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Abstract

Purpose — The central idea of this research article is to examine the characteristics of Clairaut submersions
from Lorentzian trans-Sasakian manifolds of type (a, ) and also, to enhance this geometrical analysis with
some specific cases, namely Clairaut submersion from Lorentzian a-Sasakian manifold, Lorentzian
S-Kenmotsu manifold and Lorentzian cosymplectic manifold. Furthermore, the authors discuss some results
about Clairaut Lagrangian submersions whose total space is a Lorentzian trans-Sasakian manifolds of
type (@, ). Finally, the authors furnished some examples based on this study.
Design/methodology/approach — This research discourse based on classifications of submersion, mainly
Clairaut submersions, whose total manifolds is Lorentzian trans-Sasakian manifolds and its all classes like
Lorentzian Sasakian, Lorenztian Kenmotsu and Lorentzian cosymplectic manifolds. In addition, the authors
have explored some axioms of Clairaut Lorentzian submersions and illustrates our findings with some non-
trivial examples.

Findings — The major finding of this study is to exhibit a necessary and sufficient condition for a submersions
to be a Clairaut submersions and also find a condition for Clairaut Lagrangian submersions from Lorentzian
trans-Sasakian manifolds.

Originality/value — The results and examples of the present manuscript are original. In addition, more
general results with fair value and supportive examples are provided.

Keywords Clairaut submersion, Anti-invariant submersion, Lorentzian trans-Sasakian manifolds,
Clairaut Lagrangian submersion
Paper type Research paper

1. Introduction

The conception of Riemannian immersion is studied extensively together with starting the
study of Riemannian geometry. In fact, Riemannian manifolds are studied first as surfaces
imbedded in R®. In 1956, Nash [1] proved that a revolution for Riemannian manifold that all
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Riemannian manifolds are isometrically embedded at any small part of Euclidean space.
Consequently, the differential geometry of the Riemannian immersion is commonly noted,
and it can be found in different text books such as (2, 3)).

Contrastingly, “dual” concept of Riemannian immersions is one of the famous research
fields in differential geometry and is the theory of Riemannian submersions, which was first
ivestigated by O'Neill [4]and Gray [5]. Watson [6] popularized the knowledge of Riemannian
submersions considering almost Hermitian manifolds in terms of almost Hermitian
submersions. Afterward, almost Hermitian submersions are discussed with in various
subcategories of almost Hermitian manifolds. Also, Riemannian submersions are enhanced
considering many subcategories of almost contact metric manifolds in terms of contact
Riemannian submersions. Several materials about Riemannian, almost Hermitian or contact
Riemannian submersions are available in reference [2].

Most of the research linked to the theory of anti-invariant Riemannian, Lagrangian
submersions and Clairaut anti-invariant submersions is available in Sahin’s book [3].
Afterward, several kinds of Riemannian submersions appeared, for example: semi-invariant,
slant, pointwise-slant, semi-slant, hemi-slant and generic submersions. Most of the studies
related to these can also be found in Sahin’s book [3].

In 1972, Bishop [7] proposed the concept and conditions of a Clairaut submersion in
terms of a natural generalization of a surface of revolution. Under these circumstances, for
every geodesic o at the surface S, function ySin® is constant through o, here y is a metric
between the point at surface and rotation axis, also ® defines angle within ¢ and meridian
through o.

The concept of anti-invariant Riemannian and Clairaut anti-invariant submersion has
been fitting a very progressive geometric analysis field since Sahin [8] essentially described
such submersions of almost Hermitian manifolds on Riemannian manifolds. Indeed, anti-
invariant Riemannian and Clairaut anti-invariant submersion have been examined in various
types of geometrical manifolds, namely Kahler [8-10], almost product [11], Sasakian [12, 13],
Kenmotsu [13], cosymplectic [30], paracosymplectic [14, 15] and trans-Sasakian manifolds
[16-18]. Note that this concept of anti-invariant Riemannian submersion is generalized to
conformal anti-invariant submersions [19-21].

In [22], Allison proposed Clairaut submersions in case the total manifold is Lorentzian. In
addition, it is discovered that Clairaut submersions are used for static spacetime applications.
Basically, a static spacetime can be considered as a Lorentzian manifold.

On the other hand, in 2013, De et al. [23] presented the concept of Lorentzian trans-
Sasakian manifolds. Trans-Sasakian structure together with Lorentzian metric can be
applied naturally at the odd dimensional manifold. Motivated by above research studies
mentioned in this paper, we have examined the Clairaut anti-invariant submersions from
Lorentzian trans-Sasakian manifolds.

The work is ordered as follows. Section 2 presents basic notion and definition for
Lorentzian trans-Sasakian manifolds. Section 3 includes particular background of
Riemannian submersions. Section 4 presents definition of anti-invariant and Lagrangian
submersions. In section 5, we study anti-invariant submersions and Clairaut anti-invariant
submersion from trans-Sasakian manifolds onto Riemannian manifolds admitting
horizontal Reeb vector field. In section 6, we deal with some axioms of Clairaut
Lagrangian submersion and provide some examples and some of their characteristic
properties.

