort is better than balanced quicksort and multiway merge sort while
sorting Uint32 data on 17-2600, R7-1700 and R9-2920 machines.

2.3.2 Parallel sorting algorithins using multi-pivot technique. Man et al. [15, 16] developed
psort which splits the unsorted array into groups of data and sorts them in parallel. After that,
those groups of data are merged and sorted again in sequential order. This algorithm is run
on a 24-core CPU and Speedup of 11X is achieved. Mahafzah [17] developed their multi-pivot
sorting algorithm that divides the unsorted array into partitions in parallel up to 8 threads.
Speedup of 3.8 can be obtained with a 2-core HyperThread machine. In 2017, parallel
Hybrid Dual Pivot Sort (HDPSort) was presented by Taotiamton and Kittitornkun [18]. Both
Lomuto’s and Hoare’s partitioning algorithms are implemented with two pivots in parallel
using OpenMP. Speedup of 2.49X and 3.02X are achieved on Intel Core 17-2600 and AMD FX-
8320 systems, respectively.

2.3.3 Parallel partitioning. Chen et al. [19, 20] proposed the performance-aware model for
Sparse matrix multiplication on the Sunway TaihuLight supercomputer. A multi-level
parallelism design for SpGEMM was developed to optimize load balance, coalesced DMA
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transmission, data reuse, vectorized computation and parallel pipeline processing. Later, they
presented an adaptive and efficient framework for the sparse tensor-vector product kernel on
the Sunway TaihuLight supercomputer. The auto-tuner that selects the best tensor
partitioning method to improve load balance was proposed. Its maximum GFLOPS is up to
195.69 on 128 processors.

2.3.4 GPU sorting algorithms. The parallel quicksort on GPU was implemented in 2010
[21]. It requires more memory to sort the data because it is not an in-place algorithm. This
algorithm contains 2 phases. The first phase divides the data to GPU local memory and
partitioning them. The second phase runs a portioning algorithm recursively using stack and
sorting them.

Kozakai et al. [22] developed an integer sorting algorithm based on histogram and prefix-
sums which run on GPU. Their algorithm is faster than the well-known sorting algorithms
Thrust sort and CUB sort on Intel Xeon E5-2620 v3 and NVIDIA Tesla K40c.

3. Dual Parallel Partition Sorting algorithm

This section shows the divide and conquer sorting algorithm named Dual Parallel Partition
Sorting (DPPSort). There are 5 algorithms which are implemented in this work. Firstly, Dual
Parallel Partition function DPPartition (Algorithm 1) is the partitioning function. Median of
five function or MO5 (Algorithm 2) is the pivot selection function before partitioning. LPar
and RPar functions (Algorithms 3 and 4) which are Lomuto’s partitioning algorithns are
implemented in DPPartition. Note that, LPar and RPar are partitioning from left to right and
right to left, respectively. Finally, MSwap (Algorithm 5) is a merging algorithm which swaps
the partitioned arrays which are greater than pivot from left subarray and less than pivot
from the right subarray. We have declared the notation in this paper as follows: @77 is array of
data, / is left position index, 7 is right position index, ¢ is Sorting cutoff size and p is pivot
position index.

Algorithm 1. DPPartition

Input: arr, [, r
Initialisation:
1:if (r =/ < ¢) then
2: omp task nowait
3: gsort () or STLSort ()
4: end if
S:ip=1+(r-102
6: MO5(arr, 1, r)
7: omp task shared(new _midL)
8: new_midL = LPar (arr,l,p — 1, p) //Partitioning algorithm
9: omp task shared(new_midR)
10: new_midR = RPar (arr,p + 1,7, p) /[Partitioining algorithm
11: omp taskwait
12: new_midC = MSwap (arr, new_midL, new_midR, p)
13: omp task
14: DPPartition (arr, I, new_midC — 1)
15: omp task
16: DPPartition (arr, new_midC + 1, r)



Algorithm 2. MO5 Dual Parallel

Partition
Input: arr, |, r Sorting
Initialisation:
Lp=Il+(r-D2

2:ql=I1+(p-DR2
3:q3=m+(r—p)2
4: SORT (arr{l],arr{g1]),arr[plarr(q3],arrlr])

Algorithm 3. LPar

Input: arr, [, r, p

Output: index!

Initialisation:
1: val = arr[p]
2: indexl =1
3:fori=li<=rji=i+1do
4. if arr[i] <= val then
5: swap(arr[i], arr[indexlI])
6: indexl = indexl + 1
7:  endif
8: end for
9

: return indexl!

