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Abstract
Purpose – The density peak clustering algorithm (DP) is proposed to identify cluster centers by two
parameters, i.e. ρ value (local density) and δ value (the distance between a point and another point with
a higher ρ value). According to the center-identifying principle of the DP, the potential cluster centers should
have a higher ρ value and a higher δ value than other points. However, this principle may limit the DP from
identifying some categories with multi-centers or the centers in lower-density regions. In addition, the
improper assignment strategy of the DP could cause a wrong assignment result for the non-center points.
This paper aims to address the aforementioned issues and improve the clustering performance of the DP.
Design/methodology/approach – First, to identify as many potential cluster centers as possible, the
authors construct a point-domain by introducing the pinhole imaging strategy to extend the searching range
of the potential cluster centers. Second, they design different novel calculation methods for calculating the
domain distance, point-domain density and domain similarity. Third, they adopt domain similarity to
achieve the domain merging process and optimize the final clustering results.
Findings – The experimental results on analyzing 12 synthetic data sets and 12 real-world data sets show
that two-stage density peak clustering based on multi-strategy optimization (TMsDP) outperforms the DP
and other state-of-the-art algorithms.
Originality/value – The authors propose a novel DP-based clustering method, i.e. TMsDP, and transform
the relationship between points into that between domains to ultimately further optimize the clustering
performance of the DP.
Keywords Data clustering, Density peak clustering algorithm, Merging strategy, Pinhole imaging strategy,
Point-domain, Point-domain similarity
Paper type Research paper

1. Introduction
As a powerful machine learning method in the data mining field, the clustering strategy has
a broad research prospect in effectively identifying the internal structure of data samples,
such as mining spatiotemporal co-location events in trajectory data sets (Ansari et al., 2021),
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conducting customer segmentation (Li et al., 2021) and detecting CT scan images (Singh and
Bose, 2021). In addition, as an important branch in clustering algorithms, density-based
clustering has been concerned and studied by a large number of researchers. Various
density-based clustering methods have been proposed and widely utilized in different
fields to date, such as fault recognition in wind turbines with a density-based
clustering algorithm (Luo et al., 2021) and risk assessment on railway investment
with an improved density-based approach (Guo et al., 2021). In 2014, the density
peak clustering algorithm (DP) was proposed by American scholars in Science
(Rodriguez and Laio, 2014). Since its establishment, the DP has been studied and
applied by a large number of investigators in various fields, such as text clustering
(Jo, 2020), medical analysis (Medeghri and Sabeur, 2021) and image recognition
(Wang et al., 2019, 2020; He et al., 2021). Specifically, there are three significant
parameters, i.e. the dc value (cutoff distance), the ρ value (local density) and the δ
value (the distance between a point and another point with a high ρ value), and an
important principle in the original DP, i.e. the cluster centers should have a higher ρ
value and a higher δ value than other points (Abbas et al., 2021; Wang et al., 2021).
Although the DP has better clustering performance than other traditional density-
based clustering algorithms, it still contains a critical limitation, i.e. the higher ρ
value and the higher δ value could not accurately reflect whether a point is a cluster
center.

To give a concrete example, two different situations are discussed in this paper; Figures 1
and 2 show situation 1 and situation 2, respectively. For situation 1, it is clearly shown in
Figure 1(a) that the data set flame should have two different categories, and the two
potential cluster centers both have a higher ρ value and a higher δ value than other
points. Actually, Figure 1(b) shows that the DP could indeed obtain a clustering result
which is close to the natural category. The combination results of Figure 1 seem to
demonstrate that the aforementioned principle about the ρ value, the δ value and the
cluster centers is reasonable. However, situation 2 illustrates that the principle is
unreasonable yet. As shown in Figure 2, the DP could just obtain the inferior clustering
results when analyzing the data sets D1 and compound, which are not consistent with the
principle mentioned above.

Obviously, the DP could identify only two potential cluster centers for data set D1
(it has three different natural categories), while it could just identify six wrong clusters
for the data set compound (it has six different natural categories). The difference
between situation 1 and situation 2 reflects the following deficiencies of the DP: (1)

Figure 1.
The selection of cluster
center points (they are
the data points in the
oblong) and the
clustering result of
flame

DTA



the DP could not detect the accurate density peak points when analyzing some data
sample with multi-density or variable density; (2) the DP is challenging to identify
some data samples with non-single cluster center accurately and (3) the drawback of
the original density calculation method and the improper assignment of the non-
central points ultimately affect the overall clustering performance.

To address the aforementioned issues, the authors develop an enhanced DP-based
clustering method, i.e. two-stage density peak clustering based on multi-strategy
optimization (TMsDP), to further optimize the clustering performance of the DP. The
main contributions and innovations of the TMsDP are as follows:

(1) Point-domain is constructed by introducing the pinhole imaging strategy to confirm
the search scope of potential centers. The point-domain improves the clustering
efficiency by transforming the relationship between points into that between
domains.

(2) Point-domain density is determined to measure the distribution of points in a point-
domain, while the domain distance is calculated by introducing the Hausdorff
distance to improve the clustering accuracy.

(3) Domain similarity is proposed to achieve the domain merging process. In a data
space, the domain similarity between point-domains is higher, and it is more likely to
merge with each other.

Figure 2.
The selection of cluster
center points (they are
the data points in the

oblong) and the
clustering result of D1

and compound
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The details of TMsDP are discussed in this study. Specifically, Section 2 presents a brief
introduction of the DP, Section 3 describes the specific technical details of the proposed
TMsDP, Section 4 analyzes the experimental results with different data sets to verify the
clustering performance of the TMsDP and Section 5 summarizes this study by discussing
the results and future areas for potential investigations.

