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Abstract

Purpose — The purpose of this study is to develop a novel general mathematical model to find the optimal
product mix of commercial graphite products, which has a complex production process with alternative sub-
processes in the graphite mining production process.

Design/methodology/approach — The network optimization was adopted to model the complex graphite
mining production process through the optimal allocation of raw graphite, byproducts, and saleable products
with comparable sub-processes, which has different processing capacities and costs. The model was tested on a
selected graphite manufacturing company, and the optimal graphite product mix was determined through the
selection of the optimal production process. In addition, sensitivity and scenario analyses were carried out to
accommodate uncertainties and to facilitate further managerial decisions.

Findings — The selected graphite mining company mines approximately 400 metric tons of raw graphite
per month to produce ten types of graphite products. According to the optimum solution obtained, the
company should produce only six graphite products to maximize its total profit. In addition, the study
demonstrated how to reveal optimum managerial decisions based on optimum solutions.
Originality/value — This study has made a significant contribution to the graphite manufacturing industry
by modeling the complex graphite mining production process with a network optimization technique that has
yet to be addressed at this level of detail. The sensitivity and scenario analyses support for further managerial
decisions.

Keywords Network optimization, Optimal product mix, Linear programming, Graphite mining,
Mineral mixing problem
Paper type Research paper

1. Introduction

High-purity crystalline vein graphite is a commercial raw material (RM) that is in high
demand, and used in many industries to produce a wide range of products. In the
electronics industry, it is a key material in producing batteries and fuel cells, and it is also
used as a lubricant in the metalworking and machinery industries. Vein graphite’s high
thermal and electrical conductivity make it an ideal material for thermal management
systems and electronic devices. Additionally, vein graphite is used to produce advanced
materials, such as graphene and carbon fiber, with a wide range of applications in the
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aerospace, automotive and construction industries. Overall, the unique properties of
high-purity crystalline vein graphite make it a versatile and valuable material for various
commercial applications.

The mineral mixing problem is an optimization problem that arises in the mineral
processing industry to meet precise quality and cost objectives (Braun, 1986). The goal is to
blend various minerals using different production processes, resulting in different final
products with the desired quality characteristics, such as purity, grade and particle size
distribution. The problem is exacerbated by the fact that each mineral has different
properties, including chemical and physical properties, and may require different processing
methods. In solving the mineral mixing problem, various factors need to be considered,
including the availability and cost of different minerals, the processing costs and times linked
with each mineral, and the constraints associated with the processing plant’s capacity.
Additionally, specific quality requirements for the final product may be necessary, such as
meeting certain environmental or regulatory standards. Mathematical optimization
techniques such as linear, mixed-integer and nonlinear programming can be applied to
solve the mineral mixing problem. These techniques involve formulating a mathematical
model that represents the mineral processing system and its constraints, then using
optimization algorithms to find the optimal solution that satisfies the desired objectives and
constraints. On the other hand, when the manufacturing process has a network
representation, network optimization techniques can be used to formulate mathematical
models relatively easily. However, optimizing the production processes of mineral
manufacturing companies according to the high demand in the international market to
maximize profit is definitely an issue because of the complexity of the production process.
Therefore, research on this “Mineral Mixing Problem” in the production process to find the
optimum product mix is essential, and linear programming (LP) Techniques are applicable to
these scenarios.

LP is a quantitative technique widely used in mathematical modeling to allocate
limited resources to known activities to meet desired goals in different areas, such as
production planning, resource allocation, inventory control and advertising
(Dantzig, 2002). When formulating an LP model for a production process, the
objective function and constraints are defined based on the specific requirements of
the process. For instance, the objective function may be to maximize profit or minimize
cost, while the constraints may include limits on the availability of RMs, production
capacity, or quality standards. When the manufacturing process can be represented as a
network model, it becomes relatively easy to transform it into a LP model. In this context,
a network model refers to a representation of the manufacturing process that shows the
flow of inputs and outputs between different stages, particularly to visualize the
byproducts that are generated in different stages. When the production process is
represented as a network model, it becomes easier to identify the variables and
constraints that need to be included in the LP model. The nodes and arcs of the network
can be used to represent the different stages of the process and the flow of materials and
information between them (Glover et al., 1992). Therefore, when the production process
can be represented as a network model, LP model formulation is facilitated because the
network structure provides a clear framework to identify the relevant variables and
constraints.

Different case studies have used LP techniques to obtain managerial decisions such as
allocations and usage of available production time, material and labor resources
(Woubante, 2017; Willems et al., 2019), find the optimum product mix (Moussa, 2021;
Ezema and Amakom, 2012), to optimize condensing steam systems (Dragicevi¢ and Bojié,
2009) and to optimize of agricultural productivity (Igwe et al., 2011; Sofi et al., 2015).
Nevertheless, research on the mineral mixing problem in the mining industry is scarce.



The optimization of the coal allocation procedure by Williams and Haley (1959), the
determination of optimum crude oil input requirement by Adams and Griffin (1972) and the
optimization of the RM allocation plan by Chanda (2018) are some examples of research
studies that have been done previously in the area of interest. However, the studies
conducted to find the optimum solutions to the mineral mixing problems by cons1der1ng the
whole complex production process with sensitivity analysis and scenario analysis, are
scarce.

Therefore, this study aims to develop a novel general mathematical model for the
mineral mixing problem in the graphite manufacturing industry with a theoretical
contribution via a production network model to decide the optimum graphite mix which
provides the maximum profit. Thereafter, the developed general model was used for a case
study in a reputed graphite mining company in Sri Lanka engaged in natural vein graphite
mining, processing and exports that extract approximately 300-400 metric tons of vein
graphite per month. Current models rely on mineral mixing problems or other material
mixing problems for the different manufacturing processes in various sectors, which may
not accurately capture the complexity of the production process to obtain the optimal
solutions, especially to make the suitable decisions regarding the byproducts. By
incorporating data on product information, manufacturing processes, byproducts and
constraints, this model has the potential to capture the optimum managerial decisions
needed to optimize the objectives. The practical novelty and contributions of this research
lie in its potential to improve complex manufacturing processes, especially if there are some
byproducts, ultimately reducing time and material wastage and maximizing the total profit
of the organization.

The rest of the paper is structured as follows: Section 2 reviews the literature related to the
mineral mixing problem. Section 3 explains the research methodology, including the general
model, while Section 4 illustrates the model formulation for the production process of the case
study to test the proposed general model. Section 5 discusses the analysis and results of the
case study, including sensitivity analysis and scenario analysis. Section 6 contains an overall
discussion of the research work, with a summary of the analysis. Section 7 concludes the
paper with further improvements.