Algorithm 4. RPar

Input: arr, [ v, p
Output: indexr
Initialisation:

2 val = arr{p]

tindexr=r

forj=r;j>=1j=j—1do

if arr[j] > val then
swap(arr[j], arr{indexr])
indexr = indexr — 1

end if

: end for

R A A ey

: return indexr
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Input: arr, [, v, p
Output: i orj
Initialization:
1:i=1
2:j=r

3:whilei <jandi<pandj>pdo
4: swap(arr[i),arr[j])

5: i=i+1

6 j=j-1

7: end while

8:if i > p then

9:  swap(arr[j], arr[p])
10: return j

11: else

12:  swap(arrli], arr[p])
13: return i
14: end if

The DPPartition begins with comparing size of subarray with sorting cutoff size ¢. While
subarray size is larger than ¢, MO5 function is executed to select a pivot. This function selects
the data at left, quarter, middle, 3rd quarter and right positions in the subarray. Then, sort
those selected data and choose the middle position of them as pivot. Next, LPar and RPar
functions are executed using the pivot position p. The tasking construct (omp task) is
implemented to both functions and new positions of pivot (new_midL and new_midR) are
returned. Note that, new_midL and new_midR are declared as shared variables which can be
accessed after returning. Moreover, omp taskwait is executed to synchronize both left and
right. After that, MSwap function is executed to swap the data which is greater than pivot
from the left partition and less than or equal to pivot from the right. It returns a new pivot
position (new_midC) of this level. Finally, DPPartition is run in parallel on the left and right
subarrays using omp task. In addition, the subarray, which is smaller than ¢, sequential
STLSort/gsort function is forked in parallel independently.

3.1 Dual Parallel Partitioning phase

There are two pointers in the Dual Parallel Partitioning phase which are used to partition the
data in LPar for left partition and RPar for right partition. The pointers in each function
traverse in the same direction. In LPar function, it traverses from left most (J) to the middle—1
(» — 1) of subarray. On the other hand, the pointer of RPar traverses from right most (#) to the
middle+1 (¢ + 1).

There are index! and indexr which split the data that are less than and greater than p.
Moreover, ; andj are used to divide partitioned and unpartitioned. In LPar function, ar#{i]and
arp] are compared every iteration. While ar7{i] is less than or equal to ar/{p], arri] is
swapped with ar#{indexl). Then, indexl is increased by 1.

In the RPar function, ar#{j] and ar/{p] are compared every iteration. While a7#{;] is greater
than p, ar{y] is swapped with ar{indexr). After that, indexr is decreased by 1. Finally, index]
and indexr are returned to DPPartition as new_midL and new_midR, respectively. This phase
is demonstrated as shown in the 2nd to 4th line of Figure 1.
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3.2 Multi-Swap Phase

The unpartitioned (sub)array is divided into two subarrays with a»#{p] in the previous phase.
It requires synchronization before merging by Multi-Swap phase using omp taskwait. There is
data which is greater than pivot in the left partition and data which is less than pivot in the
right partition. The data are only swapped without any comparisons untilz or j is at p position.

It starts with 7 and 7 are initialized to the left position / and right position 7, respectively.
Next, ari{i] and ar#j] are swapped and then 7 and j are moved to the next position. This
iteration continues until 7 is greater than p or j is less than p. Finally, if 7 is greater than p, ar#{/]
is swapped with a7/{p] and return 7 as a new pivot position. On the other hand, ar#{i] is
swapped with ar/{p] and returns 7 as a new pivot position. The Multi-Swap phase is
demonstrated as shown in the 5th line of Figure 1.

3.3 Sorting phase

The data which are partitioned with Dual Parallel Partitioning and Multi-Swap phases
successfully and smaller than sorting cutoff size are sorted by sorting function (gsort or
STLSort) in parallel. The data are sorted using OpenMP parallel tasks by forking thread
without blocking. The worker thread is joined with its master thread after the data are sorted
automatically.

3.4 Lomuto’s vs Hoare’s algovithm in Dual Parallel Partitioning phase

In this algorithm, the array is divided into two halves. Then we use Lomuto’s partitioning
algorithm on the left half whose index is run from left to the middle (Algorithm 3) and the right
half whose index is run from right to middle (Algorithm 4). Moreover, we replace Hoare’s
partitioning algovithm in Dual Parallel Partitioning Phase and compare this algorithm with
our proposed algorithm.

4. Experiments, results and discussions

This section shows the setup of experiments, results and discussions. The metrics such as
Run Time, Speedup, Speedup per core/thread and Perf profiling results are demonstrated and
discussed.
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Figure 2.

