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Abstract

Purpose — This paper is motivated by the need to assess the risk profiles associated with the substantial
number of items within military supply chains. The scale of supply chain management processes creates
difficulties in both the complexity of the analysis and in performing risk assessments that are based on the
manual (human analyst) assessment methods. Thus, analysts require methods that can be automated and that
can incorporate on-going operational data on a regular basis.

Design/methodology/approach — The approach taken to address the identification of supply chain risk
within an operational setting is based on aspects of multiobjective decision analysis (MODA). The approach
constructs a risk and importance index for supply chain elements based on operational data. These indices are
commensurate in value, leading to interpretable measures for decision-making.

Findings — Risk and importance indices were developed for the analysis of items within an example supply
chain. Using the data on items, individual MODA models were formed and demonstrated using a
prototype tool.

Originality/value — To better prepare risk mitigation strategies, analysts require the ability to identify
potential sources of risk, especially in times of disruption such as natural disasters.

Keywords Risk assessment, MODA, Operational

Paper type Research paper

1. Introduction
The Defense Logistics Agency (DLA) uses over 6,000 different vendors as sources of supply
for a variety of commodities, ranging from fresh fruit to parts for aircraft engines. During
periods of supply chain disruption (e.g. due to a natural disaster), analysts must filter the list
of potentially affected vendors to identify specific risks to logistics operations and then assess
those risks for military service effects. The DLA manages millions of items, each identified by
its national item identification number (NIIN). While vendors may have different risk profiles,
ultimately it is the items that they supply that are critical to the military services. Thus, an
understanding of how risk is associated with items supplied is a key concern. This paper
describes an approach to address the need for measuring the risk and importance associated
with items (NIINs) stored within a military supply chain.

Using a multiobjective decision analysis (MODA) methodology, risk and importance
indices were developed for the analysis of items. In the proposed approach, the modeler must
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identify operational elements (e.g. items) and related operational metrics. These metrics are
then classified as contributing to either risk or importance within the supply chain. Then, the
analyst develops value functions and weights for each attribute to translate the raw
operational data into risk and importance indices that have a common interpretable scale.
The proposed methodology could also be used within commercial supply chains, subject to
the identification of operationally relevant data sources that are useful within those settings.

The paper is organized into sections, providing a brief literature review, an overview of the
underlying methodology and risk assessment metrics and an illustrative application of the
methodology to item risk. We provide some conclusions about future areas of investigation in
the final section.

2. Literature review

This section presents an overview of the literature that informed methodological decisions.
The purpose of the review is to identify problem elements, metrics and models that were
useful in meeting the research goals and methods. A key requirement for a potential
methodology is that the required data elements should be readily available without
significant effort or that the required model inputs can be readily created via informed
domain experts or analysts.

Christopher and Peck (2004) notes, “as supply chains become more complex as a result of
global sourcing, . . ., supply chain risk increases”. The paper concludes that a key challenge is
to “manage and mitigate that risk through creating more resilient supply chains”. Henry and
Ramirez-Marquez (2012), defines resilience as a function of time using a quantitative
framework based on a disruptive event, followed by system disruption, a disrupted state,
system recovery and finally moving to a stable recovery state. Military acquisition planners
need to account for system behavior over time under conditions of disruption when making
sourcing decision (e.g. supply selection, back up suppliers, etc.) and inventory purchasing
over time. What has become clear is that the idea of treating the supply chain as a complex
adaptive system, see the seminal paper by Choi et al. (2001), is even more applicable today
than it was over 20 years ago.

The study of supply chain risk has been a central area of research and practice for
decades. A seminal paper by Sheffi (2001) lays the groundwork for identifying some of the
key issues to consider when trying to mitigate risk within the operation of a supply chain.
Specifically, the key idea of the paper is that while a first-order event (i.e. a terrorist attack)
might have initiated the disruption, it is often the secondary response to the event that needs
to be considered in the planning. For example, in both the response to the September 11, 2001
event and the response to the pandemic, the direct drivers of major disruptions to supply
chains were not the event itself but rather governmental responses to the event.

Building on these concepts, Rice and Sheffi (2005) introduce the concept of resilience within
supply chain management. In this view, supply chain management should consider not only
reducing the vulnerability to disruptions but also strategically planning for the reduction of the
time that it takes to return to normal operations. Designing for resiliency recognizes that the
likelihood of a disruption cannot be totally eliminated and thus, designing the supply chain for
recovery should be a key overall strategic goal. To be able to incorporate risk into the supply
chain design process, we need to be able to measure risk in a quantifiable manner.

Thus, a focus within the early 2000s within the supply chain literature concerned how to
measure risk, what factors to include during the risk assessment process and how to formulate
mathematical models as part of the risk assessment process. Gaonkar and Viswanadham (2007)
present a framework for assessing the risk within supply chains. It describes the risk
management problem and the need to address the problem at the three major levels of the
enterprise: strategic, operational and tactical. Gaonkar and Viswanadham (2007) identify



sources, consequences, drivers and mitigation strategies as the basic constructs within supply
chain risk management. It classifies supply chain risk problems into three main areas: deviation
(change from the expected), disruption (radical transformation leading to nonavailability) and
disaster (temporary irrecoverable shutdown of the supply chain). Finally, Gaonkar and
Viswanadham (2007) propose an integer quadratic programming model for supply chain
partner selection. The objective of the model was “to choose suppliers such that the expected
shortfall in supply, in the face of supplier disruptions, is minimized.” Thus, it should be clear
that understanding risks within a supply chain requires considering how vendors and the items
they produce contribute to the risk profile. The approach proposed in this paper focuses on
quantifying risk based on operationally extracted data on items and vendors.