2. Literature review

The LP technique has wide applicability to different management decision-making
processes. Most literature in economic development supports the view that LP is a
practical tool of analysis in allocating scarce resources to their optimal use, and it is of
vital importance to the economies of underdeveloped countries. LP models can be solved
using the simplex method that George Dantzig introduced in 1947 (Dantzig, 1951). LP can
be effectively applied to product mix problems to find the optimal product mix in different
manufacturing areas. In addition, it can identify the changes in the optimal solution if the
model has parameters and constraints changes, which will help to optimize the
production process further to make managerial decisions easier (Vakilifard et al., 2013).
For instance, the profit of apparel manufacturing depends mainly on the proper allocation
and usage of available production time, material, and labor resources. Woubante (2017)
developed an LP model to optimize the product mix for apparel manufacturing. Moreover,
the study verified that the company’s profit could be improved by 7.22% if the
management used the optimal solution of the LP formulation. Moussa (2021) also
proposed a new approach to LP optimization based on the Kubelka-Munk and Duncan
theories to solve the textile color formulation problem, where the principle aimed to find
the appropriate amount of dyes that needed to be mixed and the exact concentrations
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required to produce the desired color. The study identified that the proposed model
provided accurate results with minimal error values and color differences. Further, the LP
techniques can be effectively used to allocate the available resources for staff training;
Fagoyinbo and Ajibode (2010) proposed a model to be used in the area of personnel
management to minimize the staff training cost. Since energy and energy processing
equipment costs have increased, energy management is necessary to develop efficient
energy systems. Dragic¢evi¢ and Boji¢ (2009) proposed a model to minimize the total
energy costs of steam condensing systems.

The LP technique uses resource allocation in production planning to increase
agricultural productivity. Igwe et al. (2011) formulated a mathematical model for the
fishing industry’s semi-commercial farmers in the Ohafia Agricultural Zone to determine
the optimum enterprise combination. The study concluded that the model would help to
enhance food security among rural farmers in the study area. Besides, optimal RM
allocation can lead to significant process improvement. Willems et al. (2019) proposed an
optimization model to find the optimal allocation of potatoes, end products and
manufacturing lines in a potato product manufacturing company with available data
and predicted data using the nearest neighbor interpolation and random forest algorithms.
The proposed LP approach and recovery prediction indicated potential savings in RM use
and purchasing costs. Also, Sofi et al. (2015) used the LP technique to find the optimum
resource allocation in the agricultural production of food crops and concluded that the
proposed LP model is appropriate for finding the optimal land allocation for the major food
crops. Some research studies were carried out on the bakery industry to allocate RMs and
find the optimum product mix to satisfy the demand for bakery products and acquire the
highest profit (Oladejo et al. (2019), Akpan and Iwok (2016)). Furthermore, some production
planning problems can be implemented with LP techniques to utilize the limited available
resources to satisfy the demand. Solaja et al. (2019) formulated an LP model for a production
planning problem in a feed mill-producing company, where the optimum solution of the
model improved the profit by streamlining the product range and cutting off the less
productive products. Moreover, Ezema and Amakom (2012) implemented a LP model to
find the optimal product mix of a productive firm in the layout, where the study concluded
that only two sizes of the total eight “PVC” pipes should be produced to maximize the total
profit.

In relation to the mining industry, research done on product mix problems (mineral
mixing problems) is sparse. Williams and Haley (1959) proposed a mathematical model to
optimize the coal allocation procedure. The study reduced transportation and a
considerable amount of computation. A significant advantage of the study is that the
approximations enabled engineers to devise the part of the coal allocation procedure that
the local staff could operate. Adams and Griffin (1972) formulated a LP model to describe
cost minimization in the U.S. petroleum refining industry and to determine crude oil input
requirements, the output of byproducts, and capacity utilization. In addition, Chanda
(2018) developed a Network LP formulation of the production-planning problem for a
mining and metallurgical complex. The developed mathematical model provided the
optimal production plan with the RM allocation to minimize production and
distribution costs.

Previously, most studies were carried out to find the optimum product mix or production
plan to maximize the total profit or minimize the total cost. However, those studies were not
done with a view to finding the details of byproducts and byproduct operations and to
analyzing the production process with sensitivity and scenario analysis for further
managerial decisions. Indeed, the optimization techniques used for the graphite mining
production process are virtually inaccessible. In particular, there is an absence of Network LP
models that analyze production distribution type systems in the mining industry. Therefore,



this paper addressed the above mentioned lacunas and developed a network LP model to find
the optimal product mix for the mineral mixing problem based on the graphite mining
production process.

3. Methodology

Network models are a significant part of special structures in LP, where they can be used
torepresent complex production processes. Network models allow for the transformation
of a production process into a mathematical model, which can be beneficial when
the process is complicated and challenging. On the other hand, LP is a widely recognized
operational technique that is designed to solve mathematical models with linear objective
and constraint functions. Besides, suppose a production process can be mapped as
a network and implemented as a LP model to determine the optimal solution. In that case,
it enables businesses to optimize their production processes. Furthermore, network
models provide a useful tool for analyzing and optimizing a wide range of other complex
systems beyond production processes. Therefore, this approach can be used for mineral
mixing problems since it is also a complex production process that needs to maximize
efficiency and profit. The overall modeling process adopted for the mineral mixing
problem depends on different factors, and they can be discussed as follows. Accordingly,
deciding the product mix of a graphite manufacturing company is formulated as an LP
problem by identifying system requirements in terms of organizational objectives,
constraints and conditions that exist and that can be converted into a researchable
format.

The overall modeling process adopted for the mineral mixing problem depends on
different factors, and it can be discussed as follows. Accordingly, deciding the product mix of
a graphite manufacturing company is formulated as an LP problem by identifying system
requirements in terms of organizational objectives, constraints and conditions that exist and
converted into a researchable format. The steps of a modeling process can be depicted as a
flow chart which is illustrated in Figure 1. The first step is problem formulation, which
identifies the user attributes and needs and states the problem in a researchable way. The
second step is to make assumptions because checking model assumptions is necessary before
building a model that will be used for prediction. After that, according to the data and
assumptions, a mathematical model is developed and solved using a solvable approach.
Finally, if the solutions are acceptable, sensitivity and/or scenario analyses are performed to
make recommendations. On the other hand, if the solutions are not acceptable, the
assumptions are revisited because if assumptions are not met, the model may inaccurately
reflect the data and likely to result in inaccurate predictions. Then the mathematical model is
rebuilt.

Graphite manufacturing companies use natural graphite as run-of-mine from their
underground mines and produce various graphite products by varying the carbon content,
particle size and other physical properties. The composition of run-of-mine from
underground mines varies for many reasons, including poor vein thickness, poor
separation of minerals and rocks and minor carbon percentage enriched graphite.
Moreover, to optimize the production process in order to find the optimum product mix, and
formulate a general model, graphite manufacturing companies need to consider the
following factors: demands, RM availabilities, output percentages, production operations,
time requirements for each production operation, available machine hours, RM
transformations, SPs and byproducts that are produced in each operation and minimum
production requirements.
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Figure 1.
Modeling process
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Source(s): Authors’ own work

The objective function of the general mathematical model is to maximize the total profit
provided by the optimum graphite product mix. Besides, four constraints were generally
identified for the formulation: RMs’ availability, yields of the products and
byproducts, demand satisfaction and machine hour availability. Therefore, by
considering the general production process in graphite manufacturing companies, a
general model can be formulated to optimize the manufacturing system to maximize the
total profit and to find the optimal product mix with respect to the following parameters
and available data. Let,




i = Rawmaterial; 1 = 1,2,...,n

J = Byproduct; j =1,2,....,m

k = Saleable product; k =1,2,...,1

h = Raw material that can be transformed into another raw material type; h Ci

r = Operation type/plant; r =1,2,...,s

Qr = Amount of saleable product k should produce (in metric tons /month)