2. Density peak clustering
2.1 Preparation
In the original DP (Rodriguez and Laio, 2014), dc is set as the manual parameter, which
denotes the appropriate position in an ascending distance sequence, and the definition
processes are shown as follows (assuming Sample = {s1, s2, s3, …, sn}):

position ¼ round N � percent=100ð Þ; ð1Þ

disorder ¼ sort dis si; sj
� �� �

; ð2Þ

dc ¼ disorder positionð Þ; ð3Þ

whereN indicates the manual inputting value and dis (si, sj) represents the distance between
the point si and the point sj. Rodriguez and Laio (2014) define that ρi denotes the number of
points in a circle with the point si as the center and the dc value as the radius, and the
process is shown as follows:

ρi ¼
Xn

si;sj2Sample

χ dis si; sj
� �� dc

� �
; ð4Þ

where the function χ(o) is equal to 1 or 0. If the variable o is greater than 0, χ(o) is equal to 0.
Otherwise, χ(o) is equal to 1. In addition, the calculation process of the δvalue is shownas follows:

δsi ¼ min
si; sj2Sample
 ρsi < ρsj

dis si; sj
� �

: ð5Þ

2.2 Related work
Based on the aforementioned contents, it is clear that the δ value and the ρ value are
limited by the threshold parameter, i.e. dc value, and utilizing different dc values
could even provide completely different clustering results when analyzing the same
data set (Hou et al., 2020; Lu et al., 2020; Jangra and Toshniwal, 2020; Flores and
Garza, 2020; Zhu et al., 2020). For addressing the threshold parameter selection issue,
Xu et al. (2020) proposed a robust DP with density-sensitive similarity to find
accurate cluster centers automatically and reduce the effect of the dc value
selection on clustering results. D’Errico et al. (2021) provided a feasible approach
for solving the classification problem of data with different shapes and distributions
in order to avoid the drawback of the dc value. Ding et al. (2018) developed an
automatic DP based on a generalized extreme value distribution. At the same time,
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the assignment strategy of non-cluster center points often affects the final clustering
results. To address the assignment issues, Jiang et al. (2019) introduced logistic
distribution theory and K-nearest neighbor (kNN) theory into DP. Xu et al. (2021)
designed a novel sparse search strategy to measure the similarity between the
nearest neighbors of each point. Yu et al. (2021) proposed a three-way density
peak clustering method based on evidence theory. Seyedi et al. (2019) utilized
a graph-based label propagation to assign labels to remaining points and proposed
the dynamic graph-based label propagation for density peak clustering. Apart from
the dc value selection issue and the non-center point assignment issue, it is
challenging to identify the potential centers in low-density regions and to analyze
data with varying density distributions using the DP. For solving these issues, Yan
et al. (2021) proposed a rotation-DPeak algorithm to solve the imbalanced data and
data with sparse regions. Liu et al. (2018) presented three novel definitions, i.e.
shared nearest neighbor (SNN) similarity, local density ρ and the distance from the
nearest larger density point δ, and proposed an SNN-based clustering by fast search
and find of density peaks algorithm. Du et al. (2019) provided a new option based on
the sensitivity of the local density, redefined the δ value and redesigned the
assignation strategy based on a new density-adaptive metric, while Chen and Yu
(2021) proposed a domain-adaptive density clustering algorithm, which consisted of
three steps: domain-adaptive density measurement, cluster center self-identification
and cluster self-ensemble. In addition, the DP could not effectively identify the noise
data and outliers and it has high computational complexity when solving large-scale
data. For avoiding the drawbacks and accelerating the DP, Parmar et al. (2019)

Figure 3.
The framework of the

TMsDP algorithm
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proposed a residual error-based DP to better identify overlapping clusters. Wang
et al. (2020) combined the Density-Based Spatial Clustering of Applications with
Noise (DBSCAN) algorithm and proposed a systematic density-based clustering
method using anchor points. Chen et al. (2020) replaced density with kNN density
and proposed a fast DP, i.e. FastDPeak. Fan et al. (2019) proposed a fast algorithm
that accelerates the density computation about 50 times over the original one.

To optimize the performance of original DP, the authors delineate a novel DP-based
clustering method in this paper. In the novel method, they propose four main significant
strategies, i.e. point-domain, point-domain density, domain distance and domain similarity.
The framework of TMsDP is shown in Figure 3.

3. The proposed clustering method
3.1 Point-domain strategy based on pinhole imaging theory
In order to explore the potential cluster centers in low-density regions, the proposed TMsDP
constructs the point-domain by introducing the pinhole imaging theory. Pinhole imaging is
a physics phenomenonwhere a light source passes through a pinhole and its inverted imagewill
be formed on a screen (Long et al., 2021). Inspired by the related literature (Long et al., 2021; Lu
et al., 2018), this paper introduces the pinhole imaging theory into the search strategy of
potential cluster centers, which can help the TMsDP to expand the range of center
exploration. Assume that the point Si xsi ; ysi

� �
is a potential cluster center in Sample and

Figure 4.
The whole process of
constructing point-
domains by utilizing
the pinhole imaging
strategy
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other potential cluster centers, like the point Sk xsk ; ysk
� �

and the point Sj xsj ; ysj
� �

, may also exist
in the same point-domain. If we want to construct a point-domain for data Si, we should
comprehend the preliminary definitions which are shown in Figure 4 (this paper mainly
utilizes two-dimensional (2D) data as the examples to explain the following preliminary
definitions).