While it is beyond the scope of this article to provide a comprehensive review of the supply
chain risk management literature, it is beneficial to note that considerable effort has been
taken to understand the drivers and responses to risk within the literature. For a more
substantial review of the literature, the interested reader is encouraged to review the
following survey papers: Ho ef al. (2015) present a comprehensive literature review of
research from 2003 to 2013 within the area of supply chain risk management. During this time
frame, the primary areas of investigation included defining risk, classifying types of risk and
identifying supply chain risk factors. Some of these risk factors are essential to include in the
proposed risk model of this paper. Heckmann ef /. (2015) provide a comprehensive review of
the literature and subsequent quantitative methods applied within the area of supply chain
risk management. It finds that supply chain risk sources (network, process, etc.), exposure
and characteristics are vital perspectives when considering supply chain vulnerability. The
complexity of some of these papers limits their application in practice. Fan and Stevenson
(2018) provide a review of over 354 articles from the 20002016 time frame and find that the
bulk of the research concentrates on identifying risk types and formulating mitigation
strategies. It identifies ten potential research gaps within the literature, which overall suggest
the need for holistic models, better monitoring, benchmarking, cost-benefit analysis and a
better understanding of how position within the supply chain affects risk. One significant
item to note is that the supplier’s position within the supply chain is called out as needing
additional research.

In the following, we focus on papers that contributed key insights supporting our
modeling approach. In particular, Loredo ef al (2015) motivated a solution approach
involving the use of operational data. Dong (2006) develops the concept of “robustness” to
describe the ability of a supply chain network to “carry out its functions despite some damage
done toit.” Dong (2006) presents a system-wide approach to quantifying the robustness index
of supply chain networks. The approach considers both network structural robustness and
network functional robustness when a supply chain is faced with disruption, disaster,
contingency and terrorism. Dong (2006) measures the efficiency of the network, where
efficiency “attempts to measure the effectiveness of the network configuration to accomplish
its function.” The model represents the network as a graph of links and nodes, where nodes
represent locations in the network (e.g. distribution, production, assembly and storage) and
links represent some interaction between the nodes. The approach uses the connectedness of
the graph to construct various measures. In general, the methodology represents a static
representation at a particular point in time. This representation permits an analysis of weak
links within the network and their potential effects. At the time of the writing of the paper, the
methodology had not been tested within a realistic case study. A possible shortcoming of the
work is the amount of structural data that is required and how to represent the data within a
computer. This shortcoming makes the approach difficult to apply to a network as complex
as DLA’s supply chain, with all its connections and the varying nature of the connections over
time. However, the idea of taking a system-wide approach to building a robustness index
contributed to our methodology.
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Kinra et al. (2020) describe a methodology to assess high-impact, low-frequency events
within a supply chain. A high-impact, low frequency event is an event that is so rare that the
determination of its likelihood of occurrence is effectively guesswork. Kinra ef al. (2020)
ignore the problem of estimating the chance of the event and instead focus on determining the
vulnerability of the supply chain to unknown events. The methodology provides a heuristic
for risk based on the worst-case scenario analysis, with the time of disruption as an input
parameter. The methodology requires estimates of disruption time and determines the
maximum loss to operations due to the disruption. The computation of loss is based on every
disrupted node in the supply chain and the total loss determined across the supply chain. The
heuristic shows the parts of the supply chain where it may be possible to have large losses.
The goal is to identify these weak links to focus efforts to mitigate the losses. The
methodology 1is illustrated on a small, three-level supply chain involving suppliers, a
warehouse and a customer. Possible shortcomings of the work include that the disruption’s
impact is measured at a particular instant and the lack of modeling for partial recoveries or
temporary supplies. The methodology also suffers from similar issues as Dong (2006) in that
the data to represent the network may be difficult to obtain. In addition, the methodology
assumes a simplistic accounting of disruption costs; however, due to its simplicity, it may
more readily lend itself to what-if analysis.

Ziegenbein and Baumgart (2006) present a quantitative approach to measuring the
probability of occurrence and the financial impact of disruptions in a supply chain. The
proposed methodology allows managers to gather information about the magnitude and risk
of disruptions to a supply chain. The goal is to assist businesses in estimating the value/cost
associated with the disruption and quantifying its impact. The methodology uses a
probabilistic analysis rather than a subjective response. The main inputs to the methodology
are the number of suppliers and the number of sourced items demanded per supplier. The
main outputs include the business interruption value and its impact on the expected gross
margin. The authors analyze a number of scenarios involving problems such as forecast error
(minor), product quality (medium) and fire/flooding (severe). The shortcomings of the work
include the number of assumptions that must be made to model business operations, such as
ordering lot-for-lot and inventory operating policies. The focus on business interruption value
makes it more difficult to translate the model to a military supply chain context.

Gaudenzi and Borghesi (2006) describe an application of the analytical hierarchical process
(AHP) in identifying and managing risk within a supply chain. The process evaluates daily
risks to supply chain integrity, such as on-time delivery, completed orders, correct orders,
damaged products, etc. These and other metrics are used to measure and evaluate suppliers.
The paper proposes a tool for managers to assess a supplier based on past performance and
available data using the AHP methodology. The analysis starts by identifying specific risks
(damaged products) and assigning causes and priorities to each risk. Then, the causes are
examined to identify the origin of the risk. The approach produces a set of metrics and options
for managing the risks. Since the approach is based on AHP, there is a significant interaction
required to provide input for the model, and the modeling approach is primarily subjective in
nature. Also, the analysis requires significant work if there are a large set of vendors. An
advantage of the methodology is that it results in a risk (index) associated with each supplier.

Fritsche (2016) presents an Excel-based tool that facilitates the assessment of risks within
a supply chain. The approach identifies a set of areas that may contribute to risk and allows
managers and domain experts to subjectively grade each area based on best practices used
within those areas to control, mitigate or contribute to risk. The tool includes five risk areas:
managerial, sourcing, warehousing/transportation, inventory/production and information
systems. Questions in each of the five areas are answered during the assessment process.
Each area is weighted as to its contribution to risk. The scores for each area’s questions are
tabulated and can be compared to those of other organizations. The approach allows for



stakeholders to evaluate their supply chain’s risk landscape with minimal quantitative
requirements in a relatively short time span. The approach facilitates self-awareness of the
practices and issues relative to how operations affect supply chain risk and may help
organizations identify areas for improvement. The shortcoming of the work is that it is
entirely subjective; however, the approach is simple, facilitates what-if analysis and can be
quickly performed because it does not require significant data collection effort.