2. Lorentzian trans-Sasakian manifolds
A (2n + 1)-dimensional differentiable manifold M is named the Lorentzian Trans-Sasakian
manifold [23] in case it allows (1, 1) tensor field ¢, the global vector field { named Reeb vector



field or contra-variant vector field, that is, in case # is a dual 1-form of {, and the Lorentzian  Clairaut anti-
metric g that satisfies [24].

invariant
QU =U+nU), n)=-1, ¢¢=0, 21)  submersions
g(eU,eV) =g(U, V) +n(U)n(V), 22)
where both U and V refer to any vector fields at M. Also, using previous axioms gives
noe=0 and n(U)=g(U,J). 2.3

Here, (¢, ¢, n, 9) [23] is named Lorentzian structure of M. A Lovenizian trans-Sasakian
manifold M also satisfies [25].

(Due)V = alg(U, V)¢ =n(V)U] + plg(eU, V)E —n(V)eU] 24)

for functions a and B and D is Levi-Civita connection with respect to the Lorentzian metric g
at M. Moreover, (M, ¢, ¢, i, 2) is named the Lorentzian trans-Sasakian manifold from type
(@, p); for more details, see (26)). It can be deduced from (2.1) that

Dy¢ = —apU — B(U +n(U){) . 2.5)

Remark 1.

1) If @ = 0and g # Ofr g = 1), therefore the manifold turns into the Lorentzian
B-Kenmotsu manifold (or Loventzian Kenmotsu manifold) [23].

@ If a# 00r a=1)and g = 0, therefore this manifold turns into the Lorentzian
a-Sasakian manifold (or Lorentzian Sasakian manifold) [23].

3) In case a = 0 and g, therefore, the manifold turns into the Lorentzian cosymplectic
manifold [23].

3. Riemannian submersions
An essential background of Riemannian submersions is given at this part.

Suppose (M, g) and (N, gy) are Riemannian manifolds, such that dim(M) > dim(N). The
subjective mapping y: (M, g) = (N, gy) is named the Riemannian submersion [4] if:

(S1) The rank(y) = dim(N).
Therefore, for allg € N,y (q) = yjq‘l is the k-dimensional submanifold of M and is named
the fiber, with
k= dim(M) — dim(N).

The vector field at M is named vertical (resp. horizontal) in case it is still as a tangent
(orthogonal) relating to the fibers. The vector field X at M is named basic in case X is
horizontal and y-connecting to the vector field X« at V, which means y«(X;) = X« for any
p € M, where = is derivative or differential map of y. V and H define the projections at
vertical distribution kery= and horizontal distribution kerys, in the same order. Usually, a

manifold (M, g) is named the total manifold and (N, gn) is named base manifold of the
submersion y: (M, g) — (V, gn).

(S2) y« preserves the lengths of horizontal vectors.
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This condition is equivalent to say that the derivative map = of y, restricted to kery, is the
linear isometry. The geometrical description of Riemannian submersions is represented by
O'Neill’s tensors 7 and A, determined as:

TE1F1 = VDVEIHF1 + HDVEIVF1, 3.1)
ApFy = VDysHEy + HDy VE, (32)

for any vector fields E; and Fy at M, with D is Levi-Civita connection of g. Clearly,
T in addition to Ag are skew-symmetric operators at tangent bundle of M
reversing vertical and the horizontal distributions. To sum up, tensor fields properties
T as well as A, Suppose V7, W; are vertical and X3, Y7 are horizontal vector fields at M,
therefore

Ty, Wy =Tw W, 3.3)
1
Ax Y1 =-Ay Xy = év[Xh . 34)
On the other hand, from (3.1) and (3.2), we obtain

Dy, Wy = Ty, Wy + Dy, W, 3.5)

DV1X1 = TVle + HDVle, (36)

Dx, Vi = A, Vi + VDx, V1, 3.7

DXI Y = HDXI Y1+ »AXl Y, 3.8

where ZA)V1 Wi = VDy, Wy. Moreover, if X is basic, then we have HDy,X; = Ax, V1. It
appears that 7 is acting at fibers as second fundamental form, whereas A is acting at
horizontal distribution and measuring obstruction to integrability of the distribution. Further
details are given in the paper of O’'Neill [4] in addition to this book [2].