Ry, = Revenue of product k per metric ton

G, = Cost of product k per metric ton

a; = Availability of mined raw material i quantity (in metric tons /month)

ay; = Availability of RM h that can be used to transform into another RM i (in metric tons /month)
A; = Availability of vaw material i quantity for the production (in metric tons /month)

Dy, = Demand of product k (in metric tons /month)

T, = Time availability in plant k (in hours /month)

tj = Time required to produce one metric ton of byproduct j (in hours)

b, = Time required to produce one metric ton of saleable product k (in hours)

Pj = Amount of raw material i vequired to produce the byproduct j (in metric tons)

Py, = Amount of raw material i required to produce the saleable product k (in metric tons)

Py, = Amount of byproduct j required to produce the saleable product k (in metric tons)

Pyj = Amount of saleable product k required to produce the byproduct j (in metric tons)

Py, = Amount of saleable product (SP) krequired to produce another SP kin metyic tons (Pyli #7)
Py = Amount of raw material h that should be transformed into raw material i (in metric tons)
M, = Minimum production vequivement of product k

a;j = Output percentage (vield) for the production of byproduct j by product i

Bin = Output percentage (vield) for the production of saleable product k by product i

Y = Output percentage (yield) for the production of saleable product k by byproduct j

Srjori = Output percentage (vield) for the production of byproductjor SPkby SP k

Therefore, the general LP model formulation for the mineral mixing problem can be stated as
follows:
This problem aims to maximize the total profit (Profit = Revenue — Cost = R, — C).
Therefore, the objective of the LP model can be defined as: Maximize Z = (R, — G,) @
VE

The constraints of this mineral mixing problem can be formulated as follows.
Some selected mined RMs can be transformed into another RM type, i.e. > Py <> @y, Vi
Vi Vi

The availability of each RM for the production process should equal the sum of mined
RMs and transformed RMs minus the RMs used for transformation into other products.

le. Ai=a+ ZPhi - ZPM Vi

Vh Vh
The sum of RMs used to produce byproducts and SPs should be less than or equal to the
availability of each RM, ie. Y P+ > P <A; Vi
Vi vk

However, since some operations produce SPs and byproducts together, the RM weight
requirement is the same for both SPs and byproducts for those operations.
ie. (Py), = (Pw),for somer
In addition, all produced byproducts should be used to produce SPs in the production process.

ie. Z(Z%Ry) = > PV
Vi vk

vr
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Since some SPs can also be converted into other SPs, the SP weight, according to the demand,
should produce equal to the sum of weights used from RMs and byproducts with their yields
minus the sum of weights used from SPs with their yields for each manufacturing operation,

e )] (Zﬁikpik + 2Vl — 205 Pk — > 0P | = Qi VR

vr Vi Vi vk vk

The SPs produced according to the demand should be less than or equal to the demand,
ie. @, <D, Vk

The total time required to produce different products should be less than or equal to the
available time for each manufacturing operation, ie. (4(P; + Py)+ tp (Pat Pr)), < T, for eachr

According to the management decisions, minimum production requirements for each SP
could exist, 1.e. @, > M, Vk

Therefore, the general LP model can be stated as follows:

MaximizeZ = (Ry — C.)@Q

VE
Subject to -
thz < Zam Vi (RMs can be transformed into another raw material type)

Vh Vh

A =a+ ZPM - ZRh Vi (Availability of raw materiali for the production)

Vh Yh
ZPij + ZPz‘k < A; Vi (Supply constraints)
Vi Vi

(Py), = (Pw), for somer (Some operations produce both saleable and by products)

Z ( ZagPi]) = ZPJ-k Vj (ALl the produced byproducts should be used to produce
Vi

vr Vi

saleable products)

<Zﬂikpik + Z}’jkpjk — Zék]-Pk]- - ZékkPkk> = Qy Vk (Saleable products)
Yr Vk Vk

vi Vi
Qs < Dy Yk (Demand constraints)
(P + Py) + te(P. + Pi)), < T, for eachr (Time constraints)
Qr = My, Yk (Minamum production requrements)

PZ‘]', PZ';?, P]'k, ij, Pkka th'a Qk >0 (NOW — negativity CO?’ldlﬁOﬂ)

The formulated general LP model above can be tested as a case study on a selected graphite
manufacturing company. The case study approach allows for a detailed and comprehensive
exploration of the research problem regarding the mineral mixing problem in the graphite
manufacturing industry, where it enables researchers to examine the manufacturing
processes involved, mineral compositions, and different factors with detailed data and to gain
a detailed understanding of the specific challenges faced by the graphite manufacturing
industry.



4. Case study

Sri Lanka is one of the major countries that extracts and produces commercially viable
quantities of high-purity crystalline vein graphite with more than 98% carbon purity, which
plays a pivotal role in the international market (Safshath et al., 2021). Since Sri Lankan natural
graphite is unique, Japan, Germany, the USA, India, Pakistan, Thailand, South Korea,
Australia, the United Kingdom and China pose the highest demand in the international
market. Natural vein graphite extracted underground as a run-off mine is subjected to
various processing activities to meet applicable customer requirements and specifications
before export. However, the Sri Lankan natural graphite industry cannot fulfill the demand
due to the lack of or limited availability of other resources. Moreover, the monthly sales
pattern differs and depends on global industrial and production trends in the automobile,
high-tech, electrical and electronic industries.

In brief, the initial step taken by the mineral manufacturing company considered for the
case study is mining raw graphite, consisting of different carbon contents in the form of
lumps, chips, and powder used to produce RMs. The production process of the RMs is done by
hand sorting or mechanical separation (crushing, sieving) methods according to the
categorization of carbon content and size. Then, the RMs are used to produce SPs via
Flotation, K&B, Rotex Screen and Ball Mill plants. During the graphite processing stage, it is
a real dilemma to decide which graphite products through which production processes
should be produced with available raw graphite using other resources in which the carbon
content varies from 70% to 99%, as each type has distinct profit margins. Therefore, it is
worth discovering which product mix yields the highest profit by utilizing the limited
monthly underground mine production amounts with various realistic constraints.

According to the general model, a complete LP model can be developed for the case study
in the selected graphite manufacturing company by considering the production network
model and the available data. The decision variables are the amount of each SP that should be
produced to maximize the total profit and the amount of RMs/byproducts/SPs required to
produce byproducts/SPs for each operation. In addition, the constraints include RM
extraction availability, demand and machine processing time. Figure 2 depicts the schematic
diagram of the production flow of the relevant graphite mining company.

The assumptions and mathematical formulation of this mineral mixing problem can be
stated as follows.

Assumptions:

(1) The average monthly production of raw graphite (Run-of-Mine) is 400 metric tons
(2) All the machines are in good condition yielding the expected level of performance
(3) There is no labor shortage

Objective function: The graphite mine produces ten types of different merchantable graphite
grades, denoted by X; where7 = 1, . .., 10. Each trading graphite grade has a different profit
margin, where the price of each graphite grade is defined based on its carbon percentage and
the particle size of the RMs, production time and labor force by a cost analysis. Table 1 shows
the notations used to identify the product information of each product, and the profit of a
given product i is the difference between the revenue and the cost, defined as R; — C..

