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Abstract
Purpose – The purpose of this paper is to introduce a three-echelon multimodal transportation problem applied to a humanitarian logistic case
study that occurred in Mexico.
Design/methodology/approach – This study develops a methodology combining a transshipment problem and an adaptation of the multidepot
heterogeneous fleet vehicle routing problem to construct a mathematical model that incorporates the use of land-based vehicles and drones. The
model was applied to the case study of the Earthquake on September 19, 2017, in Mexico, using the Gurobi optimization solver.
Findings – The results ratified the relevance of the study, showing an inverse relationship between transportation costs and delivery time; on the
flip side, the model performed in a shorter CPU time with medium and small instances than with large instances.
Research limitations/implications – While the size of the instances limits the use of the model for big-scale problems, this approach manages to
provide a good representation of a transportation network during a natural disaster using drones in the last-mile deliveries.
Originality/value – The present study contributes to a model that combines a vehicle routing problem with transshipment, multiple depots and a
heterogeneous fleet including land-based vehicles and drones. There are multiple models present in the literature for these types of problems that
incorporate the use of these transportation modes; however, to the best of the authors’ knowledge, there are still no proposals similar to this
study.
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1. Introduction

The need to respond efficiently to an earthquake with the only
aim of minimizing the loss of human lives has led to the
development of technologies and strategies capable of helping
public and private institutions focused on this task. Researchers
around the world have developed a wide number of strategies
and mathematical models aimed at improving planning for an
effective response. However, not all of them are useful because
each region has its own economic, environmental and
geographic limitations that prevent their use. In addition to
these limitations are added the destructive consequences
generated by each natural event. Determining the best response
strategy to a catastrophic event in Latin America is a problem
that has not yet been studied enough.
Public health emergencies require preparedness and response

capacities from the government, public health systems and

academic researchers (Lurie et al., 2013). From 2001 to 2013, 4
out of 32 major public global health emergencies were caused by
earthquakes, e.g. the Bam earthquake in Iran (2013), the Sichuan
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earthquake occurred in 2008, the 2010 earthquake in Haiti and
the Japan earthquake occurred in 2011. Earthquake destruction
can cause further catastrophes; for example, in March 2011, a
powerful earthquake occurred off the northeast coast of Honshu,
a main Japan’s island, causing significant damage on land and,
consequently, a series of large tsunamis devastating several
coastal areas of the country producing amajor nuclear accident at
a power plant along the coast.
Due to earthquakes, road networks are frequently damaged,

limiting terrestrial access, emergency shelters are often destroyed
and water supplies and urgent medical attention are always
required. Therefore, the adequate planning of logistical activities
is essential to deliver services and commodities to the affected
population Najafi et al. (2013). De la Torre et al. (2012) define
disaster relief logistics, commonly known as humanitarian logistics,
as the distribution of life-saving commodities to beneficiaries.
Thomas and Mizushima (2005) define humanitarian logistics as
“the process of planning, implementing, and controlling the
efficient, cost-effective flow and storage of goods andmaterials, as
well as related information from point of origin to point of
consumption for the purpose of meeting the end beneficiary’s
requirements.” Researchers state that disasters present
multiple logistics challenges, including damaged transportation
infrastructure and limited communication/coordination of
multiple agents. The main differences between humanitarian
logistics and business logistics are the existence of unpredictable
demand in terms of its location and the large number of products
required of a wide variety of supplies, mainly medical and food
and the delivery time (Balcik and Beamon, 2008; Kov�acs and
Spens, 2009).
Four stages have been defined in emergency management

(EM); these are mitigation, preparedness, response and recovery
(Altay and Green, 2006; George D. Haddow and Coppola,
2007; McLoughlin, 1985; Thomas and Mizushima, 2005).
Mitigation consists of reducing the vulnerability of risk areas.
The preparedness stage educates people to face the disaster. The
response stage consists of responding efficiently to a situation to
minimize the risk of losing human lives. In contrast, the recovery
stage works to repair the damage caused by a disaster. The
International Federation of Red Cross and Red Crescent
Societies defines disaster as “a sudden, calamitous event that
seriously disrupts the functioning of a community or society
and causes human, material, and economic or environmental
losses that exceed the community’s or society’s ability to cope
using its own resources.” Sometimes, in the response stage,
relief supplies become excessive because many international