At the end, the concept of second fundamental form of the map within Riemannian
manifolds is recalled. Suppose (I, g) and (V, gn) are Riemannian manifolds and f: (M, g) — (V,
gn) 1s the smooth map. Therefore, second fundamental form of f is written as

(D.)(U,V) = DIf.F — f.(DyV) 39

for U, V € T(TM), with V' defining the pull-back connection, and D defines the Riemannian
connections of the metrics g and gy. Symmetry is widely known property of second fundamental
form, and further, fis named tofally geodesic [31] in case (Df« ) (E, F) = Ofor any U, V e T'(TM)
(asin[19, p. 119]), and fis named the harmonic map [29]in case trace(Dfx«) = 0(@sin[19, p. 73]).

4. Anti-invariant Riemannian submersions
We first recall idea of an anti-invariant Riemannian submersion where its total manifold is the
almost contact metric manifold.

Definition 4.1. ([18, 27]) Let M be 2n + 1)-dimensional almost contact metric manifold
among almost contact metric constructor (¢, £, n, &) and N is the Riemannian manifold among
Riemannian metric gy. Considering there is Riemannian submersion y: M — N where vertical
distribution kery defines anti-invariant with respect to @, which means, okerys C kerys.
Therefore, Riemannian submersion rt is named the anti-invariant Riemannian submersion.
Similar submersions are called the anti-invariant submersions.



Here, horizontal distribution kery4 is given as. Clairaut anti-

keryt = okery, ® p, @.1) invarjant
submersions
with y refers to orthogonal complementary distribution of ¢kery« at kery, and it is invariant

with respect to ¢.

It is said that the anti-invariant w: M — N allows vertical Reeb vector field in case Reeb
vector field & is tangent to kery« and allows horizontal Reeb vector field in case Reeb vector
field € is normal to kery=. Clearly, u includes Reeb vector field & if y: M — N allows horizontal
Reeb vector field &.

Now, we begin to study anti-invariant submersions admitting vertical Reeb vector field
from Lorentzian trans-Sasakian manifolds (M, ¢, ¢, n, g) of type (@, p) using (nontrivial)
example.

Example 4.2. Suppose M is three-dimensional Euclidean space written as
M = {(x,y,2) €R®| yz#0}.

We consider the Lorentzian trans-Sasakian structure (g, &, 1, g) at M with a = 5 2*#0 and
B = L1+0[23] given by the following:

3 10 0
Cza—,nzdz,gz 01 0
< 00 -1

and ¢ is (1, 1) tensor field denoted as ¢(F;) = — Es, o(E) = — Ey, ¢(E3) = 0.
An orthonormal ¢-basis of this structure is written as

ad ad ad d
{El *Z<a+3’&>a Es *Z@, Es *&}

Here, the map y : (M, ¢,&,1,2) — (R, g1) is introduced as:

xX+y
X,V,2) = —F—,
w(x,9,2) 7
where g7 is Lorentzian metric on R. Therefore, Jacobian matrix of y is given as:
{ 1 1 O}
V2 V2
Since the rank of this matrix equals 1, the map 7 is the submersion. Using some calculation
leads to
B+ EZ) }
kery, = spani U = — , V=E¢,
W, = Sp { < 73 3
and
E +E
kerl:san{W: ! }

Immediate calculations show that y ensures the condition (S2). Thus, y is the Riemannian
submersion. Moreover, we got ¢(U) = W. Therefore, y is the anti-invariant submersion
admitting vertical Reeb vector field.
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Remark. Throughout this vesearch, as a total manifold of an anti-invariant submersion, let
us consider a Lorentzian trans-Sasakian manifold (M, o, {, 1, ) of type (a, ) such that both a #
0 and p # 0.

Notion of Lagrangian submersion is considered the specific case from notion of anti-invariant
submersion. We next recall the definition of the Lagrangian submersion from Lorentzian
trans-Sasakian manifold onto a Riemannian manifold.

Definition 4.3. ([12]) Let y be the anti-invariant Riemannian submersion from the almost
contact metric manifold (M, ¢, &, n, ) on the Riemannian manifold (N, gn). In case uy = {0} or
u = spani{é}, ie. kerys = o(kerys) or kerys = @(kerys) @® < & >, in the same order,
therefore vy is called the Lagrangian submersion.

Let y is the anti-invariant submersion from the Lorentzian trans-Sasakian manifold (M, ¢, ¢,
1, &) on the Riemannian manifold (V, g). For any Xi € kery, we write

oX, = BX, +CX,, 42)
with BX €T'(kerms) and CX € T (kerrny,).

Definition 4.4. ([7]) Suppose S is the revolution surface at R® with rotation axis . For all
q € S, where y(q) represents the distance between q and . Choosing the geodesico : U CR— S
on S, Suppose O() is an angle between o(l) and the meridian curve through o(), [ € U. By the
Jamous Clairaut’s theorem, we know that for all geodesics o on S, the product y Sin® is constant
along o, which means the independence of I,

Using geometrical analysis of Riemannian submersions, Bishop [7] described the idea of
Clairaut submersion as follows.