Definition 1. (upper bound for searching of the first dimension data). As a rule of
thumb, if the point Si xsi ; ysi

� �
is a cluster center, the ρ value of other

potential cluster centers should be close to ρsi . Therefore, this study
should determine a searching range to explore these potential cluster
centers. The first exploration concept is the search upper set (SUS); the
SUS is a point-set where the points have a higher first dimension data
value and a higher ρ value than the point Si and they are nearly closest to
the point Si. Based on the SUS, the calculation processes of upper bound
for searching of the first dimension data are shown as follows:

SUS x ¼ Sn2 SamplejρSn > ρSi ; xSn > xSi ; nearest neighbor Sn; Sið Þ
n o

; ð6Þ

upper bound for searching ¼ Sn2SUS xjxSn � xSi ¼ τdc
� �

: ð7Þ

Definition 2. (lower bound for searching of the first dimension data). To maximize the
odds of finding more potential cluster centers, this study should consider
a situation where some potential centers may exist in a region with
a slightly lower ρ value than the point Si. Therefore, the second
exploration concept is the search lower set (SLS); the SLS is also a point-
set where the points have a lower first dimension data value than the point
Si, and the ρ values of these points are much closer to ρsi . Based on the
abovementioned contents, the calculation processes of lower bound for
searching of the first dimension data are shown as follows:

SLS x ¼ Sm2SamplejρSm < ρSi ; xSm < xSi ; nearest neighbor Sm; Sið Þ
n o

; ð8Þ

lower bound for searching ¼ Sm2SLS xjmax
Sm≠Si

xSm
� �� �

: ð9Þ

Definition 3. (basis point in the first dimension). In this paper, the basis point in the first
dimension denotes a middle value between upper bound for searching of
the first dimension data and lower bound for searching of the first
dimension data. The definition is shown as follows:

basis point x ¼ xSm þ xSn
2

: ð10Þ
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Definition 4. (upper bound for searching of the second dimension data). The process of
upper bound for searching of the second dimension data is similar to
Definition 1, and the definitions are shown as follows:

SUS y ¼ Sa2SamplejρSa > ρSi ; ySa > ySi ; nearest neighbor Sa; Sið Þ
n o

; ð11Þ

upper bound for searching ¼ Sa2SUS yjySa � ySi ¼ ωdc
� �

: ð12Þ

Definition 5. (lower bound for searching of the second dimension data). The process of
lower bound for searching of the second dimension data is similar to
Definition 2, and the definitions are shown as follows:

SLS y ¼ Sb2SamplejρSb < ρSi ; ySb < ySi ; nearest neighbor Sb; Sið Þ
n o

; ð13Þ

lower bound for searching ¼ Sb2SLS yjmax
Sb≠Si

ySb
� �� �

: ð14Þ

Definition 6. (basis point in the second dimension). The definition of the basis point in
the second dimension is similar to Definition 3, and it is shown as follows:

basis point y ¼ ySa þ ySb
2

: ð15Þ

For the example shown in Figure 4, it is a point-domain of the point Si. In the point-domain
Si, the authors set the x-axis value of receiving screen (first dimension) to xr, the y-axis value
of receiving screen (first dimension) to yr, the x-axis value of receiving screen (second
dimension) to x′r and the y-axis value of receiving screen (second dimension) to y′r. Based on
the triangular similarity theory, the relationships between four searching bounds and two
basis points are shown as follows:

xSn�xSm
2 þ xSm � xSi

xr � xSn�xSm
2 þ xSm

� � ¼ ySi
yr

¼ ψ; ð16Þ

ySa�ySb
2 þ ySb � ySi

y0 r � ySa�ySb
2 þ ySb

� 	 ¼ xSi
x0

r
¼ ξ; ð17Þ

where the control thresholds ψ and ξ could be set manually for different clustering
demands. According to formula (16) and formula (17), the side values of the point-domain
can be obtained as follows:
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side ¼ side2 side x∩side yð Þ
side x ¼ 2þ 2ψ

ψ
xSm þ xSn

2
� xSi

� 	

side y ¼ 2þ 2ξ
ξ

ySa þ ySb
2

� ySi


 �
��������

9>>=
>>;
:

8>><
>>:

ð18Þ

3.2 Domain merging strategy based on point-domain similarity
Although the TMsDP transforms the relationships between points into that between point-
domains, it is still a density-based clustering method. Therefore, how to perform the density
analysis on point-domains is a highlight in this section. This paper defines the point-domain
density as follows:

Definition 7. (point-domain density). In this paper, the point-domain density denotes the
amount of points per unit area of a point-domain (the definition
emphasizes the distribution of data points, which has statistical
significance). According to the aforementioned contents, the authors
could assume a set D = {D1, D2, D3, …, Dn}, where n indicates the
amount of point-domains and D indicates a domain-set which includes
all point-domains, and the calculation process of point-domain density is
shown as follows (applying the function amount(θ) to calculate the amount
of data points in a point-domain):

PD ρi ¼
amount Dið Þ

2þ2ψ
ψ

xSmþxSn
2 � xSi

� �� 	
2þ2ξ
ξ

ySaþySb
2 � ySi

� 	� 	 : ð19Þ

The point-domain density could show the inner characteristic of a point-domain; moreover,
the authors consider the outer characteristics between point-domains. Therefore, this paper
constructs a novel distance definition, i.e. domain distance.

Definition 8. (domain distance). Inspired by the literature (Vavpetic and Zagar, 2021; Ryu
and Kamata, 2021; Nie et al., 2021), the authors adopt the Hausdorff distance
to calculate the domain distance between point-domains. Assume that
a point-domain D1 = {d11, d12, d13, …, d1i} and the other point-domain
D2 = {d21, d22, d23,…, d2j}, where d1i and d2j denote the two different points
and i and j denote the serial number of data points inD1 andD2, respectively.
The calculation process of the domain distance is shown as follows:

domain dis D1;D2ð Þ ¼ max
d1i2D1;d2j2D2

min dis d1i; d2j
� �� �

: ð20Þ

For calculating the domain distance, the authors still need to consider two additional
situations: (1) is there an intersection part between the two point-domains? (2) whether
the points in these two point-domains are uniformly distributed? The authors take the data
set spiral as an example to describe these two situations, and the results are shown in
Figures 5 and 6.