Moore and Loredo (2013) describe the results of an analysis for the U.S. Air Force to identify
supply chain risks. The main result is a comprehensive list of the risks that could affect the Air
Force’s supply chain. The report does not detail a model, but instead focuses on listing risks and
their supporting factors. The main risks identified are due to natural disasters, acts of war,
terrorism/sabotage and accidents. In addition, some environmental operating risks are also
identified, such as business environment (taxes, customs, currency devaluation, lawsuits,
economic recessions, labor, strikes, etc.), market environment and technological uncertainty.
One highlighted area for supply chains is the flow of raw materials, specifically the fact that
China is the main producer of aluminum, which is a key raw material in aircraft production.
Furthermore, the report summarizes a review of weapon systems and case studies to compare
how risk was managed in the past. The findings of the report are useful for the identification of
sources of risk and providing guidance on what to consider during a risk assessment.

Loredo et al. (2015) present a methodology for measuring risk within Army supply chains
for items and vendors. The approach uses the existing operational data to form risk indices. It
defines a risk index as “a heuristic score for (1) the likelihood that vendor could fail to supply
the item and (2) a heuristic score for measuring the consequences on Army weapon systems”
(Loredo et al., 2015, p. 9). The model includes various operational factors that may influence
risk. The risk indices measure overall risk for a vendor by summing all risk values for items
that vendors supply. The study was limited by the availability of data (NIIN and vendor
characteristics) within the existing operational systems. The work led to an automated tool
that can be used on a periodic basis to query the existing data, execute the risk index
computations and summarize the analysis of risk based on factors of interest.

Loredo et al. (2015) develops risk measures based on factors within the supply chain. The
main areas include demand fluctuation, funding uncertainty and long-lead times. It defines
NIIN risk as

NIIN Risk = Vendor Failure Risk * System Input Risk/ (1 + Days ToRunOut / 365)

NIIN risk measures individual items within the overall analysis and is used to “create a
weight for a NIIN on the system.” NIIN risk is a component of computing an overall system
(supply chain) risk. The report summarizes the various data sources used to compute the
components of NIIN risk. The risk scores are standardized between 0 and 1. Vendor failure
risk does not represent a probability but rather another heuristic score that is constructed
from additional factors related to vendors.

VendorFailRisk = (StatusRisk + RevenuePercentFall + RevenuePercentFall ToAllVendors
+ RevenuePercentSAM + IsContractExpired + Floodrisk
+ TornadoRisk + HurricaneRisk + QuakeRisk + ForeignRisk) /9.

As can be noted from the VendorFailRisk equation, the conceptualization of vendor risk is
functionally related to status, revenue, contract characteristics and risks associated with the
location of the vendor as related to natural disasters. Notice that each of the factors has an
equal weight (9 factors, divided by 9). The definition of the individual components is provided
in Loredo et al. (2015).
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Figure 1.
Notional value
hierarchy tree for
item risk

In summary, the reviewed literature involves three major approaches: (1) quantitative, (2)
qualitative and (3) blended quantitative/qualitative methods. The quantitative methods
involve the application of supply chain analysis methods, sometimes utilizing mathematical
programming or graph theoretic constructs. The qualitative methods focus on identifying the
management process and issues that are salient in understanding supply chain risk. The
blended methods tend to utilize qualitative methods for structuring the elements and
quantitative methods for developing indices that attempt to measure supply chain risk.
Based on the review, we concluded that an approach that blends quantitative analysis with
the ability to include subjective (qualitative) factors could be a useful approach, especially if it
could be driven by operational data. Thus, we focused on the approach in Loredo et al. (2015).

A compelling aspect of the approach in Loredo ef /. (2015) is the ability to compute risk by
item and vendor and “roll up” the analysis of risk across various factors. However, there are
possibly very serious issues with the mathematical basis for the approach taken to develop
the individual risk indices. The first issue is that the values of the individual components are
not standardized on a common scale. Secondly, the metrics assume that the individual factors
contribute equally to the overall risk index. Because of these two issues, we utilize the theory
of MODA to avoid the issues of equal weighting and a lack of common domains and scales.
The next section presents the application of MODA to the development of risk indices.

3. Overview of methodology and metrics

This section provides an overview of the basic components and steps within the MODA
methodology applied to the risk index development process. The standard MODA
methodology is laid out in Parnell ef al. (2013). The key step of this process that is
applicable to this research is crafting the decision objectives and value measures (or value
function hierarchy). This process provides stakeholders with a common framework for
identifying and quantifying the most relevant factors in the decision.

An initial step in the MODA process is to identify attributes and risk/importance
measures. Within the MODA methodology, a value function hierarchy (VFH) is the major tool
to structure multiple characteristics into independent and nonoverlapping groups of criteria.
The VFH represents a value tree that encapsulates the attributes that are important to the
decision context. Figure 1 illustrates a notional value hierarchy tree for assessing item risk.
This tree has only one level, but in general there can be multiple levels, each contributing
upwards to the overall measure of the decision context.

As illustrated in Figure 1, the attributes associated with item characteristics can serve as the
traditional measures for the application of the MODA methodology. The values of the attributes
(as observed from operational data) serve as the raw scores that will be normalized to a common
measurement scale by the specification value functions. The value functions represent a mapping
from raw scores to a scale (0~100) that represents the attribute’s contribution to the value
represented by the tree. In this research, we develop two value function hierarchies: one for item
risk and another for item importance. Each hierarchy will result in an overall index, one for item
risk and one for item importance. Once the value function hierarchies for item risk and item
importance are developed, the value functions for the attributes of each hierarchy are specified.