Definition 4.5. ([7]) The Riemannian submersion w: M — N is known as the Clairaut
submersion in case there is positive function y at M, that is, for all geodesics o at M, the function
(y'6)Sin® is constant, where, for all [, ©() is an angle within 6(1) and horizontal space ().

Bishop also provided the necessary and sufficient condition for the Riemannian submersion
turns into the Clairaut submersion as follows.

Theorem 4.6. ([7]) Let w: M — N be the Riemannian submersion with connected fibers.
Therefore y s the Clairaut submersion with y = exp(w) if and only if all fibers are totally
umbilical and have the mean curvature vector field H = —Dw, where Dw is gradient of the
Sfunction @ with respect to g.

5. Anti-invariant submersions admitting horizontal Reeb vector field from
Lorentzian trans-Sasakian manifolds

The anti-invariant submersions are studied in this part from trans-Sasakian manifolds
conceding horizontal Reeb vector field. First, the modern necessary and sufficient condition
for similar submersions turns into a Clairaut submersion, and then a few distinctive outcomes
for this sort of submersions are shown.

We observe from Definition 4.5, the source of the knowledge of a Clairaut submersion
comes from geodesic on its total space. As a result, the necessary and sufficient condition of
the curve on total space explored remains geodesic.

Now, the following results are given:

Theorem 5.1. Lety: (M, ¢, {, 1, 8) — (N, gn) is the anti-invaraint Riemannian submersion
from Lorentzian trans-Sasakian manifold of type (a, ) onto the Riemannian manifold allowing



hovizontal Reeb vector field. In case 6 : U C R — M is vegular curve and V1(l) in addition to Z1())
defines vertical and horizontal components of the tangent vector field o(1) = G of o(, in the
same ovder, therefore o is geodesic if and only if through o the following equation

VD,BZ + Aglgon + TVlgon + (TVI + AZL)CZl + an(Zl)Vl + ﬂﬂ(Zl)le =0 (1)
HD&CZl + HD3¢V1 + (’TV1 + AZI)le + a[l’](Zl)Zl + UC} (52)
+BIn(Z) (V1) +n(Z)C2] = 0.

hold, where /s is constant speed of o.
Proof. In view of Eqn (2.4), we find

(Di)o = ¢Ds0+alg(6,0)c —n(0)o] +ple(¢5.6)c —n@)es]  63)
Since 6 = Vi + 73, g(0,6) = s, and (V) = 0, we can note
Diyne(Vi + 2) = ¢Ds6-+ alol — n()s— n(2)3] — fZ) eV + 02 6

Now, from a straight forward calculation, we find
Dy,@Vi + Dy¢Zi + Dy oVi + DyoZy = ¢Dso+ alvg — n(Z)Vi —n(Z)Z)  (6.5)
—pn(Z) (V1 + ¢Z1)).
In fact # (V1) = 0. By using Eqns (3.3), (3.4), (3.5) and (3.6), we find
H (D(;(Pvl +D, czl) + (Tv, + Ay) (B4 + Cy) + VD;BZ + AyoVi + TveVi (656)
= ¢Ds0+ vl — n(Z) Vi — n(Z) 2] — pin(Z)BZ + CZy + o Vi)
Now qapturing the vertical and horizontal components from Eqn (5.6), we find the following
equations:
VDsBZ + AzoVi + TV + (’TV1 + .AZI)CZl = VD6 — an(Z)Vy — pn(Z)BZ
(6.7)

and
HD;CZ, + HD; 9V + (’TV1 + AZI)BZI (5.8

= H¢Dyo — avl — an(Z) 2 — pn(Z) Vi — pn(Z)Ca.

From equations (5.7) and (5.8), it is simply observed that ¢ is geodesic if and only if (5.1) and
(5.2) hold. O
Using Theorem (5.1) in addition to Remark (1), the following corollaries are obtained.

Corollary 5.2. Suppose w: M, o, ¢, n, 8 — (N, gn) is the anti-invaraint Riemannian
submersion from Lorentzian a-Sasakian manifold of type (a, 0) onto the Riemannian manifold
allowing horizontal Reeb vector field. In case o : U CR— M is regular curve and V1()) in
addition to Z,()) defines vertical and horizontal components of tangent vector field o(I) = G of
o()), in the same order, therefore o is geodesic if and only if through o the following equations

VD;BZ + Az oV + TyveV1 + (Tvl + -AZI)Czl +an(Z)V1 =0 (5.9)

Clairaut anti-
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HD;CZ +HD; V1 + (Tvl + -AZI)BZI +an(Z1)4 4+ v¢] = 0. (6.10)

maintain, where \/s is constant speed of o.