donors send them to affected countries; this may seem very
good. However, in most cases, the high quantity of supplies
limits the proper organization, delaying its timely distribution
and increasing its cost.
The delivery time of supplies in a response stage is one of the

most important variables in humanitarian logistics because the
number of injured people to assist or the loss of human lives
after a disaster depends on it. The delivery time dependsmainly
on the speed of response of the government authorities, the
modes of transportation used, the environmental conditions
and accessibility to the points of consumption. Two examples
are the earthquakes that occurred in Mexico (2017) and Haiti
(2010), where road accessibility changed constantly and
unpredictably due to the movement of debris and several
roadblocks. To counteract the mentioned problems, in recent
years, the use of unmanned aerial vehicles (UAVs), commonly
called “drones”, have been considered as an alternative to
traditional road vehicles, motivating the development of many
single and multiobjective optimization (MOO) models to
deliver medical and food supplies in humanitarian logistics
problems (Arenzana et al., 2020). Some of these objectives
include the minimization of traveling times, transportation
costs, the number and types of vehicles used, the number of
storage and transshipment facilities required and the
maximization of materials and products transported from the
points of origin (depots, collections centers, distribution
centers, etc.) to the points of consumption. Escribano et al.
(2020) show that UAVs can significantly improve response
operations during disasters due to infrastructure damage, a key
factor in relief distribution.
UAVs are used for many different purposes, including

searching formissing people, aerial photography/cartography, fire
prevention/control, security/military applications, agriculture,
business logistics and EM. For EM, UAVs can distribute
different types of essential supplies such as food, water and health
care products such as medical toolboxes, medicine, defibrillators,
blood samples, oxygen masks, vaccines and insulin injections
(Scott and Scott, 2008; Kim et al., 2017), some examples are the
use of UAVs in sanitation duties, temperature testing and vaccine
delivery during the COVID-19 pandemic in rural medical
centers around theworld.
The use of UAVs in humanitarian logistics has its origin in

2006 after the devastation caused by Hurricane Katrina, when
the Federal Aviation Administration in the USA authorized
their use over civil airspace for rescue and disaster relief
operations. The main benefits of using UAVs are that they
allow for reducing labor costs by minimizing the number of
staff needed (Dorling et al., 2017; Thiels et al., 2015); they
require much less space to take-off and landing (Haidari et al.,
2016); they reduce the carbon emission (Figliozzi, 2017;
Goodchild and Toy, 2018; Arenzana et al., 2020); and they
avoid road networks, which are vulnerable to disasters and
traffic congestion (Dorling et al., 2017; Arenzana et al., 2020;
Skorup and Haaland, 2020; Rabta et al., 2018), besides, they
are cheaper tomaintain than trucks. UAVs can also provide up-
to-the-minute updates, which makes them useful for emergency
response in fires, oil spills and earthquakes. Nevertheless, UAVs
have significant weaknesses; the main one is their transportation
capabilities, which are considerably smaller than ground vehicles
(Dorling et al., 2017), followed by their limited operations range
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as well as limited flight times due to energy constraints (Rabta
et al., 2018). In addition, their efficiency depends on climatic and
environmental conditions, which makes them unusable in some
disasters such as hurricanes and volcanic eruptions.
Humanitarian logistics is one of the most complex logistics

operations because it takes place in an environment of severe
disaster. A wrong decision can cause an increase in deaths.
Even though there exists research on transshipment problems
in this domain as well as on routing problems (milk runs
problems) to deliver medical and food supplies that propose an
interaction between UAVs and ground vehicles, MOO models
that combine these two configurations of transportation have
not been widely studied.
This work addresses the study of a three-echelon humanitarian