As shown in Figure 5(a), point-domain 1 and point-domain 2 have no intersection part, which
means that the point-domain similarity could take the domain distance as the only calculation
criterion. But in Figure 5(b), point-domain 1 and point-domain 3 have an intersection part and
there is also an intersection part between point-domain 2 and point-domain 3. When there exist
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intersection parts between point-domains, the calculation of point-domain similarity needs to
take into account the intersection part, and it is shown as follows:

Intersection ¼ amount Di∩ Dj
� �j Di;Dj2D

� �� �
: ð21Þ

As shown in Figure 6(a), point-domain 1 has some independent sparse points in the
red circle region, and it could be clearly seen that these sparse points deviate from the
overall distribution trend of the points in the point-domain. Therefore, the calculation
process of point-domain similarity should be performed on the points in the overall
distribution trend other than the sparse points. In Figure 6(b), point-domain 2 does not
have sparse points and the overall distribution trend of points is relatively stable.
Inspired by the literature (Yarinezhad and Hashemi, 2019), the authors propose
a strategy to identify the sparse points in this paper. Obviously, the points in the
manifold data sets could identify easily whether they are the sparse points. However,
for other data sets with different types, the sparse points could not be judged visibly.
Assume that a point-domain could be divided into two regions with equal areas and
the density values of these two regions are set to ρ1 and ρ2, respectively. In addition,
the authors assume that ρ1 is greater than ρ2, the density value of the whole point-
domain is ρ and the difference between ρ1 and ρ2 will be compared with the value of

Figure 6.
The case of a point-
domain with sparse
point distribution and
without sparse points

Figure 5.
The case of
intersection and non-
intersection between
point-domains
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0.8ρ. If the difference between ρ1 and ρ2 is greater than 0.8ρ, the points in the region
with small density could be identified as the sparse points.

According to the rule of thumb, if there are more intersection parts between two
subjects and these two subjects are much nearer, the two subjects are more likely to
merge into one. Therefore, the TMsDP adopts the domain distance and the intersection
part between two point-domains to calculate the domain similarity. The calculation
formula is shown as follows:

sim
Di ;Dj2Sample

¼

amount Di∩Dj
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
amount Dið Þp �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
amount Dj

� �q

�exp �
max

dim2Di ;djn2Dj

min dis dim ; djn
� �� �

max
dim2Di ;djn2Dj

min dis dim ; djn
� �� �þ o θð Þ

0
B@

1
CA Di∩Dj≠∅

intersection simiDi ;Dj2Sample ¼
amount Di∩Dj

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
amount Dið Þp �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
amount Dj

� �q  Di∩Dj≠∅

min γ� intersection simið Þ

�exp �
max

dim2Di ;djn2Dj

min dis dim ; djn
� �� �

max
dim2Di ;djn2Dj

min dis dim ; djn
� �� �þ o θð Þ

0
B@

1
CA Di∩Dj≠∅

8>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>:

ð22Þ

where sim denotes the domain similarity, γ denotes a random parameter with a range of
values in (0, 1) and s denotes the adjustment operator which aims to make the value of
domain similarity in (0, 1). Considering that the distance value between point-domains with
intersection must be smaller than that between point-domains without intersection, the
larger the distance value between point-domains is, the smaller the similarity is. Therefore,
this paper adds the adjustment operator o(θ) and the adjustment parameter γ to ensure that
the domain similarity between point-domains without intersection is less than that between

Figure 7.
The case of utilizing
domain similarity to

merge any two
different point-

domains
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point-domains with intersection. Figure 7 shows the merging situation of two point-
domains, which takes the data set 2circles as an example.

In fact, these strategies and methods proposed in this paper increase the impact of the
parameters on the clustering result. Apart from the original parameters dc, the TMsDP adds
the parameters τ and ω to determine the exploration range of the potential cluster centers,
adds the parameters ψ and ξ to determine the size of the point-domain and the value of the
domain density and adds the parameters o(θ) and γ to determine the domain similarity.
Actually, the most significant parameter in the TMsDP is the side value of different point-
domains, and the parameters mentioned above are finally utilized to calculate the side
value. The side value of point-domains will be shown in the following specific experimental
results (in the following experiments, the authors set the side length and side width to equal
values in a point-domain). The overall procedures of the TMsDP are shown in Algorithm 1
(Table I).

Table I.
The part core process
of the proposed
TMsDP
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3.3 Time complexity analysis
For the TMsDP, the time complexity analysis is considered from the following aspects: (1) the
time complexity of the point-domain is close to O(n); (2) the time complexity of the calculation
about the domain distance is close to O(n2) and (3) the time complexity of the domain similarity
is close to O(n2). Thus, the time complexity of the TMsDP is close to O(n2 + n2 + n), which is
close to the original DP (the time complexity of the DP clustering is O(n2)).

4. Experimental results and analysis
To illustrate the performance of the proposed method, this section selects 12 synthetic data
sets and 12 real-world data sets as the experiment samples [1]. The 12 synthetic data sets
include 2circles, compound, twocirclesnoise2, spiral, pathbase, jain, flame, D1, D2, DS5,
skewed and unbalance. The 12 real-world data sets include thyroid, breast, glass, liver, heart,
seeds, zoo, wine, vote, iris, dna and msplice. The specific characteristics of these experiment
data sets are shown in Table II. In addition, to further demonstrate the clustering
performance of the proposed method, the TMsDP is compared with DP (Rodriguez and
Laio, 2014), density peaks clustering based on logistic distribution and gravitation (DPC-
LG) (Jiang et al., 2019), DBSCAN (Ester et al., 1996), Affinity Propagation Algorithm (AP)
(Frey and Dueck, 2007) and K-means (Jain, 2010). This paper takes the Rand index (RI, the
range of values is from −1.0 to 1.0), F-measure (FM, the range of values is from −1.0 to 1.0),
Jaccard index (JI, the range of values is from 0 to 1.0) and normalized mutual information
(NMI, the range of values is from −1.0 to 1.0) as the evaluation criteria to measure the
clustering performance.