Constraints: Three types of constraints have been identified: RM, machine hours and
demand.

I. Constraints related to RM

RMs used to manufacture the demanded items were extracted with different carbon
percentages, where Table 2 provides the notations and information related to the graphite
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Run of Mine (ROM) Crushing & Sicving

]

Hand Sorting

|

Sorted material as per
carbon content and size

Flotation Plant K & B Plant

o Conc. 99 * BC9799
* Conc. 98 © 4676
* Conc. 97 < (By product of 4676)
Rotex Screen 4 Ball Mill h * P
T * BPI98S
Figure 2. : gg’; 92 s5
Schematic diagram of o 2440 . . A
the production flow in (R PROES BT 2440) . 8148
the company ,
Source(s): Authors’ own work
Product Mathematical notation ~ Demand in Cost in Revenue in Machine hours
name of the product Euros/Month EurosMT  Euros/MT required/MT
F11 X Dy, G R tx,
2440 X, Dy, G R, tx,
BC 9799 X3 Dy, G R tx,
BP99S Xy Dy, C, R, tx,
BP98S X Dy, Gs Rs Ix,
BCB 25 Xs Dx, G R tx,
8148 X; Dy, G R; Ix,
4676 Xg Dx, G Ry Ix
Conc. 99 Xy Dy, Co Ry Ix,
Table 1. Conc. 98 X]O DX10 clo R10 tXw

Product information ~ Source(s): Authors’ own work

mined in a month. In addition, RMs with a chemical composition of carbon below the
percentage of 70% are not used for the production processes.

Furthermore, any byproduct generated while producing a salable or demand grade
product can be used to produce other salable or demand grade products. It is a tremendous



advantage to minimize the weight of byproducts because they are otherwise considered Optimal

waste or unwanted material. Table 3 summarizes the details of byproducts.

product mix

II. Constraints related to machining hours decisions
Each graphite product has a different production process, and Table 4 illustrates the
processing methods of each product grade used for converting RM into a final or byproduct
Notation of the raw material ~ Form of the raw material ~ Carbon percentage =~ Mined quantity/month
Y Lumps 99+ Ay,
Ys Lumps 97-99 Ay,
Y; Lumps/chips 90-97 Ay,
Y, Tub dust 70-90 Ay,
Ys Tub dust Below 70 Ay, Table 2
Y Pure rock 0 Ay, Raw material
Source(s): Authors’ own work information
Notation Form of the byproduct Carbon percentage (%) Machine hours required/MT
Z Powder 97-99 17
Zy Powder 99 ty, Table 3
Z Powder 97 tz, Information about the
Source(s): Authors’ own work byproducts
Raw material/
byproduct Process Final/byproduct
Name Notation applied Name  Notation Output (%) Name  Notation Output (%)
Lumps 97 Y, K & BPlant BC X3 100%
99 9799
Lumps 97 Y, K& BPlant 4676 Xg 66.67% 9799 dust Z; 33.33%
99
Lumps 97 Ys Flotation Conc99 X 88.24%
99
Lumps 90 Ys Flotation Conc99 Xy 70.31%
97
9799 dust 7 Flotation Conc99 X 80%
9799 dust A Ball mill F11 Xi 100%
Conc. 99 X Rotex 2440 X, 7143%  99powder Z, 28.57%

screen

99 powder 7, Ball mill F11 Xi 100%
Conc. 99 X Ball mill BP99S X, 100%
Lumps 90 Y; Flotation Conc98 Xio 70.31%
97
Conc. 98 X Ball mill BP98S X; 100%
Conc. 98 Xio Ball mill 8148 X; 100%
Conc. 98 X Ball mill BCB25 X; 100%
Tubdust Yy Flotation Conc97 Z; 62.5%
70-90
Conc. 97 73 Ball mill F11 Xi 100% Table 4.

Source(s): Authors’ own work

Processing methods
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Table 5.

Available machine
hours for each
operation per month

and the percentage of output from the input material. Here, the mined Lumps 99+ quantity
are taken as Lumps 97-99 for the production process without further processing.

On the other hand, the time taken to process each graphite product varies in each mill or
machine. In addition, the available machine hours of each mill and machine can be different.
Table 5 exhibits the notations for each mill/machine’s available machine hours in the
processing department.

III. Constraints related to demand

Demand for each grade in each month can be identified from customers’ orders in advance,
where the demand pattern for graphite grades varies. Table 1 reveals the demand for each
graphite product with its profit margins.

The overall production process of the company can be interpreted as a network described
in Figure 3, to obtain a general idea of the process.

Therefore, the general LP for the mineral mixing problem can be set down as follows:

Here,i =y, = Lump 99+,1 = yo = Lump 97 — 99,1 = y3 = Lump 90 — 97,1 = y,
= Tub dust 70 — 90,
h =y, = Lump 99+,
J =21 =979 dust,j = z, = 99 powder,j = z3 = Conc.97
k=2x=F11,k = x, = 2440,k = x3 = BC9799, & = x4 = BP99S,k = x5 = BP98S,k
= xg = BCB25S,k = x; = 8148,k = x5 = 4676,k = x9 = Conc. 99,k = x19o = Conc. 98,

andr = 1 = K&Bplant,r = 2 = Flotation,r = 3 = Ball mill,r = 4 = Rotex screen

The objective of this problem is to maximize the total profit. Therefore, the objective of the LP
model can be defined as:

10
Maximize Z = Z(Rk -G 01)

k=1

The constraints of this LP model can be formulated as follows.
The Lump 99+ RM used to produce Lump 97-99 by using a RM transformation process is
less than the availability of mined Lump 99+ (a,), ie.

P, Y192 < ay1 (02)
Therefore, the availability of RMs can be stated as follows:
A)’z =ay, + Pyl-)’z ©3)
Plant used Available machine hrs/month
Ball mill T\
Rotex Screen T,
K & B Plant T3
Flotation T,

Source(s): Authors’ own work
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Ay, = ay, (04)
Ay, = ay, (05)

The Lump 97-99 RM used to produce other byproducts/products is less than the availability
of Lump 97-99 (4,,) plus the conversion of Lump 99+, ie.

PyZ X3 + P.VZ X8 + PJ’Z-X{) S A}'Z (06)

The Lump 90-97 RM used to produce other byproducts/products is less than the availability
of Lump 90-97 (4,,), i.e.

P Y349 + P ¥3:%10 SA)’S (07)

The tub dust 70-90 RM used to produce other byproducts/products is less than the
availability of tub dust 70-90 (4,), ie.

P, <A, 08)

Using the production process in the K&B plant, Lump 97-99 can be used to produce products
4676 and 9799. Therefore, the same quantity of Lump 97-99 is used to produce 4676 and 9799
dust, 1e.

Pyz,xs = PJ’2~21 (09)

The produced 9799 dust (using Lump 97-99 RMs) can produce F11 using the ball mill
operation and Conc.99 using the flotation operation, i.e.