Corollary 5.3. Suppose w: (M, ¢, {, 1, 8 — (N, gn) is the anti-invariant Riemannian
submersion from Lorentzian p-Kenmotsu manifold of type (0, p) onto the Riemannian
manifold admitting horizontal Reeb vector field. In case 6 : U C R — M is the regular curve
and V1(l) in addition to Z1() defines vertical and hovizontal components of tangent vector field
6(1) = Gof o(l), in the same order, therefore 6 is geodesic if and only if through o the following
equation

V'D[;le + AZIQDVl + TVI(,DV1 + (7—1/1 + AZI)Czl + ﬁi’](Zl)le =0 (511)
HD;CZ + HD V1 + (TV] + AZ])BZl + Bn(Z4) (V1) +n(%4)CZ4) = 0. (6.12)

hold, where /s is constant speed of o.

Corollary 5.4. Suppose y: (M, ¢, ¢, n, 8 — (N, gn) is an anti-invaraint Riemannian
submersion from Lorentzian cosymplectic manifold of type (0, 0) onto the Riemannian
manifold allowing horvizontal Reeb vector field. If 6 - U C R — M is the vegular curve and V()
n addition to Z\(l) defines vertical and horizontal components of the tangent vector field
o(l) = Gof o()), in the same order, therefore o is geodesic if and only if through o the following
equation

VD&BZ] + .AZIQDV1 + TquoV] + (7'1/l + AZI>CZ1 =0 (5.13)
HD;CZ + HDsp V1 + (7-{/1 + Azl)le =0. (5.14)

hold, where /s is constant speed of o.

Theorem 5.5. Suppose y: (M, ¢, £, n, 8) = (N, gn) is the anti-invariant Riemannian
submersion from Lorventzian trans-Sasakian manifold of type (a, p) onto the Riemannian
manifold allowing horizontal Reeb vector field. Thervefore v is Clairaut submersion with
y = exp(w) if and only if through o

(Do, Z) — pr(Z)|IVA) = g(an(Zl)Zl +HD;C% + (Tv, + Az )B%, (le) (5.15)

holds, where V() and Z,()) are vertical and horizontal components of the tangent vector field 6(I)
of the geodesic o(l) at M, in the same order.

Proof.  Consider o() as the geodesic having the speed /s at M, therefore,
A |2

o).

s = (5.16)
Now, from Eqn (5.16), we achieve that
gVi), i) =vSin0()  and  g(4(). %) = 1Cos’O@),  6.17)

where @()) is the angle within (/) and horizontal space at 6()). Now, by the derivative of first
part of Eqn (5.17), we find

d . o)
Z8A0), Vi) = 2g(D3<1) Vi), Vi (1)) = 20Sin0Cos® - (1), (5.18)

Using the Lorentzian trans-Sasakian structure, we find
g(goD,;(l) Vi(l), oV (1)) = 1Sin®Cos® %C? o), (5.19)



Once again, from Eqn (2.4), we have
oD, Vi = DseVs — ag (& V1)¢ — g (06, ). (5.20)
Hence,
g(¢D;Vi,¢V1) = g(HeD; Vi, V1), (6.21)

since #(V) = 0, g(¢ V1, £) = 0 and using the fact that ¢ 17 is horizontal.
Thus, from Eqn (5.19), we obtain

g(quD,; i, gon) = sz'n@Cose‘iTC? (0). (5.22)

From Eqn (5.2), we find along o,

. d®
—g(HD,;CZl + (Tv, + A)BZ + an(24) 2 + Pn(Z)e(V1), (le) = 1Sin©Cos® =

dl’
(6.23)
since g(e V71, §) = 0.
On contrary, y is Clairaut submersion with y = exp(w) if and only if
d . do . de
7 [exp(w)Sin®] =0 «  exp(w) [ﬁ Sin® + Cos® ﬂ} =0. (6.24)
Now, taking the product of Eqn (5.24) with nonzero factor vSin®, we find
d—vainzG) + vSin®Cos® o _ 0. (5.25)

dl dl

Using equations (5.23) and (5.24), we obtain

dw

oIV = g(an(Z)2 + HD,CZ + (Tv, + Az)BZ,¢V1) + n(Z)| Vi (6.26)

Infact % [o(1)] = 6[w] = g(Dw,6) = g(Dw, Zy ), the expression (5.29) follows from (5.26). (]
Now, the following corollaries are given:

Corollary 5.6. Suppose w: M, ¢, ¢, n, 8 — (N, gn) is the anti-invariant Riemannian
submersion from Lorentzian a-Sasakian manifold of type (a, 0) onto the Riemannian manifold
allowing horizontal Reeb vector field. Therefore y is Clairaut submersion withy = exp(w) if and
only if through o

(¢(Dw, )| Vi[* = g (an(2)Z + HDCZ + (Tr + Az)BZ, Vi) (G20)

holds, where V1()) and Z\()) are vertical and hovizontal components of the tangent vector field
o(l) of the geodesic o() at M, in the same order.