Table II.
The basic attributions

of experiment data
sets

Data set type Order Data set name Dimension Data volume Real cluster number

Synthetic 1 2circles 2 600 2
Synthetic 2 compound 2 399 6
Synthetic 3 twocirclesnoise2 2 610 3
Synthetic 4 spiral 2 312 3
Synthetic 5 pathbase 2 300 3
Synthetic 6 jain 2 373 2
Synthetic 7 flame 2 240 2
Synthetic 8 D1 2 87 3
Synthetic 9 D2 2 85 4
Synthetic 10 DS5 2 500 5
Synthetic 11 skewed 2 1,000 6
Synthetic 12 unbalance 2 6,500 8
Real world 13 thyroid 6 215 3
Real world 14 breast 9 277 2
Real world 15 glass 9 214 6
Real world 16 liver 6 345 2
Real world 17 heart 13 303 2
Real world 18 seeds 7 210 3
Real world 19 zoo 16 101 7
Real world 20 wine 13 178 3
Real world 21 vote 16 435 2
Real world 22 iris 4 150 3
Real world 23 dna 180 2,000 3
Real world 24 msplice 240 3,175 3

TMsDP



4.1 Experimental results of synthetic data sets
These 12 synthetic data sets can actually be divided into several different types,
including manifold data sets, multiple center data sets, data sets with unbalanced
and skewed size and data sets with varying sizes. The authors present the
experimental results of the 12 synthetic data sets in Tables III and IV and the
clustering results of these data sets in Figures 8–19. In the clustering result figures,
the original distribution denotes the real distribution of a data set, panel (a) shows
the clustering result of the AP algorithm, panel (b) shows the clustering result of the
K-means algorithm, panel (c) shows the clustering result of the DBSCAN algorithm,
panel (d) shows the clustering result of the DP algorithm, panel (e) shows the
clustering result of the DPC-LG algorithm and panel (f) shows the clustering result
of the TMsDP algorithm.

Table III.
The performance
benchmark of
synthetic data sets

Data set Method Parameter value FM JI RI NMI

2circles AP 31/0.9 0.3559 0.2027 0.4992 –
K-means 2 0.4983 0.3318 0.4992 0
DBSCAN 3/3 1 1 1 1
DP 3.1702 0.5028 0.3358 0.5026 0.0050
DPC-LG 5.6133 0.4991 0.3325 0.4998 0.0010
TMsDP 0.0859/side = 0.0017 1 1 1 1

spiral AP 30/0.9 0.3279 0.1961 0.5538 0.000369
K-means 3 0.3274 0.1957 0.5541 0.000351
DBSCAN 2.5/2 1 1 1 1
DP 2.5812 1 1 1 1
DPC-LG 2.5812 1 1 1 1
TMsDP 1.7443/side = 0.0349 1 1 1 1

twocirclesnoise2 AP 30/0.9 0.3649 0.2029 0.5033 –
K-means 3 0.4026 0.2461 0.5019 0.0004
DBSCAN 1.8/5 0.9967 0.9934 0.9967 0.9850
DP 1.3646 0.4833 0.3185 0.5041 0.0211
DPC-LG 0.5302 0.4947 0.3286 0.5066 0.0254
TMsDP 0.0872/side = 0.0017 0.9918 0.9837 0.9918 0.9901

jain AP 43/0.7 0.5847 0.3900 0.5793 –
K-means 2 0.6977 0.5315 0.6591 0.3672
DBSCAN 2.9/20 1 1 1 1
DP 11.812 1 1 1 1
DPC-LG 6.027 1 1 1 1
TMsDP 1.3537/side = 0.0271 1 1 1 1

pathbase AP 71/0.7 0.6321 0.4483 0.6822 0.2804
K-means 3 0.6617 0.4908 0.7476 0.5470
DBSCAN 2/5 0.7518 0.5727 0.7594 0.6965
DP 1.1011 0.6654 0.4950 0.7509 0.5530
DPC-LG 1.8974 0.6473 0.4693 0.7134 0.5039
TMsDP 2.5500/side = 0.4878 0.9739 0.9491 0.9826 0.9363

compound AP 16/0.4 0.6838 0.5193 0.8471 0.7469
K-means 6 0.6422 0.4650 0.8432 0.7202
DBSCAN 1/5 0.9103 0.8335 0.9528 0.8708
DP 0.8732 0.7223 0.5648 0.8670 0.8363
DPC-LG 0.8732 0.6437 0.4731 0.8340 0.7665
TMsDP 0.4472/side = 0.0447 0.8703 0.7584 0.9216 0.8653
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According to the visualization of the clustering results, this study could find that the
proposed method, DBSCAN, DP and DPC-LG can obtain more accurate clustering results
when analyzing some manifold data sets (such as jain and spiral). However, when analyzing
some data sets with multiple centers (such as 2circles, compound and twocirclesnoise2) and
the data sets with unbalanced and skewed size (such as unbalance and skewed), only the
proposed TMsDP can obtain more accurate clustering results among the six algorithms in
the comparison experiments. Meanwhile, when analyzing some data sets with varying sizes
(such as D1 and DS5) and some data sets with irregular shapes (such as flame and DS5), the
TMsDP still obtains more accurate clustering results than the other five comparison
algorithms. In order to compare the clustering performance of these six methods more
sharply, Tables III and IV present the evaluation index values of different algorithms with
different parameter value settings, which demonstrate that the TMsDP outperforms other
compared algorithms.