1
=Py, 2 = Pu v, + Puy x, (9799 dust use to produce F11 and conc. 99) (10)

3 Y221

Produced Conc.99 can be used to produce the products 99 powder and 2440 using the Rotex
screen. Therefore, the same quantity of Conc.99 is used to produce 99 powder and 2440, i.e.

Py, = Py, 2, (Conc. 99 use to produce 2440 and 99 powder is a by — product) 11)

Produced 99 powder using the Conc.99 can be used to produce F11 using the ball mill
operation, i.e.

%ng 2 = Psy x, (99 powder use to produce F11) 12)

Produced Conc.97 using Tubdust 70-90 can be used to produce F11 using the ball mill
operation, i.e.

gPyh1 2 = Puy x, (Cone. 97 use to produce F11) (13)
The total quantity of F11 produced using different RMs and byproducts should be less than
the demand for F11 (D,,), ie.

Q,, <D, (F11 demand) (14)
Qr, = P,y o + Poy oy + Py iy (F11 quantity) (15)
The total quantity of 2440 produced using different RMs and byproducts should be less than

the demand of 2440 (D,,), ie.
Qy, <D, (2440 demand) (16)



Q., = g&bvxz (2440 quantity) 17

The total produced BC9799 quantity using different RMs and byproducts should be less than
the demand for BC9799 (D,,), i.e.

Qx, <Dy, (BCI799 demand) (18)
Qy, = Py, x, (BCIT99 quantity) (19)

The total produced BP99S quantity using different RMs and byproducts should be less than
the demand for BP99S (D,,), ie.

Qx, <Dy, (BP99S demand) (20)

Qx, = Py, x, (BPI9S quantity) 21

The total produced BP98S quantity using different RMs and byproducts should be less than
the demand for BP98S (D), ie.

Qx, <D, (BPI8S demand) 22)

Q.. = P, .. (BP98S quantity) (23)

The total produced BCB25S quantity using different RMs and byproducts should be less than
the demand for BCB25S (D), i.e.

Qx; <Dy, (BCB25S demand) (24)
Qys = Puyy s (BCB25S quantity) (25)

The total produced 8148 quantity using different RMs and byproducts should be less than the
demand for 8148 (D,,), i..

Q., < D,, (8148 demand) (26)
Q., = Py, ., (8148 quantity) 27)

The total produced 4676 quantity using different RMs and byproducts should be less than the
demand for 4676 (D), i..

Qx, < D, (4676 demand) (28)
Qy, = %Ph xs (4676 quantity) (29)

The quantity of different RMs and byproducts used to produce Conc.99 should equal the
optimum Conc.99 quantity and the quantity used to produce other products using Conc.99, i.e.
15 45

4
17 e + @Pyg a0+ EPZI xo = Pryzy + Pry x, + @y, (Conc. 9 usage) (30)

The Conc.99 quantity using different RMs and byproducts should be less than the demand
for Conc.99 (D,,), ie.

Qy, < Dy, (Conc. 99 demand) 31)
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The quantity of different RMs and byproducts used to produce Conc.98 should equal
the optimum Conc.98 quantity and the quantity used to produce other products using
Conc.98, ie.

45

ap;\’s‘xlo = levaS + leo-,"% + mem + wa (CO%C. 9 usage) (32)

The Conc.98 quantity using different RMs and byproducts should be less than the demand
for Conc.98 (D,,,), ie.

Q1 <Dy, (Conc. 98 demand) 33)

The total machine operation time should be less than the time availability at the K&B plant
( T1 ) B Le.

1Py vy T b Pyy iy < Th (Time availability at the K&B plant) (34)

Total machine operation time should be less than the time availability in Flotation operations
(T»), 1e.

b Py o F 1P g + ExoPrg + 25y, 23 < To (Time availability at Flotation) (35)

Total machine operation time should be less than the time availability at the Ballmill (73), i.e.
tlezwfl + tX1P22J1 + tX1P23«Y1 + tX4PX9<x4 + tXSPX10«X5 + tXGleo«,IG
+ ty, Py v, < T3 (Time availability at the Ball mill) (36)

Total machine operation time should be less than the time availability at the Rotex screen
(T4) B Le.

1%, Py x, < Ty (Time availability at the Rotex screen) 37

There is a minimum production requirement (}/) to maintain a buffer stock of products in the
company for urgent needs, i.e.

Q> M, (38

All the decision variables should be greater than or equal to zero, i.e.
Pl'j, Piky ijv PkﬁPkk, Phi: Qk > 0 (NO% — negativity condition) (39)

5. Analysis and results
The formulated LP model in section 4 can be used to determine the optimal graphite mix and
analysis by using the following data in Tables 6-8 related to the graphite mining process,
such as weight quantities, costs, profits, operations and production processes in a selected
month, as a demonstration. Table 6 shows the product names with the mathematical
notations used for model formulation, actual demand in the global market, quantities needed
for one full container load to satisfy customers (1FCL basis), cost and revenue for each SP, and
average time requirement to produce one metric ton. In addition, Table 7 provides
information regarding the carbon percentage with the form, mathematical notations and the
mined amount in metric tons in the selected month. Table 8 provides the available machine
hours in each machine/production plant.

The Microsoft Excel Solver add-in was used to optimize the LP model, where the solver
used the simplex method to obtain the optimum solution. According to the optimal solution,



Optimal

Mathematical 1FCL Cost in Machine .
Product notation of the Demand in basis Euros/ Revenuein  hours prOdth le
name product Euros/Month ™MT) MT Euros/MT  required/MT decisions
F11 X1 100 22 1994 3323 2%
2440 Xo 20 20 2025 3266 1%
BC9799 X3 50 22 1333 2050 Ya
BP99S Xy 80 22 1270 1867 3
BP98S X5 60 22 1188 1747 2%
BCB 25 X6 80 22 1208 1725 2%
8148 Xz 40 22 1190 1700 2%
4676 X3 70 22 1066 1480 1%
Conc.99 X 60 22 1017 1356 1%
Conc.98 X 45 22 800 1067 1%
Powder 7 - - - 1%
Powder 7y - - - 1% Table 6.
Powder Zy - - - 1% Product information in
Source(s): Authors’ own work the selected month
Notation of the raw material Form of the RM Carbon percentage Mined quantity/month
Y Lumps 99+ 4
Y, Lumps 97-99 84
Y; Lumps/chips 90-97 64
Y, Tub dust 70-90 192
Y Tub dust Below 70 - R 2ble 7.
Ye Pure rock 0 - information in the

Source(s): Authors’ own work

selected month

Plant used Available machine hrs/month
Ball mill 350
Rotex Screen 350
K & B Plant 350
Flotation 350

Source(s): Authors’ own work

Table 8.
Available machine
hours for each
operation in the
selected month

the company should not produce BCB25, 8148, Conc.99, and Conc.98, and the maximum total
profit is €221077.03. In addition, since the actual profit of the company for the considered
month is €140298, it is clear that the formulated mathematical model is extremely beneficial
to the company as far as managerial decisions are concerned. On the other hand, the
advantage of the developed model was that it could identify the RM quantities allocated to
each production process and to find the byproduct quantities produced and byproduct
quantities used to manufacture the SPs. Therefore, this model can trace the production
process to reveal the optimum managerial decisions. For example, the optimum Lump 97-99
quantity used to produce 4676 and the byproduct 9799 dust using the K&B plant is 25.85
metric tons (constraint 09). Produced Conc.97 using Tubdust 70-90 can be used to produce
F11 using the ball mill operation. The optimum quantity of produced Conc.97 using Tubdust
70-90 to produce F11 using the ball mill operation is 92 metric tons (constraint 13).
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Table 9.