Corollary 5.7. Suppose w: M, ¢, ¢, n, 8 — (N, gn) is the anti-invariant Riemannian
submersion from Lorentzian -Kenmotsu manifold of type (0, B) onto the Riemannian manifold
allowing horizontal Reeb vector field. Therefore y is Clairaut submersion with y = exp(w) if
and only if through o

g(Dw, Z) — p(Z)|Vi)P = g(m%cz1 +(Tv, + Az)B2, gon) (5.28)

Clairaut anti-
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holds, where V1() and Z,()) are vertical and horizontal components of tangent vector field o(I)
of the geodesic o(l) at M, in the same order.

Corollary 5.8. Suppose w: M, o, ¢, n, 8 — (N, gn) is the anti-tnvariant Riemannian
submersion from Loventzian cosymplectic manifold of type (a, ) onto the Riemannian manifold
admitting horizontal Reeb vector field. Therefore w is Clairaut submersion with y = exp(w) if
and only if along o

2(Dw, 2)| Vi = g(HD(;CZl +(Tv, + Az)B2%, gon) (5.29)
holds, where V1(l) and Z1()) are vertical and horizontal components of the tangent vector field
(1) of the geodesic 6() at M, in the same order.

Now, from Eqn (5.29), we also obtain the following conclusion.

Corollary 5.9. Suppose vy is the Clairaut anti-invariant submersion from Lorventzian trans-
Sasakian manifold (M, ¢, ¢, n, 8) of type (@, p) on the Riemannian manifold (N, gn). Therefore,

2(Dw,0) = b (5.30)
Proof. Since ¢ is a horizontal Reeb vector field. Setting Z; = ¢ and using the fact
W o(l)] = olw] = g(Dw,0) = g(Dw, Z), the expression (5.26) gives (5.30). O

Corollary 5.10. Suppose y is the Clairaut anti-invariant submersion from Lorentzian
a-Sasakian (or Lorentzian Sasakian) manifold (M, ¢, &, n, g) of type (a, 0) onto the Riemannian
manifold (N, gn). Therefore,

g(Dw,{) =0. (5.31)
Proof. Since for Lorentzian a-Sasakian (or Lorentzian Sasakian) g = 0, and using similar
fact as we have used in proof of Corollary 5.9 together, we find the desired result. O

Theorem 5.11. Suppose w: (M, ¢, £, 1, 8) — (N, gn) is a Clairaut anti-<invariant submersion
from Loventzian trans-Sasakian manifold of type (a, ) onto a Riemannian manifold admitting
hovizontal Reeb vector field with y = exp(w). Then we have

AgnoGr = Gi(0) V) (6.32)

Jfor G € T'(u) and V' € (kery=) such that oV is basic vector.

Proof. Suppose y is the Clairaut anti-invariant submersion allowing horizontal Reeb vector
field from a Lorentzian trans-Sasakian manifold onto a Riemannian manifold with y = exp(w).
Now, by consequences of Theorem (4.6), we find

Ty,Gr = —g(U,G)Dw (6.33)

for Uy, G, € (kery~). If we spread Eqn (5.33) with ¢ V7, V7 € (keny+) such that ¢ V7 is basic and
using Eqn (3.3), we find

2(Du,Gi, V1) = —g(Ur, G1)g(Dw, @ V1). (5.34)

2(Du,eV1,Gr) = g(Ur, G)g(Dw, ¢V1). (5.35)
In fact g(Gy, V1) = 0. Through Eqn (2.4), we infer

g(¢Duy, V1, G) = —g(Ur, G1)g(Dw, ¢ V1). (5.36)



Adopting the Lorentzian trans-Sasakian structure, we notice

—g(Du, V1, 9G1) = g(Ur, Gy)g(Dw, @ V1). (6.37)
Once again, adopting (3.3), we turn up
—g(Tu, V1, 0Gr) = g(Uy, Gr)g(Daw, oV1). (5.38)
Henceforth, through Eqn (5.33), we attain
g(Uh, V1)¢(Dw, oGr) = g(Ur, G1)g(Daw, V7). (5:39)
Putting U; = V; and shifting U; with by G; in Eqn (5.39), we acquire
Gi[g(Dw, ¢G1) = g(Us, G1)g(Dw, 9V1). (5.40)
Adopting Eqn (5.39) with setting V; = U;, we have
2(Dw, ¢Gy) = MmD“ V). (5.41)
|G |G
On the contrary, involving Eqn (2.4), we turn up
g(De,eV1, 0W1) = g(¢Dg,, W1). (6.42)
for Wy € T'(u) and W; # ¢. Using Eqn (2.5), we get
2(Dg, eV, oW1) = g(Dg,, Wh). (5.43)
Adopting equations (3.3) and (5.33), we get
&(De, V1, 0W1) = g(V1, ¢G1)g(Dw, Wr). (5.44)

After all ¢V is basic vector and using the case that HDg ¢ V1 = A,v,G1, we turn up
g(DGl(PVh (PWI) = g(AgaGl V17 QDW1) . (545)
Involving again, Eqns (5.44), (5.45) and the skew-symmetric nature of A, we turn up

g(Dw, Wh)g(V1, ¢Gy) = g(Age, Vi, W), (5.46)

By reason of A,p,eW;, G; and Vi are vertical and @ is horizontal, we turn up
expression (5.32).