Table IV.
The performance

benchmark of
synthetic data sets

Data set Method Parameter value FM JI RI NMI

D1 AP 2.3/0.6 0.8766 0.7684 0.9201 –
K-means 3 0.9745 0.9503 0.9824 0.9515
DBSCAN 0.65/2.3 0.9193 0.8451 0.9465 –
DP 0.6374 1 1 1 1
DPC-LG 1.3231 1 1 1 1
TMsDP 0.1934/side = 0.3868 1 1 1 1

D2 AP 2.3/0.6 0.9756 0.9524 0.9882 0.9655
K-means 4 0.9756 0.9524 0.9882 0.9655
DBSCAN 2.4/18 0.9524 0.9092 0.9770 0.9427
DP 0.263 0.9756 0.9524 0.9882 0.9655
DPC-LG 0.4094 0.9756 0.9524 0.9882 0.9655
TMsDP 0.3542/side = 0.7083 0.9756 0.9524 0.9882 0.9655

DS5 AP 52/0.8 0.7834 0.6275 0.8896 0.7913
K-means 5 0.8093 0.6792 0.9218 0.8206
DBSCAN 0.03/6 0.8408 0.7086 0.9190 0.9018
DP 0.041 0.7884 0.6413 0.9001 0.8663
DPC-LG 0.0595 0.8205 0.6818 0.9114 0.8857
TMsDP 0.0595/side = 0.1547 0.9099 0.8346 0.9637 0.9242

flame AP 42/0.9 0.7473 0.5959 0.7381 0.4345
K-means 2 0.7364 0.5822 0.7267 0.3989
DBSCAN 1/6 0.9659 0.9336 0.9641 0.5312
DP 1.1336 1 1 1 1
DPC-LG 0.9301 1 1 1 1
TMsDP 0.9301/side = 3.7202 0.9922 0.9845 0.9917 0.9635

skewed AP 26.3/0.6 0.7082 0.5482 0.9024 0.7245
K-means 6 0.7203 0.5629 0.9065 0.7422
DBSCAN 49/6 0.9772 0.9550 0.9925 0.8755
DP 71.5542 0.9901 0.9803 0.9967 0.9845
DPC-LG 35.5106 0.9942 0.9884 0.9981 0.9906
TMsDP 71.5542/side = 143.1084 0.9942 0.9884 0.9981 0.9906

unbalance AP 33/0.8 0.9989 0.9978 0.9994 0.9943
K-means 8 0.9989 0.9978 0.9994 0.9943
DBSCAN 6000/6 0.9991 0.9983 0.9995 0.9603
DP 1.1808e+3 0.9994 0.9988 0.9997 0.9956
DPC-LG 3.8471e+3 0.9958 0.9916 0.9976 0.9844
TMsDP 1.6846e+3/side = 3.3692e+3 0.9996 0.9992 0.9998 0.9964
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4.2 Experimental results of real-world data sets
As shown in Tables V and VI, the TMsDP could obtain larger values in almost all the four
evaluation metrics than the other five comparison algorithms when analyzing 12 real-world
data sets. Of course, considering the diversity of data structural characteristics, the TMsDP
could not obtain the best values in all evaluation metrics when analyzing all test data sets.
Nevertheless, according to the available comparison results, the better clustering
performance of TMsDP could still be shown.

4.3 Robustness analysis
In this experiment, the authors select the seeds and liver with different degrees of noise to
evaluate the robustness of the compared algorithms. The authors generate different
amounts of random data points as noise in the value space of the original data set. The

Figure 8.
The clustering result
for data set 2circles

Figure 9.
The clustering result
for data set spiral
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noise level of each data set gradually increases from 1.0 per cent to 10.0 per cent. The
experimental results are presented in Figure 20.

As shown in Figure 20, with the increasing proportion of noise, the average FM value of
each algorithm decreases. However, the average FM value of the TMsDP drops at
a minimum rate, while that of AP drops at a maximum rate. Due to the small sample size
of the data sets, the average FM values of TMsDP, DP, DPC-LG, DBSCAN and K-means are
almost identical when the noise level rises from 1.0 per cent to 10.0 per cent. Therefore, the
TMsDP retains higher accuracy in each case and illustrates higher robustness than the
compared algorithms.

Figure 10.
The clustering result

for data set
twocirclesnoise2

Figure 11.
The clustering result

for data set jain
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4.4 Running time analysis
In this section, the authors compare the running time of TMsDP with DPC-LG and DP on
the 24 data sets, which include five different categories, i.e. (1) the synthetic 2D data sets
with the data volume being less than 1,000, (2) the synthetic 2D data sets with the data
volume being greater than or equal to 1,000, (3) the real-world data sets with the range of
dimensions being from 2 to 10 and the data volume being less than 1,000, (4) the real-world
data sets with the dimensions being greater than 10 and the data volume being less than
1,000 and (5) the real-world data sets with the dimensions being greater than 150 and the
data volume being greater than or equal to 2,000 (selecting the average running time in 30
times of these three algorithms). The overall running speed is slow when dealing with
higher dimensional data sets due to the limited running environment (Intel Core i5,

Figure 12.
The clustering result
for data set compound

Figure 13.
The clustering result
for data set pathbase
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2.40 GHz, 8 GB RAM and MATLAB 2014a); therefore, when running some data sets with
a large sample size and high dimensions, the overall running time of these three comparison
algorithms is relatively long. In addition, because the TMsDP is an improved algorithm
based on the DP, three DP-based algorithms (TMsDP, DPC-LG and DP) are selected for
comparison. The running time result is shown in Table VII.