Comparison between
supplying 1FCL of
each product category
and the LP model

The economic gain of the whole production process with the use of the LP model in one
particular month, data in Table 9, shows the economic gain achieved by applying the LP
model in production against (as assumed) the fact that all product categories were produced
for one full container load (i.e. 22MT except for 2440 grade, 20MT of 2440 as minimum
demand in the considered month) to satisfy customers by supplying at least one full container
load (1FCL). The profit or economic gain comparison between one full container load of each
category and production using the LP model showed sizeable differences. From this point of
view, it is clear that the graphite company should use quantitative research methods of LP to
determine their optimal product mix. This leads to the following results:

(1) The company’s profit can be improved (from €140298 to €221077 in that particular
month).

(2) According to the optimum solutions, the company should produce six SPs. However,
the profit can be improved by 57.6% (from €140298 to €221077)

5.1 Sensitivity analysis

Finding the optimal solution to a LP model is essential but is not the only information
available. It would also be beneficial to determine the impact on net profit when there is a
change in price or cost. Sensitivity analysis (SA) studies reveal how uncertainty in a model
output can distribute among different sources of uncertainty in the model input. Therefore,
sensitivity analysis is diagnostic or prognostic and is considered a prerequisite for model
building in any setting in any field. In this case study, sensitivity analysis plays a crucial part
because of the following expected gains and disruptions.

The disruptions are,

(1) The quantity of graphite extracted cannot be guaranteed, as there are many
unforeseen obstacles or reasons during underground production (mining). These are
poor vein widths, collapses of underground workplaces, and vital machine
breakdowns such as main hoists, underground pumps, underground
communication systems, compressors that supply compressed air to underground
drilling, and pumping needs. Therefore, such situations adversely affect the monthly
expected graphite production required to fulfill the demand.

Production in MT Total profit in Euros
Product Profit in Euros/ 1FCL According to the LP 1FCL According to the LP
name MT basis model basis model
F11 1,329 22 100.0 29,238 132,900
2440 1,241 20 20.0 24,820 24,820
BC 9799 717 22 50.0 15,774 35,850
BP9 S 597 22 26.92 13,134 16073.27
BP98 S 559 22 7.69 12,298 4299.78
BCB 25 517 22 0 11,374 0
8148 510 22 0 11,220 0
4676 414 22 17.23 9,108 713397
Conc. 99 339 22 0 7,458 0
Conc. 98 267 22 0 5874 0
Total 218 221.85 140,298 221077.03

Source(s): Authors’ own work




(2) The uniqueness of most mining and processing machinery makes it arduous to
procure spare parts and services, and a monopoly exists among the manufacturing
and supplying companies involved. Most of the time, no local agents are available to
provide spare parts and services for such mills and machinery.

(3) Bad climatic conditions, especially during high rainfall seasons, and an accumulation
of a huge quantity of water in underground working places hinder smooth graphite
extraction activities, causing less monthly underground mine production.

(4) The lack of skilled miners, especially in underground mining, is another grave issue,
and training for such skills is time-consuming.

(5) Specific strict regulations limit the use of miners for overtime work, resulting in
difficulties in achieving monthly production targets.

The following analysis can be done using the generated sensitivity report of the solved
LP model.

If there is no minimum production requirement, the optimal solution for some variables
can be taken as zero. For example, the optimal solution of the variables for this maximization
problem is P, =100,P,, =20,P, =50,P,, = 26.92,P,, =7.69,P, =0,P, =0, P, =
17.23,P,, = 0, P,,, = 0 and so on. This implies that variable Py, P, P,,, cmd P, are not
profitable enough (in the maximization problem), so they stay zero. That is, the company
should not produce BCB25, 8148, Conc. 98 and Conc. 99. However, if the company does not
produce those, there will be a shortage of some products manufactured using those products
in the market.

The reduced cost is the amount that the objective coefficient of the variable would have to
be changed by before it would become profitable or cost-efficient to give the variable a
positive value in the optimal solution. For example, according to the sensitivity report, the
variable P,, has a reduced cost of —120.80; the objective coefficient of that variable would
have to be decreased by 120.80 units in a maximization problem, and/or increased by 120.80
units in a minimization problem for the variable to become an attractive alternative to enter
into the solution.

Also, the reduced cost of a given decision variable can be interpreted as the value of the
objective function will deteriorate by for each unit change in the optimized value of the
decision variable, with all other data held fixed. For example, according to the sensitivity
report, the reduced cost of the variable P,, is —120.80. If the company decides to produce one
unit (metric tons) of P, (Conc. 99), the maximum profit will reduce by €120.80. In addition,
according to the sensitivity report, the objective coefficients of each decision variable of the
objective function can be changed to the allowable increased and decreased values without
changing the optimal solution.

Furthermore, if an objective coefficient of a variable changes between the allowable
values, then the optimal solution will not change, and it would be possible to calculate the
optimal objective function value (i.e. total profit). However, if there are simultaneous changes,
the 100% rule should be used, to check whether the optimum solution will change or not. If it

is less than 100%, the optimal solution will remain optimal, and the total profit will change.
P
Z roposed change — 100%

Allowable change

On the other hand, the shadow price tells us how much the objective value will change if a
constraint’s right-hand side (RHS) is increased or decreased by 1 unit. If a constraint is
binding (zero slack, as a sign of limited resources in the RHS), the shadow prices of that
constraint (in the maximization problem) will be positive. The shadow price denotes the
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economic value of the constraint’s right-hand side. For example, according to the sensitivity
report, the shadow price of the constraint of Lumps 99+ availability is 395.07. Suppose the
availability of Lumps 99+ (RHS value) increases or decreases by one unit, which is between
the allowable increase and decrease values, then, the optimum objective function value will
increase or decrease by €395.07.

5.2 Scenario analysis

Since the graphite extraction quantity cannot always be guaranteed because of many
unforeseen obstacles, such as poor vein widths, collapses of underground workplaces, and
vital machine breakdowns, the underground mining process should be considered uncertain.
Therefore, such situations affect the monthly expected graphite production requirement to
fulfill sales demands. For example, since the company could not mine the expected amount of
RMSs because of the collapse of the underground, suppose the company produced only 1, 45,
56, and 230 metric tons of Lump 99+, Lump 97-99, Lump 90-97, and Tub dust 70-90,
respectively. Since these amount variations exceed the allowable decrease values of the
sensitivity report (Lump 97-99, Lump 90-97), this problem needs to be solved again.
Therefore, the optimum objective function value of the new model is €197,492.88.