Run time of
DPPSortyso, in
seconds vs Sorting
cutoff size of various N
(M = 108, Uint64
random)

4.1 Experiments setup

We compare DPPSort function with gsort (DPPSort,s,) and STLSort (DPPSortsry) as
sorting cutoff Algorithms, gsort and STLSort functions. The random, few unique, nearly
sorted and reversed 32-bit and 64-bit unsigned integers are sorted in this experiment. The 50,
100, 200 million data N are generated randomly in every experiment. The sorting cutoff ¢ are
N/2, N/4, N/8, N/16, N/32 and N/64. Each parameter is tested and averaged as Run time(sec).
All sorting algorithms are run on Intel i7-6770 which consists of 4 cores (8 threads) with 32 GB
main memory.

4.2 Results

There are 3 metrics which are used to measure the performance of DPPSort,s,; and
DPPSortsyy. (1) Run Time (2) Speedup and Speedup per core/thread (3) Perf profiling tool is
used to profile cache misses and branch load misses.

4.2.1 Run time. Total run time of DPPSort (Tppps,y) consists of DPPartition and its
sequential sorting algorithm run time. Note that, DPPartition run time is partitioning
algorithm run time (7 pppar4sion) and its sequential sorting algorithm run time (7,,;) is run
time of gsort or STLSort which is chosen as sorting algorithm. Total run time of DPPSort is
shown in equation (1) .

TDPPSon‘ = TD[’PartitiOn + Tsan‘ (1)

DPPSort is faster than gsort and STLSort algorithms. The fastest algorithm is DPPSortsyy.
Its run time is only 3.97 and 2.87 seconds to sort 200 million Uint64 data using gsort and
STLSort, respectively as a sorting cutoff algorithm. Run time of gsort and STLSort function
are 26.06 and 16.06 seconds, respectively.

Sorting cutoff size is proportional to run time and effects with run time complexity. Run
time of DPPSo7t,s,,+ and DPPSortsy; which run random data are the fastest at ¢ = N/32 and
¢ = N/8, respectively. Run time of DPPSort;s,,+ and DPPSortsyy, are illustrated in Figure 2a
and b. DPPSort run time slightly falls while the sorting cutoff size is smaller in any sorting
cutoff algorithm. We can notice that the best sorting cutoff size is at ¢ = N/32 on DPPSo7t 450,
The Dual Partitioning phase should be run until its partitions are small enough. Then, sort the
partitions using a sorting cutoff algorithm in parallel. On the other hand, the best sorting
cutoff size of DPPSortsyy is at ¢ = N/8. Its run time depends on the sorting cutoff algorithm.
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STLSort is faster than gsort significantly and can sort the medium data size efficiently.  Duyal Parallel
Therefore, it is not needed to split the data into small sizes. Partition
Table 1 shows average run time of each distribution at ¢ = N/8. We can notice that Sortin
reversed distribution run time of DPPSo71 5., STLSort and gsort are the fastest compared g
with other distributions. It can be due to every algorithm using Hoare’s partitioning as the
partitioning algorithm. This algorithm swaps the most left and right data that is the greatest
and lowest, respectively. Then, its indices run to the middle position and finally sort the data.
The DPPSortsy; run time of reversed, nearly sorted and few unique distributions are
almost the same. It can be due to Tpppa 0 being lower than the other distributions which
affects Tppps,. The DPPSortsyy run time of reversed, nearly sorted and few unique are
almost the same. The run time of DPPSorts,,+ of reversed is slightly faster than the others. It
can be due to the DPPartition algorithm which reduces Tpppy,sion that affects Tpppsyys.
4.2.2 Speedup. Speedup is the metric which can be measured by the performance of the
DPPSort algorithm. It is the fraction of original run time versus the DPPSort algorithm run
time as shown in equation (2).
Speedup = M @
Run Timepppsy
Our experiments show DPPSort with gsort and STLSort is a sorting cutoff algorithm.
Average Speedup of DPPSort,s,,, and DPPSortsy;, (Uint64 random) are shown in Table 2.
Run time (sec)
Algorithms Distributions N =50 x 10° N =100 x 10° N =200 x 10°
DPPSortsyy, Random 0.66 1.37 2.87
Reversed 0.55 1.14 2.50
Nearly sorted 0.56 115 244
Few unique 0.55 1.14 245
DPPSort 5oy Random 091 193 414
Reversed 0.52 113 241
Nearly sorted 0.73 154 3.30
Few unique 0.69 151 317
STLSort Random 3.84 7.76 16.06
Reversed 0.56 115 240
Nearly sorted 309 649 1350 Averagfrﬁ';‘g;é
Few unique 1.54 313 6.45 (Uint64 data) of each
gsort Random 6.03 12.53 26.06 distribution at ¢ = N/8
Reversed 1.72 357 746 of DPPSort o,
Nearly sorted 351 7.28 15.10 DPPSortsyy, STLSort
Few unique 397 815 16.76 and gsort
C
Algorithms N (109 N2 N/A N8 N/16 N/32 N/64
DPPSort 50,1 50 6.02 6.41 6.64 6.76 6.82 6.78
100 5.81 6.25 648 6.55 6.66 6.69 Table 2.
200 5.80 6.12 6.29 6.44 6.56 655  Average Speedup of
DPPSortsry, 50 565 559 584 588 554 545 DPPSort 5.y, and
100 549 5.69 5.69 561 550 533 DPPSortsy; versus ¢
200 5.39 5.60 5.60 547 5.32 5.26 (Uint64 Random)
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Figure 3.