Item Risk
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Each value function has an x-axis and a y-axis, where the x-axis is the scale of the raw score - Agsessing risk

(e.g. production lead time) and the y-axis is a unit-less value measure on the scale from 0 to
100. Continuous value functions typically follow four basic shapes: linear, concave, convex
and S-curve, as illustrated in Figure 2. Depending on the impact of each value measure, value
functions could be either monotonically increasing or decreasing, as indicated in Figure 2. As
suggested in Kirkwood (1997), the shape of value functions is determined by consulting with
subject matter experts. Once the general shape is determined, the experts identify the
increase/decrease in value from a specific incremental increase in the measure scale.
Repeating this multiple times up to the maximum on the measure scale produces a piecewise
linear function. The functions illustrated in Figure 2 were produced in a linear piecewise
fashion.

Each attribute has raw score, x; based on its natural scale, which is standardized to a
common scale by applying a value function, v(x;,), where

«; 18 the raw score of measure ¢ on the x-axis of the value function and
v(x;) is the value of measure 7 on the y-axis of the value function.

Attribute values are combined into an overall value using weights and an additive model. In
this research, the combined overall value is called an index. A higher overall value indicates
more risk (or importance) for the item for the given attributes, weights, value functions and
raw Scores.

The weights depend on both the criticality of the attribute and the impact of varying the
score of attributes. A swing weight matrix is one of the well-known methods to determine the
weights. This method assesses measure weights by “swinging” the attribute score from its
worst to its best. Parnell and Trainor (2009) discuss this method in detail with examples.
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There are various ways, besides the swing weight matrix, to elicit weights from stakeholders
(Clemen and Reilly, 2014; Kirkwood, 1997). After the value functions have been specified, the
attribute criteria can be ranked and the results recorded within a swing weight matrix so that
an overall index can be formed.

To summarize, using the MODA methodology as outlined here enables the evaluation of
the risk based on multiple characteristics extracted from operational data sources. The
process starts with specifying a value function hierarchy (i.e. selecting the component (item)
measures). After the VFH has been specified, data are collected and normalized, and then
mapped to indices (for risk and importance). Finally, an analysis can be completed based on
the results. In this step, the scores for the supply chain component (item) can be analyzed. The
purpose of this step is to guide further work by identifying assumptions, criteria, parameters
and factors that are significant to the overall analysis of risk. The risk or importance index
value is a single numerical score, and the output of an additive value function model is based
on the value functions and the swing weights applied to each supply chain component (item).
After performing an analysis of the risk and importance indices for various supply chain
grouping criteria, a sensitivity analysis of the weights and scores can be performed.

We can gain valuable insights by performing a sensitivity analysis on the elements of the
MODA model and observing how the results change. Weights and value functions are the
elements that can be subjected to sensitivity analysis to gain further insights on the riskiest
entities and their influence on overall supply chain risk. The application of the MODA
methodology to the building of risk indices mitigates one of the problems associated with the
approach suggested within Loredo et al. (2015) by providing a rational and well-established
basis for combining measures that have different scales and values within the context of
measuring supply chain risk. In the following section, we provide guidance for analysts to
select and interpret value functions.

3.1 Value functions

The purpose of a value function is to translate the raw score of an attribute into terms that can
be compared across attributes. A value function does this by converting the raw score of the
attribute into its value. To a decision-maker, value is a concept that encapsulates the inherent
worth or utility of the attribute to the overall determination of value that encompasses all
(multiobjective) attributes used in the problem context. In this research, the raw score of each
attribute is translated to a risk or importance score between 0 and 100. An overall risk value
represents the “common value” translation across the attributes included in the risk measure.
Similarly, an overall importance value represents the “common value” translation across the
attributes included in the importance measure. This translation from raw score to value can
be complicated because the relationship between the raw score of an attribute and its value
(its risk or importance) is not necessarily linear or even increasing.

For example, consider two items, A and B. Assume that both items are similar in unit cost,
criticality, lead time, etc. Their only difference lies in annual demand. The demand for item A
averages about 100 units per year; the demand for item B averages about 300 units per year —
three times higher. Most people agree that item B is more important than item A. The question
is, how much more important is item B? Does having three times more demand make B three
times as important, 50% more important or nine times more important than A? Does the
answer change if the demand for A and B are one and three items per year or one million and
three millions?

Each variable in the risk and importance indices must be assigned a value function. Four
shapes and five functional forms are implemented in the model, for a total of 20 possibilities.
Figure 2 displays the available value functions. The gallery is organized into rows for each
direction/shape and columns for each functional form.



The first two directions are:
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1. Increasing: This shape is used when it relates to a higher value. For example, in the case within military

of risk, with an increasing direction, a higher raw score of the attribute implies a higher
risk. This is the most common direction for a value function. How much the value goes up
depends on the functional form of the value function.

2. Decreasing: This shape is used when less relates to a higher value. For example, in the
case of risk, with a decreasing direction, a lower raw score of the attribute implies a higher
risk. Risk variables often have decreasing value functions. How much the value goes down
depends on the functional form.

The last two directions/shapes are compounds of increasing and decreasing:

3. Peak: This shape is used when the maximum value occurs at the median raw score. In a
peak shape, for low raw scores, an increasing raw score of the attribute relates to
increasing value (risk and importance). After reaching its maximum, a further increase in
the raw score of the attribute causes a decreasing value (risk and importance).

4. Valley: This shape is used when extreme raw scores lead to high values. In a valley shape,
for low raw scores, value decreases to a minimum point, after which value increases as the
raw score of the attribute increases. This might be useful when having the exact right
quantity of a variable minimizes risk and raw scores further from this quantity increase risk.

The direction of a value function depends on how the risk/importance changes in response to
an increase in raw score. Direction does not determine /0w much the value changes when the
raw score increases. Direction just indicates the direction the value moves.

The prototype tool provides various shapes via five functional forms for a value function,
which are:

(1) Linear: Value increases at a constant rate relative to the raw score of the attribute.

(2) Logarithmic: Value increases at a decreasing rate relative to the raw score of the
attribute.

(3) Exponential: Value increases at an increasing rate relative to the raw score of the
attribute.