logistics problem related to the response stage after an earthquake.
A bi-objective optimization model for a transportation system that
combines a full-truck-load transshipment problem [based on the
transshipment model proposed by Olivares-Benitez et al. (2013)]
with a heterogeneous fleet capacitated vehicle routing problem (an
adapted version of Arenas Vasco (2018) is proposed . To evaluate
the performance of the proposed model, this is applied to the case
study of the earthquake that occurred inMexico on September 19,
2017, in which approximately 370 people died and more than
3,000 were injured. The first objective of the model minimizes the
total transportation costs among echelons and the cost associated
with opening facilities; the second objective minimizes the delivery
time of supplies. These two objectives are used because many
countries, including Mexico, have budget constraints to respond
to an emergency. To solve the model, the e-constraint method is
used. Thismethod allows to build a set of nondominated solutions
commonly called Pareto-Front. A Pareto-Front is useful for
decision-makers because it shows the strategic balance between
the objectives of the model in different scenarios (Yv et al., 1971;
Caramia andDell’Olmo, 2008).
The contribution of this paper is twofold. First, amathematical

model for amultiobjective three-echelon transportation problem,
which considers the use of a heterogeneous fleet composed of
drones and land vehicles, is proposed. Second, an extensive
computational experience, considering a case study on
humanitarian logistics, is provided to show the performance of
the proposedmethod.
The paper is structured as follows. Section 2 discusses

previous studies related to the problem. In Section 3, the
methodology of the study is developed. Section 4 describes the
case study used to evaluate the proposed model. In Section 5,
the results of the computational experience are presented and
discussed. Finally, in Section 6, some conclusions and
suggestions for further research are outlined.

2. Literature review

Over the years, many strategies and mathematical models have
been developed with the aim of minimizing the loss of human
lives in the response stage of a natural disaster. The literature
review suggests that, in general terms, thesemodels fall into two
categories: facility locations and relief distribution (Caunhye
et al., 2012; Habib et al., 2016; Nolz et al., 2011).Most of these
models consider only one or two echelons. Other categories
include evacuation and casualty transportation. Most of the
facility location models in humanitarian logistics integrate the

operations of location (building new facilities or choosing
among existing ones), evacuation or relief distribution
(Caunhye et al., 2012). These models are mainly based on
mixed-integer programs using binary variables to identify the
facilities (shelters, warehouses, collection centers, depots,
distribution centers, etc.), routes and several transportation
modes to be used. Their main objectives are to minimize
delivery times and operating costs. In addition, they consider
budget constraints, facility expansion, damage and injury to
emergency equipment and personnel. Models focused on relief
distribution consist of bringing relief (medical supplies,
shelters, manpower, sanitation and other resources) to the
affected zones (Caunhye et al., 2012). Most of the research
available in the literature focuses exclusively on relief
distribution; in addition, these models have been developed
mainly to solve problems for a single objective because they are
easier to solve. Both facility location and relief distribution
models generally contemplate the use of land vehicles for their
operations. Some of the most representative studies regarding
the use of drones in the health-care system are described below.
Scott and Scott (2017) developed two models concerned with

the design of a drone-based health-care-delivery network that
facilitates time and cost-effective delivery. Escribano et al. (2020)
share a stochastic vehicle routing problem that coordinates UAVs
with land vehicles and demonstrates the benefits of their use in
terms of costs. Arenzana et al. (2020) proposed an optimization
model to design UAV-based hospital-delivery networks, which
minimizes drone-traveling time, battery-consumption levels,
CO2-emission levels, vehicle investment and infrastructure costs.
Arenzana et al. (2020) considered UAVs during humanitarian
crises. They developed a mathematical model for a stochastic
vehicle routing problem, which uses UAVs to reveal road damage
conditions and trucks to subsequently deliver commodities
during a relief distribution operation. Numerous benefits were
obtained in the selection of truck routes compared with
deterministic methods; in this work, UAVs limitations were
highlighted. Skorup and Haaland (2020) identified the potential
benefits of UAVs in reducing social interaction in daily tasks and
slowing down the spread of COVID-19. Other authors (Chang
et al., 2007; Duran et al., 2011; Iakovou et al., 1997; McCall,
2006; Psaraftis et al., 1986; Wilhelm and Srinivasa, 1996) have
developedmodels that combine the location of facilities, the relief
distribution for single-echelon and single-objective humanitarian
logistics problems, which suggest the use of only land vehicles.
However, other researchers (Mete and Zabinsky, 2010; Rawls
and Turnquist, 2010) have developed two-echelon models with
one and two objectives to meet the needs in the response stage of
a disaster, and these models also were focused on the use of land
vehicles. The model proposed in this document differs from
previous works by offering a study of a three-echelon bi-objective
problem, which considers UAVs as one mode of transport in the
third echelon. Table 1 summarizes the literature found for
emergency logistics models used in facility locations with relief
distribution in the response stage of a disaster.