Speedup of
DPPSortys0,+ and
DPPSortsry vs N
(M = 10°, Uint64
Random) of various
sorting cutoff size

Speedup of DPPSort,s,,: is greater than DPPSortsy; significantly. It can be due to
partitioning run time of both DPPSort,;5,,; and DPPSort sy, are similar. However, sorting run
time of DPPSort,s is greater than DPPSortsyy, significantly. In addition, Speedup of
DPPSort 50y 1s greater than DPPSortsyy.

Figure 3a shows Speedup of DPPSort,s,,; of various sorting cutoff size. It can be noticed
that Speedup increases until ¢ = N/32. However, Speedup of DPPSortsz; reaches the highest
at ¢ = N/8 as shown in Figure 3b. It can be due to the fraction between partitioning and
sorting. The gsort() is quicksort algorithm which divides the data using Hoare’s algorithin
then sort them with insertion sort when the subarrays are smaller. The STLSort is Introsort
algorithm which contains quicksort and heapsort in the partitioning step. It divides the data
into subarray using quicksort and use heapsort to sort partially while partitioning. When the
subarray is small enough, the insertion sort is called to sort that subarray. The STLSort() can
sort the large data better than gsort() because of its partitioning algorithm.

The best Speedup of DPPSort,s,,; and DPPSorts7;, at Uint32 data size are at ¢ = N/64 and
¢ = N/32, respectively. Moreover, the best Speedup of DPPSort,,,, at Uint64 data size is
between ¢ = N/32 and ¢ = N/64. However, the best Speedup of DPPSort g7y at Uint64 data size
is lower than the other parameters. It is between ¢ = N/4 and ¢ = N/8. We can notice that the
significant parameters are sorting cutoff algorithm, sorting cutoff size and data type. Sorting
cutoff algorithm size is proportional to sorting cutoff algorithm. While gsort is a sorting cutoff
algorithm, the sorting cutoff size is smaller than STLSort. The important parameter is data
type. The best Speedup of Uint64 is larger compared with Uint32 data.

4.2.3 Speedup per core and thread. Speedup per core and Speedup per thread are the
metrics used to measure the parallel algorithm. If these metrics are higher, the algorithm can
use the processor core efficiently. It is the fraction of Speedup of any sorting algorithm versus
CPU cores. Note that, Speedup per thread is the fraction of Speedup of any sorting algorithm
versus Hardware threads.

Speedup per core and thread results of related algorithms are calculated and available on
https://github.com/DPPSort/AnalyzeOptDPPSort/blob/main/Tables/t3.pdf. It can be noticed
that Speedup per core of our algorithm is higher than the others. Speedup per core of
DPPSort 50, and DPPSortsyy, is up to 1.71 and 1.47 which are greater than 1.00. This means it
can use the processor core efficiently.

However, the 4-core with 8-thread 17-6770 is used to run our DPPSort in our experiment.
The Speedup per thread is calculated because of the Hyperthreading Technology of Intel

WN2 N4 BN/ W N6 MN/32 W N/64 u N2 N4 MWN/8 WN/16 EN/32 EN/64

50M 100M 200M 50M 100M 200M
N N
DPPSort i, DPPSortgr

(a) (b)


https://github.com/DPPSort/AnalyzeOptDPPSort/blob/main/Tables/t3.pdf

CPU. Speedup per thread of DPPSortys,: and DPPSortsy;, are up to 0.85 and 0.74,
respectively. This means the hardware threads of the processor run this algorithm effectively
compared with the others.