(4) Sigmoid: At first, value increases at an increasing rate relative to the raw score of the
attribute. After the midpoint, value increases at a decreasing rate relative to the raw
score of the attribute.

(5) Inverse sigmoid (Logit): At first, value increases more slowly than the raw score of the
attribute. After the midpoint, value increases more quickly than the raw score of the
attribute.

In the approach that follows, we develop separate indices to measure (1) importance within
the supply chain and (2) risks within the supply chain. Importance provides some measure of
whether the element should be prioritized within supply chain operations, but that
importance does not necessarily (alone) measure the inherent risk associated with the
element, that is, we believe that it is useful to analyze supply chain elements based on two
criteria: (1) their operational importance and (2) their operational risk. An element may be
important but pose little risk. Our interest should be in finding elements that are both
important to supply chain operations and pose high risk to supply chain operations. Thus,
within the following sections, for each item, we include indices for both importance and risk,
which are then combined into an overall item index.

supply chains
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The next two sections illustrate the application of the MODA methodology to the
development of item importance and risk indices. After that presentation, we provide an
illustrative example of the application and interpretation of the indices.

3.2 Modeling item importance and risk

This section presents the operational fields used in developing the item indices as well as how
the fields are combined into an overall index. Fields within DLA operational information
systems were reviewed for relevance and availability for use within the item risk analysis.
Sets of possible fields based on the reviewed literature and DLA information systems were
proposed and evaluated as to their contribution to indicating three main item characteristics:
(1) fields that facilitate grouping and analysis, (2) fields associated with attributes that
indicate importance and (3) fields associated with attributes that indicate operational risk.
DLA subject matter experts (SMEs) assisted in reviewing and collecting example data on the
possible fields.

First, we present general mathematical notation for the risk and importance indices for
items. Then, the selected fields will be discussed based on DLA data instances. There are
additional fields called “grouping fields.” Grouping fields are not represented mathematically
since they are not used to produce index values.

(1) /. is the number of risk attributes in the item risk index.

(2) nr(7) is the name of the field associated with attribute 2. These fields are shown in
Table 3.

(3 wvr(i,j) is the value of risk attribute 7 for item ;

(4) wr(i,j) is the weight of risk attribute ¢ for item j

®) 7(,7) = vr(i,5) *wr(i,7) is the risk contribution for attribute ¢ for item j
(6) R(y) is the risk index for item j, where:

(1) 7p(i,7) = (i,7)/R(j) is the proportion of the total risk contributed by attribute ¢ for
item j

The value of R(j) for a given item is the key output from the MODA risk computations. The
analyst has the ability to choose which attributes are included in the risk computation as well
as the weight associated with each attribute.

As noted in the previous section, we develop a separate index to represent the importance
of the factor to the supply chain. Thus, an item that has high risk and importance would be
identified for further investigation and control. The mathematical notation for the importance
index is as follows:

(1) k,, is the number of importance attributes in the item importance index.
(2) nm(7) is the name of the field associated with attribute ¢

(3) wvm(z,7) is the value of importance attribute ¢ for item j

(4) wm(1,j) is the weight of importance attribute : for item j

() m(i,7) = vm(i,7) * wm(i,j) is the importance contribution for attribute 7 for item j



(6) M(j) is the importance index for item j, where:

Fm
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MG) = mlij) supply chains
i=1
@) mp(i,j) = m(i,7)/M(j) is the proportion of the total importance contributed by
attribute  for item j

M (j) for item j is the key output from the MODA importance computations. The analyst
chooses which attributes are included in the importance computation as well as the weight
associated with each attribute.

Tables 1-3 list the item fields used in the analysis, their description and their data type.
The following describes the fields and how they are used in the analysis for the prototype
model: Table 1 presents the item fields selected for grouping. These fields describe an item
and its usage within DLA. Grouping fields allow for aggregation and analysis. Table 2
presents the fields related to importance. The data type column indicates the underlying scale
associated with the field. Numeric fields can be easily mapped to value-function domains. On
the other hand, fields that are ordinal need to be mapped to numeric values that imply an
ordering across the set of possible values. This is discussed further when illustrating the
computations and analysis in Section 4. Table 3 provides the fields related to risk within the
supply chain.

Tables 4 and 5 provide details of the value functions for each of the attributes. The shape
column shows the type of value function applied to the field based on Figure 2. The direction
Field name Description/Meaning Data type
NIIN National item identification number (NIIN) NVARCHAR(®9)
Year The year that best represents the data used NVARCHAR(®4)
SERVICE Military branch NVARCHAR(2)
NIIN_DESC Description of the NIIN NVARCHAR(40)
FSC Federal supply code NVARCHAR®)
SIC Standard industrial classification NVARCHAR(6)
UNITOFMEASURE Measurement code for weight/units NVARCHAR(®4)
VOLUMECODE Measurement code for volume NVARCHAR(3)
WSDC Weapon system designator code NVARCHAR(3) Table 1.
WSGC Weapon systems group code NVARCHAR(1) Fields related to
WSN Weapon system name NVARCHAR(1) grouping for item
Source(s): Table by authors analysis
Field name Description/Meaning Data type
ADQ Annual demand quantity Numeric
ABC_CLASS Inventory ABC class designator Ordinal
DPAS DPAS priority r_atir'lg Qrdinal Table 2.
FSI Federal supply indicator Binary Fields selected as
WSEC Weapons system essentiality code Ordinal attributes related to
WSIC Weapons system indicator code Ordinal importance for item