Particularly if Dw € ¢(kerys), then from (5.41) in proof of Theorem 5.11 and the equality
case of Schwarz inequality, we have have that O

Corollary 5.12. Suppose y: (M, ¢, ¢, 1, 8) — (N, gn) is the Clairaut Lagrangian submersion
allowing horizontal Reeb vector field from Lorventzian trans-Sasakian manifold of type (a, )
onto a Riemannian manifold with y = exp(w). If Dw € @ (kerys), then either w is constant on
olkeny) or fiber of y is one-dimensional.

6. Clairaut Lagrangian submersions

This section deals with some results of Clairaut Lagrangian submersions conceding with
horizontal Reeb vector field. Moreover, when the function @ is constant, Dw = 0. Thus by
Theorem 4.6 and Corollary 5.12, we have the following results.
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Corollary 6.1. Suppose y: (M, ¢, ¢, 1, 2) = (N, gn) is a Clairaut anti-invariant submersion
allowing horizontal Reeb vector field from Lorentzian trans-Sasakian manifold of type (a, ) on
the Riemannian manifold with y = exp(w) and dim(kery~) > 1, then fibers of w are totally
geodesic if and only if

A<PV1 (le = 0

Jor Vi € (kery~), @V is basic and Z, € p.

Moreover, in case the submersion y at Theorem (5.11) is Lagrangian submersion, therefore
Aev, @7 is always vanish, because y = {0} or u = span{(}. Also from Corollaries 5.9 and
5.10, we have Dw € ¢(keryx). Hence, the following consequences of Theorem (5.11) and
Corollary 5.12 are given.

Theorem 6.2. Suppose y: (M, ¢, &, 1, &) — (N, gn) is the Clairaut Lagrangian submersion
allowing horizontal Reeb vector field from Loventzian trans-Sasakian manifold of type (a, )
onto a Riemannian manifold with y = exp(w). Therefore, fibers of w can be one-dimensional or
totally geodesic.

Corollary 6.3. Suppose w: (M, ¢, &, 1, 8) = (N, gn) is the Clairaut Lagrangian submersion
admitting horizontal Reeb vector field from Lorentzian a-Sasakian manifold of type (a, 0) onto a
Riemannian manifold with y = exp(w). Therefore fibers of yw can be one-dimensional or totally
geodesic.

Corollary 6.4. Suppose y: (M, o, &, 1, 8) = (N, gn) is the Clairaut Lagrangian submersion
allowing hovizontal Reeb vector field from Lorentzian -Kenmotsu manifold of type (0, p) onto a
Riemannian manifold with y = exp(w). Therefore fibers of w can be one-dimensional or totally
geodesic.

Corollary 6.5. Suppose w: (M, @, £, n, 8) = (N, gn) is the Clairaut Lagrangian submersion
allowing hovizontal Reeb vector field from Lorentzian cosymplectic manifold of type (a, p) onto a
Riemannian manifold with y = exp(w). Therefore either fibers of w can be one-dimensional or
totally geodesic.

7. Applications
The following result is Theorem 2 stated by Gauchman in [28].

Theorem 7.1. Suppose y; (M, g) — (N, gn) is the Clairaut submersion with y, where M is
complete, connected and simply connected, and N is simply connected. Assume that any vertical
leaf of w has no nontrivial Killing vector field. Suppose p is the point of M. Therefore M is
isometric to the warped product N X B, where B is the vertical leaf through p and f : N - R
is determined using this equation y = f-y.

In [23] De and Srakar prove that trans-Sasakian structures are complete and connected.
Indeed, Riemannian manifold also preserved the characteristic of simple connectedness.
Therefore, the following results are obtained.

Theorem 7.2. y: (M, ¢, ¢, 1, 8, a, f) = (N, gn) is a Clatraut Lagrangian submersion with y,
where (M, ¢, £, n, g) is complete, connected, and simply connected Lorentzian trans-Sasakian
manifold, and Riemannian manifold (N, gn) is simply connected. Assume that any vertical leaf
of w has no nontrivial Killing vector field. Let p be a point of (M, ¢, {, n, 2). Then Lorentzian
trans-Sasakian manifold of (a, p) type is isometric to a warped product N X B, where B is the
vertical leaf through p and f : N — Ris defined by the equation y = f-y.

Remark. For particular values of a and f easily we can turn up the similar results like
Theorem (7.2) for a-Loventzian Sasakian wmanifold (Loventzian Sasakian wmanifold),



B-Lorventzian Kenmotsu manifold (Lorentzian Kemmotsu wmanifold), and Lorventzian
cosymplectic manifold.