Besides, due to the uniqueness of most mining and processing machinery, it is very
difficult to procure spare parts, and that would affect the production process because if there
were some machine breakdowns, the available machine hours would reduce. For example,
suppose the available machine hours were reduced by 100 since there was a ball mill failure.
Since this is out of range of the allowable decrease value of the time availability at the Ball Mill
constraint in the sensitivity report, this problem needs to be solved again. Therefore, the
optimum objective function value of the new model is €213,112.52.

Overall, mineral manufacturing companies have to be aware of the challenges and
uncertainties involved in the mining and processing of graphite, such as various unforeseen
obstacles, machine breakdowns, and emergencies when making important managerial
decisions.

6. Discussion

Natural graphite has a high global demand for many industrial applications (Olson ef al.,
2016). However, only a few countries are capable of meeting this demand. The European
Union and the USA have declared that graphite is a critical mineral supply because of the
depletion of RMs (Olivetti et al, 2017). Therefore, the derivation of a model to find the
optimum graphite product mix for the mineral mixing problem to maximize the total profit
according to the availability of RMs, machine capacities, etc. would bolster the effort to gain a
high income according to the high global demand and to facilitate managerial decision
making in graphite mining companies. Similar studies have been conducted for the mineral
mixing problem in the past, and recently a study by Chanda (2018) was carried out to optimize
the production planning of a mining and metallurgical complex via a network LP
formulation. However, those studies failed to address the byproduct information and to
analyze the production process with sensitivity and scenario analyses for further managerial
decisions. Thus, this paper developed a general network LP model to optimize the product
mix for the mineral mixing problem in graphite mining production and conducted a case
study to demonstrate the model to address the research gaps. The research gap includes the
optimization techniques used for the graphite mining production process with sensitivity and
scenario analyses that were not easily accessible, and there was a lack of Network LP models
to analyze production distribution systems in the mining industry. The case study also
compared the economic gain achieved by applying the LP model in production against all



product categories produced for one full container load to find the importance of the model
formulation similar to the study conducted by Rajak et al. (2022). Some additionally important
managerial decisions should consider can be listed as follows:

(1) How to increase the foreign currency reserves by maximizing profit and increasing
government income

(2) How to improve the available manufacturing mechanisms and machinery
(3) How to improve the facilities and other benefits available for employees

(4) How to manage the available workforce, further recruitment decisions, and provide
an indirect income to the population living close to the manufacturing site

Furthermore, according to the case study, it is clear that the general model for the mineral
mixing problem can be customized according to different requirements and constraints to
find the optimal solution. The model formulation, according to the network model, reduces
the complexity of the formulation process, which provides a better understanding of the
whole production process in detail, and similar research procedures were done recently for
supply chain analysis by Kazancoglu ef al. (2022) and Foroozesh et al. (2022). It means that the
network model provides a more comprehensive view of the production process, allowing for a
deeper understanding of how different components of the process are interconnected and
interact with each other, of which the case study of this research provides a useful example.
Another key fact of this model regarding the production process is that the SPs that can be
produced by using the SPs and byproducts that can be produced by using the byproducts/
SPs can be identified where Gothe-Lundgren (2002), Khan et al. (2018), and Fischer et al (2004)
also addressed similar optimization techniques that can be used to find the same information.
In addition, the formulated LP models can be easily solved by the Simplex Method, which is
included in the Microsoft Excel solver add-in and can generate sensitivity analysis and
answer reports to initiate further managerial decisions based on the optimal solutions and
optimality ranges where Yadav ef al. (2022) has done a similar research work to address the
sensitivity analysis by considering the byproducts and sustainable manufacturing.

However, this study has some limitations. The mineral manufacturing industry should
highly consider the uncertainties involved with mining and processing, such as machine
breakdowns and emergencies. Therefore, it would advocate making efficient managerial
decisions if the mineral mixing process was taken under uncertainty and use stochastic
optimization techniques to find the optimum production schedule. Hence, this study can be
extended, such as the studies conducted by Noriega ef al. (2022), Dimitrakopoulos (2011), and
Navarra et al. (2018).

7. Conclusion

This research aimed to find the optimal use of graphite RMs in various graphite grades to
maximize the total profit based on customer requirements and available resources for the
mineral mixing problem because of the sparsity of optimization techniques used for the
graphite mining production process. This is done to find the details of SPs, byproducts, and
byproduct operations. The objective is to analyze the production process to maximize the
profit with sensitivity and scenario analyses. Besides, a network model bolsters the
transformation of a production process into a mathematical model without implementing it at
once when the process is complex and challenging. This research exemplified that the overall
production process could be visualized as a network to identify the complexity of the process,
flow, and the bottleneck of the production process, since the products and byproducts of the
RMs with different production processes, varying times of production, and different carbon
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percentages make a complex problem. Therefore, the overall production process was mapped
as a network and implemented as a general LP model to find the optimum product mix for the
mineral mixing problem. In addition, a case study tested the proposed model on a graphite
mining company that mines approximately 400 metric tons of raw graphite per month, which
is sorted into six raw graphite types to produce ten types of graphite grades. According to the
optimum solution, the company should produce only six of these ten products to maximize its
total profit, where the case study ascertained that the generation of answer and sensitivity
reports for an LP model could be used to compile the sensitivity analysis for the different
parameter changes, and scenario analysis was advocated since the researchers realized the
challenges and uncertainties involved in the mining and processing of graphite, which will
impact important managerial decisions. Furthermore, the case study concluded that a
generated LP model via a network model to find the optimal product mix for the mineral
mixing problem derived from the available data is the most suitable tool to obtain the
maximum profit and to facilitate consequential managerial decisions in the graphite
manufacturing industry. The study concluded with a case study which implies that the
developed general LP model with the theoretical contribution can be used to optimize the
graphite mining production process by customizing the model according to the requirements
and constraints. In addition, the model was used to identify the information on SPs that can be
produced by using the SPs and byproducts that can be produced by using the
byproducts/SPs.

Besides, the underground mining process should be considered uncertain since the
graphite extraction quantity cannot always be guaranteed due to many unforeseen
obstacles. Moreover, the machine breakdown times also should consider uncertain because
the available machine hours could be reduced. Therefore, it would be beneficial to
undertake further research on several topics. These include the production cost variation,
mining technique changes, mining quantity variations, production time variations,
bottleneck identification, and an estimation of how realistic the production time/
available mining quantity/production cost under uncertainty is by comparing the
actual data.

References

Adams, F.G. and Griffin, J M. (1972), “An economic-linear programming model of the US petroleum
refining industry”, Journal of the American Statistical Association, Vol. 67 No. 339, pp. 542-551.

Akpan, N.P. and Iwok, LA. (2016), “Application of linear programming for optimal use of raw
materials in bakery”, International Journal of Mathematics and Statistics Invention, Vol. 4 No. 8,
pp. 51-57.

Braun, G.E. (1986), “Quantitative analysis of mineral mixtures using linear programming”, Clays and
Clay Minerals, Vol. 34, pp. 330-337.

Chanda, EK. (2018), “Network linear programming optimisation of an integrated mining and
metallurgical complex”, Advances in Applied Strategic Mine Plannming, Springer, Cham,
pPp. 269-285.