Source(s): Table by authors

analysis
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Field name Description/Meaning Data type
ADF Annual demand frequency Numeric
AAC Acquisition advice code Ordinal
AMSC Acquisition method suffix codes Ordinal
COTS_CODE Commercial off-the shelf indicator code Ordinal
NETWEIGHT Net weight of item Numeric
VOLUME Volume of item Numeric
HMIC Hazardous material indicator code Ordinal
TECHOPSREVIEWDATE Tech ops review date Date
TECHOPSREVIEWCODE Tech ops review code Ordinal
Table 3. ALT Administrative lead time (ALT) Numeric
Fields selected as PLT Production lead time (PLT) Numeric
attributes related to ~~ LT_MANU Lead time Numeric
risk for item analysis ~ Source(s): Table by authors
Field name Weight Shape Direction
ADQ 0.167 Logarithmic Increasing
ABC_CLASS 0.250 Linear Decreasing
DPAS 0.167 Exponential Decreasing
FSI 0.167 Linear Increasing
$:111)1£eef:11r'1ctions for WSEC 0.250 Linear Decreasing
item importance WSIC 0.000 Linear Decreasing
attributes Source(s): Table by authors
Field name Weight Shape Direction
ADF 0.0682 Sigmoid Decreasing
AAC 0.159 Linear Decreasing
AMSC 0.114 Linear Decreasing
COTS_CODE 0.227 Linear Decreasing
NETWEIGHT 0.114 Exponential Increasing
VOLUME 0.068 Exponential Increasing
HMIC 0.091 Exponential Decreasing
TECHOPSREVIEWDATE 0.000 Linear Decreasing
TECHOPSREVIEWCODE 0.000 Linear Decreasing
ALT 0.045 Exponential Increasing
Table 5. PLT 0.045 Exponential Increasing
Default value functions LT-MANU 0.068 Exponential Increasing

for item risk attributes

Source(s): Table by authors

column indicates the direction associated with the selected value function. The detailed
selections for weight, shape and direction presented in Tables 4 and 5 are implemented in the
prototype analysis tool demonstrated in Section 4.

As shown in Tables 4 and 5, the analyst has the option to weight any available field as
contributing zero value to the index. Thus, fields can be easily included or excluded within the
analysis. The following section illustrates the application of the tool to items within a sample

dataset.



4. Illustrative application

In this section, we apply the MODA model to example item data for the DLA supply chain.
The purpose of this section is illustrative in nature that is, the results are based on an assumed
item risk model for the purpose of illustrating the construction of the model and its internal
computations.

First, we provide some illustrative implementation details related to data integrity. This
illustration should inform potential users of the methodology on the significance of effective
data capture in the model. In addition, these details illustrate some of the potential effects of
inaccurate and incomplete data on the interpretation of the results. For fields used in the
prototype tool, we filtered the raw numeric data for missing, negative, zero, positive or other
values. This allows the user to assess the quality of the raw score data supporting the item
indices before transformation by the value functions. A straightforward statistical summary
of the raw numeric fields is useful. This information supports a better understanding of the
distribution, mean and variance of the raw scores. For categorical data a frequency analysis is
useful. This analysis can highlight invalid or missing data values. Based on this input
analysis, the analyst can decide to exclude or subset the data to separately analyze the results
based on the factors identified during the data quality analysis.

Next, after assessing the quality of the raw data, computing the risk and importance
indices can proceed.

Finally, we complete a MODA post-processing analysis to understand the risk and
importance indices within the context of their item populations. We examine the distribution
of the risk and importance indices across the sample DLA item population. For vendors, we
would examine the risk and importance indices across the DLA vendor population.

4.1 Data integrity analysis
A risk or importance index consists of many components, some of which may be missing in
the raw item data. We discuss a few options for this situation. First, in the protype tool, default
values are specified in the MODA input template. These can be used as substitute for missing
data so that analysis can proceed for the item. Second, the analyst can filter out items that
have missing components.

Table 6 presents information for the fields Imp_Miss and Risk_miss within the dataset.
Thus Imp_Miss (Risk_Miss) indicates the number of missing components in the importance
(risk) index computation for an item. 1,322 of the 3,224 item records had all (0 missing)
required components in the importance index and 1,118 of the 3,224 item records had all (0
missing) required components for the risk index. This represents approximately 41 and 34 %

Frequency Percent Cumulative frequency Cumulative percent

Imp_Miss

1 1,659 51.46 1,659 51.46
0 1,322 41 2,981 92.46
2 243 743 3,224 100
Risk_Miss

2 1,520 4715 1,520 4715
0 1,118 34.68 2,638 81.82
1 429 13.31 3,067 95.13
3 153 475 3,220 99.88
4 4 0.12 3,224 100

Source(s): Table by authors
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Table 7.

Computed risk and
importance indices for
ten NIINs

of the records, respectively. This analysis clarifies the quality of the data used to compute the
indices. The SAS tool permits default values for missing component values. In addition, the
output indicates whether the field is missing. Thus, the analysis can be limited to items that
meet a particular frequency or number of missing components. For example, the MODA
analysis illustrated in Section 4.2 is for items that have zero missing components.

4.2 Index computation and analysis
Using the protype tool, M (j), R(j) and /M (j) * R(j) are computed for every item. Table 7
illustrates the first ten rows of this information. The precise item information (NIIN and
description) has been removed to obscure the actual item identity.

After computing the indices, the analyst should have an interest in the following
questions:

(1) What are the largest, K, items in terms of risk index, R(j)?

(2) What are the smallest, K, items in terms of risk index, R(;)?

(3) What are the largest, K, items in terms of importance index, M (j)?

(4) What are the smallest, K, items in terms of importance index, M (7)?

(5) What are the largest, K, items in terms of overall combined index, \/m?
(6) What are the smallest, K, items in terms of overall combined index, \/M (j) * R(j)?

Given the information shown in Table 7, the analyst can rank the indices according to high or
low values. Table 8 shows the items that have the ten highest risk index values. As noted
from the table, item (2B) has the highest risk index value of 58.85; however, this item ranked
263rd in importance out of the 3,224 items. Thus, an item that has high risk can be interpreted
within the context of its importance within the supply chain.

Table 9 shows the items with the ten highest importance index values. As can be noted
from the table, item 4C has the highest computed importance index value of 50.19; however, in
terms of risk, this item ranked 147. Thus, an item that has high importance should be
interpreted within the context of its risk within the supply chain. This is the motivation for the
creation of the combined index.