Now, we describe some examples of Clairaut submersion from Lorentzian trans-Sasakian
manifolds (M, ¢, &, 1, g) of type (a, f).

Example 7.3. Suppose M is three-dimensional Euclidean space written as
M = {(x,y,2) €R® | yz2#0}.

We consider the Loventzian trans-Sasakian structure (o, &, 1,8, a, f) at Mwitha = 0and p = 1
[23] given by the following:

9 1 0 O
i 00 -1

and ¢ is the (1, 1) tensor field determined as

o(Ey) = — By, o(Es) = — Eq, ¢(E3) = 0. An orthonormal ¢-basis of this constructor is written

as
d d d
{EI_Z$7 Ez—Z@7 ES_ZG_Z}

Here, the map y : (M, ¢,&,1,8,a, ) — (R, g1) is written as:

W(e.2,2) = ("%z)

where g is the usual metric at R. Now, by a straightforward computation, we turn up
Ey + Ez) }
kery, = spans U = — ,
. =span{v = (5

E+E,
V2

Easily, we observe that y is the Riemannian submersion. Moreover, we have ¢(U) = V.
Therefore, y is the anti-invariant submersion allowing horizontal Reeb vector field.
Particularly, y is Lagrangian submersion. Furthermore, after all the fibers of y are one-
dimensional, then they are simply totally umbilical. At this point, it is proved that fibers are
not considered totally geodesic, and it is found that the function of R® obeying
T 1,U; = —Dw. Therefore, after some sort of calculation, we turn up

and

kerwj:span{V: ., W=E; }

1
Dy Uy = (D,;lE1 DB, — D,y — D). (7.0)

Adopting the Lorentzian trans-Sasakian structure results in
DElEl = DE2E2 = —E3 and DElEZ = —DE2E1 =0
ad

Dy Uy = —z—
tHl Zaz
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Using (3.5), we turn up

d
TUlUl = —Za—z.

For any function @ of (R%, ¢, ¢, 5, ), the gradient of @ with respect to the metric g is

3
dw d dw 0 Jdw d Jdw 9

D = _— = | — — _——— — .

@ %:axi 0x; [6x aeray dy 0z 0z

Here, at this point, it is clear to observe that w = —Zg for the function of z and
T, Uy = =D = —¢. Also for any U, € (kery+), we have

TUZUZ = —|U2|2D0).
Henceforth, using Theorem (5.26), the submersion y is Clairaut submersion.

Example 7.4. Suppose M is three-dimensional Euclidean space written as
M = {(x,3,2) €RY| 20}

We consider the Loventzian trans-Sasakian structure (¢, &, 1, g, a, p) at M with a = — 1 and
B = 0 giwen by the following:

P 1 0 O
C:a—,n:dz,g: 01 0
o 00 -1

and ¢ is (1, 1) tensor field determined as
o(Ey) = — Ey, ¢(Fs) = — Es, o(F3) = 0. An orthonormal ¢-basis is written as
ad d ad
E ="~ E=%—- E=—;.
{1 ex(?x’ 2 eyay’ s 62}
Moreover, we have

DE[Egz—E,Vl.Zl,z, ’DEL.E:—ZEg,VZ.:LZ D].jlb:]:o,l?éjdﬂdl:]:?)

Here, the map w : (M, ¢,¢, 1,8, a, B) — (R, g1) is defined by the following:
x+y
X.0,2) = | — =% |,
w(x,y,2) ( 7 )
where g is usual metric at R. Now, by a straightforward computation, we turn up

kery, = spcm{ U=- (EIJQEZ) } ,

and
LB+ E
V2

Easily, we observe that y is the Riemannian submersion. Moreover, we have ¢(U) = V.
Therefore, y is the anti-invariant submersion admitting horizontal Reeb vector field.

kem//j:span{V . W =E; }



Particularly, y is Lagrangian submersion. Furthermore, after all the fibers of y are one-
dimensional, then they are simply totally umbilical. At this point, it is proved that fibers
are not totally geodesic, and it is found that the function of R* obeying 7° U = —Da.
Therefore, after some sort of calculation, we turn up

1
DU1 U1 = E (DElEl — DE1E2 — DE2E1 - DE2E2> . (72)
Adopting the Lorentzian trans-Sasakian structure, we observe that
d
D =2—
ulh 0z
Using (3.5), we turn up
ad
ToUp =2+
Gt 0z

For all functions  at (R, ¢, &, 7, g), the gradient of @ with respect to the metric g is

S0 0 [0 3 G0 do 5
N — Ox; dx; |0x dx Ay dy 0z 0z
Now, at this point, it is clear to observe that @ = — 2z for the function of z and

Ty, Uy = —Dw = —2¢. Also for any U, € (keny+), we have
TUZUZ = —|U2|2D60.

Henceforth, by Theorem (5.26), the submersion y is Clairaut submersion.
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