As shown in Table VII, the running time of the TMsDP is about twice as long as that of
the DP. According to Section 3.3, the time complexity of the TMsDP is close to O
(n2 + n2 + n), which is close to DP (the time complexity of the DP is O(n2)). Therefore, the
actual running time of the TMsDP is not more than twice as long as that of the
traditional DP.

Figure 14.
The clustering result

for data set D1

Figure 15.
The clustering result

for data set D2
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4.5 Overall performance review
In this paper, 12 synthetic data sets and 12 real-world data sets are utilized as
experimental samples to demonstrate the clustering performance of the proposed
method.

According to the clustering results of the 12 synthetic data sets, it could be seen
that the proposed TMsDP shows better clustering performance than others when
facing the manifold data sets, such as the spiral and jain. Moreover, when facing the
multiple center data sets, such as the 2circles, compound and twocirclesnoise2, and the
data sets with an unbalanced and skewed size, such as the unbalance and skewed, the
original DP is challenging to find potential centers in low-density regions, while the
TMsDP method could adopt point-domains to explore more potential cluster centers

Figure 16.
The clustering result
for data set DS5

Figure 17.
The clustering result
for data set flame
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for achieving better clustering results. In addition, when facing the irregularly shaped
data sets, such as DS5, flame and spiral, and the data sets with varying sizes, such as
D1 and DS5, the TMsDP could still obtain more accurate clustering results than other
compared algorithms.

According to the clustering results of 12 real-world data sets, it is clearly shown that the
TMsDP method could obtain better values in almost all evaluation metrics than other
mentioned algorithms. In summary, the TMsDP improves the clustering performance
compared with the original DP and expands the theoretical prospects of the density-
based algorithms.

Figure 18.
The clustering result
for data set skewed

Figure 19.
The clustering result
for data set unbalance
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5. Conclusion
To address the deficiencies of DP (i.e. failing to identify the cluster centers in low-density
regions and being challenging to analyze a category with multi-centers), this paper
proposes the TMsDP. The TMsDP shows three significant contributions: (1) constructing
point-domain by introducing the pinhole imaging strategy to expand the search range for
finding potential cluster centers; (2) proposing the novel methods to calculate point-domain
density, domain distance and domain similarity and (3) finishing the clustering process
based on domain similarity. The experimental results on 12 synthetic data sets and 12 real-
world data sets illustrate that the TMsDP shows significantly improved clustering
performance compared with original DP and the other algorithms experimentally
compared in the paper.

Table V.
The performance
benchmark of real-
world data sets

Data set Method Parameter value FM JI RI NMI

thyroid AP 42/0.9 0.5336 0.3636 0.5199 0.0567
K-means 3 0.8211 0.6960 0.8041 0.1497
DBSCAN 4/6 0.7989 0.6651 0.7837 0.4446
DP 9.2661 0.7380 0.5471 0.5653 0.0824
DPC-LG 7.0661 0.7536 0.5721 0.6099 0.1360
TMsDP 2.1307/side = 4.2615 0.7972 0.6428 0.7151 0.4673

breast AP 14.3/0.9 0.5449 0.3732 0.5016 0.0007
K-means 2 0.6510 0.4826 0.5939 0.0829
DBSCAN 2.3/7.5 0.6141 0.4416 0.5759 0.0657
DP 2.8002 0.7647 0.5886 0.5877 0.0371
DPC-LG 1.8622 0.7647 0.5856 0.5877 0.0371
TMsDP 0.4639/side = 0.1856 0.7651 0.5887 0.5971 0.0843

glass AP 6.1/0.7 0.4200 0.2647 0.7211 0.3593
K-means 6 0.5052 0.3298 0.6764 –
DBSCAN 1.4/2 0.5638 0.3512 0.5927 0.2905
DP 0.3132 0.5542 0.3333 0.5432 0.3922
DPC-LG 0.3350 0.5428 0.3091 0.4591 0.3589
TMsDP 0.3053/side = 0.6106 0.5520 0.3363 0.5619 0.4123

liver AP 31/0.9 0.6102 0.4285 0.4998 0.0070
K-means 2 0.6407 0.4538 0.5043 0.0009
DBSCAN 10/3.6 0.5016 0.3347 0.4981 0.0037
DP 28.1603 0.7124 0.5092 0.5104 0.0136
DPC-LG 9.4868 0.7124 0.5092 0.5104 0.0136
TMsDP 9.4868/side = 7.4403 0.7073 0.5064 0.5142 0.0196

heart AP 31/0.9 0.5995 0.4280 0.5950 0.1611
K-means 2 0.6162 0.4444 0.5921 0.1461
DBSCAN 0.8/26.9 0.5514 0.3795 0.5187 0.0385
DP 0.4834 0.6251 0.4510 0.5757 0.1375
DPC-LG 0.4158 0.5897 0.4181 0.5893 0.1396
TMsDP 0.3936/side = 0.3696 0.5964 0.4247 0.5837 0.1251

dna AP 1.5/0.6 0.2077 0.0704 0.6195 0.0002
K-means 3 0.6119 0.4384 0.7149 0.3646
DBSCAN 4.2/5.1 0.6221 0.3903 0.4015 0.0478
DP 0.3978 0.4974 0.3185 0.4731 0.0371
DPC-LG 0.3979 0.4974 0.3274 0.5490 0.0632
TMsDP 7.1414/side = 8.5697 0.4974 0.3185 0.4731 0.0371
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Although the proposed method shows better clustering performance, it adds six
additional parameters, which could have more impacts on the clustering results.
Therefore, the authors divide the future research plane into two aspects. In the
theoretical aspect, the first part is to explore an improved calculation method of side
values for reducing the number of parameters while preserving the clustering
performance of the TMsDP; the second part is to update the calculation strategies of
point-domain similarity and domain distance to accelerate the algorithm and the third
part is to redesign a novel search mechanism and structure to automatically explore
the potential cluster centers. In the application aspect, the authors extend the
application fields of the TMsDP. When facing some data from the real-world
problems, it could be found that the structures of these data are different from those
of the experimental data sets mentioned above. Most of these data have diverse
characteristics, including having multiple clustering centers, the clustering centers in
the low-density region, unbalanced density distribution and unbalanced sample size
distribution. For example, the text data, the consumption data of consumers, the stock