While there are different methods for combining the indices, we simply multiplied the
indices together. Because the range for the indices is 0-100, the multiplication will result in a
possible range from 0 to 1,000. Thus, we decided to simply take the square root to ensure a
value within the range of 0-100. Table 10 presents the items with the ten highest combined

Item Service FSC SIC UOM VOL WSDC WSGC WSN Imp Risk Rlindex

1A 1680 336413 LB IN3 11F 833 3043 1592
2A 5365 332510 LB IN3 3333 4119 37.05
3A 1560 336413 LB IN3 11F 3340 743 15.75
4A 1560 336411 LB IN3 11F 3337 782 16.16

2508 41.22 32.15
2500 57.28 3784
834 30.15 15.85
3333 46.20 39.24
834 4576 19.54
3334 4171 37.29

1,680 336413 LB IN3 55N
4820 332911 LB IN3 EON
1560 336413 LB IN3  42F
1560 336413 LB IN3  42F
5342 332994 LB IN3

1560 336413 LB IN3 EAN

Source(s): Table by authors
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Figure 3.

Heat map scatter plot

index, /M () *R(j), value. Note that item 9B has the highest combined index, with a
combined index of 54.06 and individual importance, 50.00, and risk of 58.45. From those
indices ranks, 4th in risk and 25.5 in importance, we can see that this item is associated with
both high risk and importance.

Figure 3 shows a scatterplot heatmap of item importance indices vs item risk indices. In
Figure 3, it is useful to focus on items that are in the upper right-hand quadrant: those having
high risk and high importance. Similarly, one can examine items with low risk and low
importance.

Beyond finding these most and least risky items, the MODA methodology supports
summary statistical analysis over the entire population of items. Similarly, there is often a
need to focus on other critical subsets of the items, which can utilize the included grouping
variables. These are illustrated with metrics and analytical exploration as follows:

(1) Compute summary statistics of R(j) and M (j) across all items

. Min, QI, median, Q3, max, average, standard deviation, count
(2) Frequency tabulation of R(y), M (j), /R(j) * M (j) into quarters over [0, 100]

« Divide the range [0, 100] as follows: 0, (0,25], (25,50], (50,75], (75,0.100)v and 100
(3) Box plots and histograms of R(j) and M () across all items

In what follows, we illustrate possible analytical exploration based on the population of DLA
items and their associated indices. Figure 4 provides summary statistics for the distributions
of risk, importance and combined indices. Notice that the average value for the indices is
typically in the 30s with the maximum in the 50s. Figures 5 and 6 illustrate the distribution of
the combined index with a boxplot (Figure 5) and a histogram (Figure 6). From such figures,
the analyst can better understand how risk and importance indices vary across the item
population.

Figure 7 presents a frequency tabulation of the indices based on dividing the range of
possible values [0,100]. We can see that no indices are in the range from 75 to 100 and that

Scatterplot of Risk and Importance Indexes across all NlINs w/o missing components
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most of the items have indices within the range (25, 50]. This result is illustrative; reflecting
the sample of DLA items in the computations and thus, may not be typical of DLA or
other items.

Besides the analysis across the entire population of items, the grouping fields can be used
to explore the indices within subcategories. For example, we can summarize the statistical
properties of the item indices based on the service category.

Figure 8 presents the statistical summary of the risk, importance and combined index for
each of the six categories of service. An analyst can review these results and systematically
assess how risk varies across the service categories. Formal tests could be used to statistically
compare the estimated means across groups. Furthermore, the analyst can investigate why
the risk might vary by service and develop possible mitigation strategies. Figure 9 provides a
box plot summary of the risk index by service. From the plot, it is evident that service
category “D” appears to have more variability and that service category “F” seems to have
many outliers at the lower end of the risk scale.

As an additional illustrative example, Figures 10 and 11 show the summary statistics for
the indices by WSGC and the box plot of the combined index by WSGC. These results do not
seem to indicate that WSGC is an important factor in determining risk. Although, based on
Figure 11, there does appear to be more variability across the indices, especially for WSGC
code A.

Statistical Summary of NIIN Risk and Importance Indices

The MEANS Procedure

Lower 95%
CL for Mean

Upper 95%

Median Std Dev CL for Mean

11.268
11.435
0.380

Variable N Minimum Lower Quartile Upper Quartile  Maximum Mean

35.038
20269
30.928

37.440
31.708
32.020

340
340
240

7.008
8.332
7.022

30.218

32333

27.023

35.038
33.340
32.002

42.190
33.388
37.417

58.852
50.187
54.083

36.238
30.439
31.020

Risk
Importance
Riskimpindex

Source(s): Figure by authors

Box Plot for RiskimpIndex

10 20 30 40 50
Risklmplndex

Source(s): Figure by authors
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Figure 4.

Summary statistics of
indices across the
population of items
without missing
components

Figure 5.

Boxplot of the
combined index for the
population of items
without missing
components
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Figure 6.

Histogram of the
combined index for the
population of items
without missing
components

Figure 7.
Frequency tabulation
of R(j), M(j),

R(j)* M(j) into
quarters over [0, 1]

30

20

Percent

N

Histogram for RiskimpIndex

Source(s): Figure by authors

{0-25]
(25-50]
(50-75]

Importance
(0-25)
(25-50]
(50-75]

Riskimpindex
(0-25]
(25-50]

20 30 40 50
Risklmplndex
Quarter Summary of Indices
The FREQ Procedure
C lative Ct lati
Risk | Frequency Percent  Frequency Percent
3 0.71 32 9.71
277 81.47 310 21.18
30 8.82 240 100.00
Cumulative | Cumulative
Frequency @ Percent  Frequency Percent
7 20.88 71 20.88
233 68.53 304 80.41
38 10.59 340 100.00
Cumulative = Cumulative
Frequency Percent  Frequency Percent
79 23.24 79 23.24
254 74.71 3233 97.04
7 2.06 340 100.00

(50-75)

Source(s): Figure by authors
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Statistical Summary of NIIN Risk and Importance Indices By Service