Dantzig, G.B. (1951), “Application of the simplex method to a transportation problem”, Activity
Analysis and Production and Allocation, Koopmans, T.C. (Ed.), Cowles Commission Monograph
No. 13, Wiley, New York, pp. 209-213.

Dantzig, G.B. (2002), “Linear programming”, Operations Research, Vol. 50 No. 1, pp. 42-47.

Dimitrakopoulos, R. (2011), “Stochastic optimization for strategic mine planning: a decade of
developments”, Journal of Mining Science, Vol. 47 No. 2, pp. 138-150.

Dragicevi¢, S. and Boji¢, M. (2009), “Application of linear programming in energy management”,
Serbian Journal of Management, Vol. 4 No. 2, pp. 227-238.



Ezema, B.I. and Amakom, U. (2012), “Optimizing profit with the linear programming model: a focus on
golden plastic industry limited, Enugu, Nigeria”, Interdisciplinary Journal of Research in
Business, Vol. 2 No. 2, pp. 37-49.

Fagoyinbo, 1S. and Ajibode, LA. (2010), “Application of linear programming techniques in the
effective use of resources for staff training”, Journal of Emerging Trends in Engineering and
Applied Sciences, Vol. 1 No. 2, pp. 127-132.

Fischer, M, Jahn, H. and Teich, T. (2004), “Optimizing the selection of partners in production
networks”, Robotics and Computer-Integrated Manufacturing, Vol. 20 No. 6, pp. 593-601.

Foroozesh, N., Karimi, B. and Mousavi, S.M. (2022), “Green-resilient supply chain network design for
perishable products considering route risk and horizontal collaboration under robust interval-
valued type-2 fuzzy uncertainty: a case study in food industry”, Journal of Environmental
Management, Vol. 307, 114470.

Glover, F., Klingman, D. and Phillips, N.V. (1992), Network Models in Optimization and Their
Applications in Practice, John Wiley & Sons, New York, Vol. 36.

Gothe-Lundgren, M., Lundgren, J.T. and Persson, J.A. (2002), “An optimization model for refinery
production scheduling”, International Journal of Production Economics, Vol. 78 No. 3,
pp. 255-270.

Igwe, K.C,, Onyenweaku, C.E. and Nwary, J.C. (2011), “Application of linear programming to semi-
commercial arable and fishery enterprises in Abia State, Nigeria”, International Journal of
Economics and Management Sciences, Vol. 1 No. 1, pp. 75-81.

Kazancogluy, Y., Yuksel, D., Sezer, M.D., Mangla, SK. and Hua, L. (2022), “A green dual-channel closed-
loop supply chain network design model”, Journal of Cleaner Production, Vol. 332, 130062.

Khan, M.I, Shin, JH. and Kim, J.D. (2018), “The promising future of microalgae: current status,
challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and
other products”, Microbial Cell Factories, Vol. 17 No. 1, pp. 1-21.

Moussa, A. (2021), “Textile color formulation using linear programming based on Kubelka-Munk and
Duncan theories”, Color Research and Application, Vol. 46 No. 5, pp. 1046-1056.

Navarra, A., Montiel, L. and Dimitrakopoulos, R. (2018), “Stochastic strategic planning of open-pit
mines with ore selectivity recourse”, International Jouwrnal of Mining, Reclamation and
Environment, Vol. 32 No. 1, pp. 1-17.

Noriega, R., Pourrahimian, Y. and Ben-Awuah, E. (2022), “Optimisation of life-of-mine production
scheduling for block-caving mines under mineral resource and material mixing uncertainty”,
International Journal of Mining, Reclamation and Environment, Vol. 36 No. 2, pp. 104-124.

Oladejo, NK., Abolarinwa, A., Salawu, S.0. and Lukman, AF. (2019), “Optimization principle and
its’application in optimizing land mark university bakery production using linear
programming”, International Journal of Civil Engineering and Technology ([JCIET), Vol. 10
No. 2, pp. 183-190.

Olivetti, E.A., Ceder, G., Gaustad, G.G. and Fu, X. (2017), “Lithium-ion battery supply chain
considerations: analysis of potential bottlenecks in critical metals”, Joule, Vol. 1 No. 2, pp.
229-243.

Olson, D.W., Virta, R.L., Mahdavi, M., Sangine, E.S. and Fortier, SM. (2016), “Natural graphite demand
and supply—implications for electric vehicle battery requirements”, Geological Society of
America Papers, Vol. 520, pp. 67-77.

Rajak, S, Vimal, KE K., Arumugam, S., Parthiban, J., Sivaraman, S.K., Kandasamy, J. and Duque, A.A.
(2022), “Multi-objective mixed-integer linear optimization model for sustainable closed-loop
supply chain network: a case study on remanufacturing steering column”, Environment,
Development and Sustainability, Vol. 24 No. 5, pp. 6481-6507.

Safshath, M.IM., Waidyasekara, K.G.A.S. and Tennakoon, G.A. (2021), “July. Application of
nanotechnology and nanomaterials in the construction industry: the case of Sri Lanka”,
Moratuwa Engineering Research Conference (MERCon), IEEE, pp. 7-12.

Optimal
product mix
decisions




IEOM

Sofi, N.A., Ahmed, A., Ahmad, M. and Bhat, B.A. (2015), “Decision making in agriculture: a linear
programming approach”, International Journal of Modern Mathematical Sciences, Vol. 13 No. 2,
pp. 160-169.

Solaja, O., Abiodun, J., Abioro, M., Ekpudu, J. and Olasubulumi, O. (2019), “Application of linear
programming techniques in production planning”, International Journal of Applied Operational
Research-An Open Access Journal, Vol. 9 No. 3, pp. 11-19.

Vakilifard, H., Esmalifalak, H. and Behzadpoor, M. (2013), “Profit optimization with post optimality
analysis using linear programming”, World Journal of Social Sciences, Vol. 3 No. 2, pp. 127-137.

Willems, N., Putri, E.A., Ramakers, P.LJ.C., van der Mars, H. and Adan, I].B.F. (2019), “Optimization
of agricultural raw material allocation: a case study in potato product manufacturing”.

Williams, K.B. and Haley, K.B. (1959), “A practical application of linear programming in the mining
industry”, Journal of the Operational Research Society, Vol. 10 No. 3, pp. 131-137.

Woubante, G.W. (2017), “The optimization problem of product mix and linear programming
applications: case study in the apparel industry”, Open Science Journal, Vol. 2 No. 2, pp. 1-11.

Yadav, D., Singh, R., Kumar, A. and Sarkar, B. (2022), “Reduction of pollution through sustainable and

flexible production by controlling by-products”, Journal of Envirommental Informatics, Vol. 40
No. 2, pp. 106-124.

Corresponding author
Karunamunige Sandun Madhuranga Karunamuni can be contacted at: sandunsmk@gmail.com

For instructions on how to order reprints of this article, please visit our website:
www.emeraldgrouppublishing.com/licensing/reprints.htm
Or contact us for further details: permissions@emeraldinsight.com


mailto:sandunsmk@gmail.com

	Network optimization for optimal product mix decisions in a graphite mining production process
	Introduction
	Literature review
	Methodology
	Case study
	Analysis and results
	Sensitivity analysis
	Scenario analysis

	Discussion
	Conclusion
	References