Table VI.
The performance

benchmark of real-
world data sets

Data set Method Parameter value FM JI RI NMI

seeds AP 21/0.9 0.8068 0.6761 0.8714 0.7101
K-means 3 0.8106 0.6815 0.8744 0.7061
DBSCAN 1.1/12 0.5701 0.3950 0.6766 0.2685
DP 0.6674 0.8026 0.6702 0.8673 0.6983
DPC-LG 0.6674 0.7803 0.6396 0.8530 0.6833
TMsDP 8.1971/side = 2.1964 0.8458 0.7328 0.8977 0.7436

zoo AP 2.1/0.8 0.5893 0.4064 0.8354 0.6914
K-means 7 0.6588 0.4826 0.8590 –
DBSCAN 1/3.5 0.7716 0.6192 0.9032 0.8149
DP 3.3166 0.5816 0.4053 0.7736 0.5841
DPC-LG 2.8284 0.6121 0.4368 0.7935 0.6415
TMsDP 3.3166/side = 33.1662 0.8813 0.7877 0.9453 0.8421

wine AP 25/0.6 0.5828 0.4113 0.7161 0.4376
K-means 3 0.5835 0.4120 0.7187 0.1505
DBSCAN 100/0.8 0.5783 0.3368 0.3418 0.0296
DP 101.3462 0.5892 0.3985 0.6102 0.3982
DPC-LG 367.0219 0.6461 0.4496 0.6435 0.4624
TMsDP 4.7849/side = 9.5699 0.6192 0.4247 0.6262 0.4158

vote AP 22.9/0.7 0.7681 0.6232 0.7616 0.4380
K-means 2 0.7742 0.6312 0.7684 0.4694
DBSCAN 1/30 0.7086 0.5323 0.6011 0.1813
DP 2.6458 0.7807 0.6400 0.7752 0.4900
DPC-LG 2.4495 0.7237 0.5245 0.5259 0.0210
TMsDP 2.6458/side = 0.6667 0.7483 0.5976 0.7420 0.4180

iris AP 11.9/0.7 0.8208 0.6959 0.8797 0.7582
K-means 3 0.8208 0.6959 0.8797 0.8688
DBSCAN 1/30 0.7490 0.5779 0.7777 0.6952
DP 0.8832 0.7635 0.5891 0.7766 0.7355
DPC-LG 0.8832 0.7673 0.5920 0.7764 0.7452
TMsDP 0.1732/side = 0.3750 0.8668 0.7649 0.9124 0.7900

msplice AP 0.8/0.6 0.0274 0.0008 0.6154 –
K-means 3 0.5470 0.3753 0.6715 0.3045
DBSCAN 2.9/7.9 0.6192 0.3858 0.3931 0.0381
DP 8.3666 0.4206 0.2649 0.5072 0.0068
DPC-LG 8.3666 0.4355 0.2759 0.5050 0.0054
TMsDP 8.3666/side = 10.0392 0.4729 0.3044 0.5107 0.0176
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Figure 20.
Comparison of
algorithm robustness

Table VII.
The running time
result (unit: second)

Data sets characteristic Data sets TMsDP DPC-LG DP

Synthetic 2D data sets with data volume < 1,000 2circles 1.05514 0.72348 0.69241
compound 0.74211 0.64561 0.63548
twocirclesnoise2 0.94496 0.76864 0.67681
spiral 0.92489 0.61591 0.59479
pathbase 0.82898 0.58107 0.55721
jain 1.16562 0.69894 0.65485
flame 0.65291 0.55439 0.54409
D1 0.58841 0.49088 0.45262
D2 0.64021 0.48474 0.47937
DS5 0.99563 0.70887 0.68828

Synthetic 2D data sets with data volume ≥ 1,000 skewed 1.80377 1.21797 1.01533
unbalance 11.70188 9.75382 9.57304

Real-world data sets with 10 > dimension > 2 and
data volume < 1,000

iris 0.73448 0.65967 0.60074
thyroid 5.17884 3.82771 3.38868
liver 31.46669 26.77568 25.87881
seeds 6.54661 5.36481 5.01853
breast 8.25847 5.21467 5.14373
glass 2.01151 1.70734 1.31521

Real-world data sets with dimension >10 and data
volume < 1,000

heart 7.07824 4.44836 4.25349
wine 1.06705 1.00945 0.71224
zoo 2.07121 1.42512 1.37737
vote 47.03792 38.68827 38.03321

Real-world data sets with dimension >150 and data
volume ≥ 2,000

dna 428.44746 336.21582 334.39406
msplice 1205.55255 850.19014 837.18927
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data, the financial data and the image data all have complex data features. Therefore,
this study could apply the TMsDP to solve some related real-world problems, such as
the topic identification of the online public opinion (mainly performing the text
clustering), the customer segmentation for some enterprises (mainly performing the
clustering analysis on the consumption data of consumers) and the problems of the
facial image segmentation and detecting the CT scan images (mainly performing the
image recognition). In addition, this study could also combine the TMsDP with some
swarm intelligence optimization algorithms to solve the optimization problems in the
real world.
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