Source(s): Figure by authors

WSGC | N Obs
A 285
8 52
[ 12

The MEANS Procedure

Lower 95%
Variable N | Minimum | Lower Quartile | Median | Upper Quartile | Maximum | Mean | StdDev  CL for Mean
Risk 24 18726 32668 23.468 41.324 46300 | 37.120 | 6.604 34204
Importance 24 3333 8333 | 25000 33344 50031 | 22242 | 14.050 16.300
Riskimpindex | 24 15770 18771 26.320 37.005 | 45375 | 27.275 | 10.414 22877
Risk 5 30038 30263 35773 42121 58453 | 30.320  11.778 24.707
Importance 5 8.333 33233 22335 33375 | 50.003 | 31.676 | 14.000 12.163
Riskimpindex | 5 | 15821 31780 24533 37.471 54003 | 34734 | 13671 17.750
Risk a7 7.008 20858 | 41225 45607 | 58.102 36.130 15.826 30.862
Importance a7 8.332 25000 33344 33.962 50034 | 31.821 | 12563 27.632
Riskimpindex | 37 | 15282 21824 32826 37.754 53585 31490  10.587 27.080
Risk 174 7.032 30045 20728 41.301 57.701 33588 | 11.301 31.307
Importance | 174 3333 33233 33346 33387 50.100 | 30989  10.637 20.308
Riskimpindex | 174 7.023 27.321 | 31871 EZRRE! 53547 | 20980 | 8.987 20644
Risk 1 41150 41150 | 41.150 41150 | 41.150 | 41.150
Importance 1 8.332 8333 833 8333 8333 8333
Riskimpindex | 1 18.520 18520 13520 18.520 18.520 | 18.520 )
Risk 0 18.404 34216 41380 44244 58852 | 40515 | 8585 38.803
Importance E 8333 25013 33338 33.361 50.187 | 31.274 | 10.757 20.128
Riskimpindex | €0 |  15.747 31703 | 35.001 30.034 53714 34864 8343 33.200
Box Plot for Risk Index by Service
° _
am )—_—(
° -
| ey
I
T
10 20 30 40 50 60
Risk
SERVICE WD WMANF EN WCAO B M
Source(s): Figure by authors
Statistical Summary of NIIN Risk and Importance Indices By WSGC
The MEANS Procedure
Lower 95%
Variable N | Minimum | Lower Quartile Median = Upper Quartile Maximum = Mean Std Dev | CL for Mean
Risk 285 7.006 30216 | 35832 41.008 58.852 | 35680 11.407 34.300
Impotance | 265 8.333 33333 | 33343 33.388 50.100 | 31.814 | 10.352 30.562
Riskimpindex | 285 |  11.225 31517 | 32272 a7.381 54063 | 32560 | 9.083 31.462
Risk 52 7.108 30367 | 41.161 45616 58645 30071 | 11.174 35.080
Importance 52 8.333 16677 | 33.333 33.378 50.187 | 27.011 | 12242 24502
Riskimpindex | 52 |  15.405 25252 | 31.805 37.670 53421 | 31424 9070 28.309
Risk 12| 20755 30561 | 41.022 42,640 46600 | 38242 | 6563 34.072
Importance 12 8333 20856 | 33.351 41711 50021 | 31.272 | 15538 21.300
Riskimpindex | 12 |  15.818 25.457 | 37.003 28.019 48310 | 33266 10675 26.482

Source(s): Figure by authors

Upper 95%
CL for Mean
30.046
28.175
31673

52.951
50.188
51.708
41.415
36.000
35.020
35279
32.581
32323

42227
32419
36.528

Upper 95%
CL for Mean

a7.050
22650
42182

31.319
33.040
42.412
41.144
40.048
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Figure 8.
Statistical summary of
indices by service

Figure 9.
Boxplot summary of
risk index by service

Figure 10.
Statistical summary of
indices by weapons
system group

code (WSGC)
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Figure 11.

Boxplot summary of
combined index by
weapons system group
code (WSGC)

Box Plot for Combined Risk and Importance Index by WSGC
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Source(s): Figure by authors

5. Summary and future work

Using the MODA methodology, a supply chain analyst can identify operational elements (e.g.
items, vendors, etc.) and their associated operational metrics and classify the metrics as
attributes contributing to either risk or importance within the supply chain. Then, the analyst
can supply inputs such as value functions and categorical rankings of attributes to translate
the raw operational data into risk and importance indices that have a common interpretable
scale (i.e. between 0 and 100). From the computed MODA indices, the analyst can identify
those elements that contribute the most and the least to operational risk. The MODA index
approach generalizes readily to other supply chain elements, such as vendors. The element
indices can be made available to decision-makers using operational dashboards. In addition,
while the model was illustrated for DLA data, the application of the methodology is general
and could be readily applied to other military services’ supply chains.

Because the indices are computed from operational data, a future extension of this
research should investigate how often the data used within the analysis should be refreshed.
Some of the data elements used to define risk and importance indices may not vary
significantly with respect to time, while other data elements may change on a regular basis. In
addition, the population of potential elements may change over time. For example, some items
are phased out. From a methodological standpoint, there is no distinction made between
elements that change regularly based on operational conditions and those that do not. This
does not limit the methodology, but it does indicate that the effectiveness of the results should
be monitored over time. The tracking of a history of indices over time may be of potential
benefit. This would be a natural extension to the dashboard concept.

One additional possibility for future extension of the proposed methodology is examining
how to combine the indices into an overall index. First, the methodology does address this
issue in a limited way by suggesting a combined risk and importance index; however, the
methodology suggested here could be improved in a number of ways. For example, a
weighted overall index could be constructed. In addition to combining risk and importance,
since the methodology can provide an index for any supply chain component, a natural issue
would be how to combine those indices into an overall supply chain index. The MODA
approach to developing multilevel value hierarchies could be useful in exploring this



extension. This would be consistent with the overall approach and the MODA theory
proposed in this paper.
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