We can notice that the Speedup/thread of other algorithms such as PPMQSort [13] (0.77),
Introgsort [11] (0.74), DF IntroSort [10] (0.51), psort [15, 16] (0.46), MuitiSort [9] (0.43) and
HDPSort [18] (0.31) are less than DPPSort. This result reflects the efficiency of the DPPSort
algorithm that contains DPPartition and its sorting algorithm. The DPPartition affects
Speedup/thread that means this algorithm can run on Simultaneous multithreading (SMT)
better than the others.

4.2.4 Perf profiling results. Perf profiling tools can be used to profile the cache misses and
branch load misses which affects run time of the algorithm. DPPSortsry, DPPSot 45001,
STLSort and gsort are profiled with random, reversed, nearly sorted and few unique data
distributions. Perf results are measured and available on https:/github.com/DPPSort/
AnalyzeOptDPPSort/blob/main/Tables/t4.pdf and https://github.com/DPPSort/
AnalyzeOptDPPSort/blob/main/Tables/t5.pdf.

DPPSort 450y, DPPSortsty, STLSort and gsort are run with Perf Profiling tools at Uint32
and Uint64 with N = 200 X 10° and ¢ = N/8. Cache misses of Uint32 data are slightly less than
Uint64 data. It can be due to the data type of the Uint32 which is smaller than the Uint64. On
the other hand, data types do not affect branch load misses. Therefore, branch load misses of
Uint32 and Uint64 are very similar.

It can be noticed that the run time of the reversed distribution is the lowest compared with
the others. Its branch load misses metric is the lowest. Moreover, DPPSort,s,,; run time of
reversed distribution is faster than DPPSortsy;.. Branch load misses metric of DPPS07t ;554 1S
lower than DPPSortsyy. This can be due to the Hoare’s algorithm in gsort which is the sorting
cutoff algorithm.

We can notice that the random distribution of every algorithm is the slowest. Both cache
misses and branch load misses metrics are the greatest.

There are 2 important metrics which affect the run time of the sorting algorithm. The first
priority metric is branch load misses. While the branch load misses metric is greater, its run
time is greater than the lower one. If branch load misses of two algorithms are about the same,
the second priority metric is cache misses.

4.3 Our proposed vs Hoare’s partitioning algorithm in Dual Parallel Partitioning phase
results

In this paper, we replace and compare our proposed algorithm with Hoare’s partitioning
algorithm. The results of DPPSortsy; which uses our proposed and Hoare’s algorithins
are available on https://github.com/DPPSort/AnalyzeOptDPPSort/blob/main/Tables/t6.pdf.
In this experiment, the Uint32 200 million data are run with different sorting cutoff which
¢ = N/2, N/4, N/8, N/16, N/32 and N/64.

It can be noticed that run time of DPPSortsy; which uses Hoare’s partitioning
algorithm as partitioning algorithm, is faster than our proposed partitioning algorithm at
¢ = N/2 and N/4. Moreover, its standard deviation is less than ours. Our proposed
partitioning algorithm is faster than or equal to Hoare’s algorithmm at ¢ = N/8, N/16, N/32
and NV/64. In addition, the standard deviation of our proposed partitioning algorithm is
less than Hoare’s algorithm at N/16, N/32 and N/64. It means that while the sorting cutoff
is smaller, our proposed partitioning algorithm is faster than Hoare’s algorithm and it is
stable more than Hoare’s. It can be due to our proposed partitioning algorithm using
Lomuto’s partitioning algorithm inside. However, our proposed partitioning algorithm
uses Hoare’s style outside. Therefore, its locality is better than Hoare’s partitioning
algorithm.
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5. Conclusion and future work

This paper proposes an Optimized Dual Parallel Partition Sorting (DPPSort) algorithm. The
concept of DPPSort is to partition the data into two parts. Then, run the partitioning
algorithm in parallel and merge them with the Multi—Swap algorithm. This algorithm is run
recursively until it is smaller than sorting cutoff sizes. The partition is sorted using the
standard sorting function in parallel.

DPPSortis applied and runs on Intel core i7-6770 with Linux system. It is faster than other
standard sorting algorithms like gsort and STLSort. Speedup on random distribution is up to
6.82x and 5.88%, respectively. Note that, Speedup per thread of 0.85X can be obtained. Its
performance depends on the sorting cutoff algorithm, its size, data type and data distribution.

The first priority metric that affects run time is branch load misses. The second one is
cache misses. It affects run time significantly while branch load misses of compared
algorithms are the same.

DPPSort can be improved in the future works. We can apply this algorithm to the larger
machines and heterogeneous systems. Moreover, we can implement this algorithm to the
heterogeneous system to achieve Speedup of the algorithm.
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