3. Methodology

3.1 Problem definition
The problem studied in this work is a multiobjective multimodal
3-echelon problem (MM3E). Given a network G ¼ (N, A, Ke)
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(Figure. 1), where N ¼ {{0} | Ndc | Ns | Nc} is the set of
nodes that corresponds to the depot, distribution centers, stations
and final beneficiaries, respectively; A ¼ {A1 | A2 | A3} (A1 ¼
{(0, j): j [Ndc}, A

2 ¼ {(i, j): i [Ndc, j [Ns}, A
3 ¼ {(i, j): i [Ns, j [

Nc}) is the set of possible arcs among the nodes corresponding to
N andKe is the set of vehicles used at each echelon e [ E¼ {1, 2,
3}. In the first echelon, a set of homogeneous vehiclesK1 departs
from the depot {0} [ N, which has a limited capacity V 1

0 , to the
distribution centers Ndc with limited capacity V1

i . Then, in the

second echelon, items are transported from these centers to the
set of stations Ns, each with capacity V2

j , j [ Ns, using a set of
heterogeneous land vehicles K2. Finally, in the third echelon,
products located at each station are distributed to the final
beneficiaries Nc using a heterogeneous fleet vehicle, K3

(composed by land vehicles and drones). There exists a
transportation cost ckij and a delivery time tkij for each (i, j) [A and
vehicle k [ Ke at each echelon e [ E. Some other assumptions
must be considered:

Table 1 Literature about facility locations models with relief distribution

Author Echelons

Objectives Constraints

Transport modesCost Time Capacity
Requirements and
bounds

Chang et al. (2007) Single Transportation, facility opening,
equipment rental, penalties,
shipping distance of rescue
equipment

– Facility – Ground and aquatic
vehicles

Iakovou et al. (1997) Single Facility opening, operations,
transportation

– Facility Critical time to meet
demand

Ground vehicles

McCall (2006) Single Transportation, shortages – Facility Number of kits to pre-
position, budget

Ground vehicles

Mete and Zabinsky (2010) Double Warehouse operations Traveling Vehicle Inventory shortage
upper bound threshold

Ground vehicles

Psaraftis et al. (1986) Single Facility opening, stock
acquisition, transportation,
operations, unmet demand,
delay

– – – Ground, aerial, aquatic
vehicles

Rawls and Turnquist (2010) Double Facility opening, transportation,
unmet demand, holding

– Facility – Ground vehicles

Scott and Scott (2017) Single – Traveling Vehicle Budget, distance UAVs
Wilhelm and Srinivasa (1996) Single Facility opening and expansion,

stock acquisition, operations
– Facility Time-phased cleanup

requirement
Ground and aquatic
vehicles

Source: Created by authors

Figure 1 Representation of the MM3E network
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� There are enough vehicles and products to satisfy the
demand, and no vehicle return is considered in the first
two echelons.

� Distribution centers must be served by only one vehicle
from the depot, and a station must be served only by one
distribution center.

� Open a distribution center incurs in an extra cost Fi.
� All stations are available to receive products from open

distribution centers.
� There is a limited and capacitated fleet of vehicles

available in the third echelon.
� In the third echelon, vehicles can serve one or more final

beneficiaries and then must return to the stations; all
beneficiaries inNc must be visited.

� The fleet of vehicles in the third echelon (drones and land
vehicles) departs from a fixed station established close
enough to the affected areas.

� All vehicles of the system (drones and land vehicles) can
travel unlimited distances.

The aim of the MM3E is to find the best design of routes that
departs from the depot to the final beneficiaries to attend their
demand such that the trade-off between the total transportation
cost, the cost of opening distribution centers and the total
traveling time isminimized satisfying operational constraints.
Given the definition of the problem provided above, the

mathematical formulation for theMM3E is as follows.
Parameters:

� tkij : Delivery time of an arc (i, j) [ Ae traversed by vehicle k [
Ke, e [ E.

� ckij : Transportation cost of an arc (i, j) [ Ae traversed by
vehicle k [Ke, e [ E.

� Fi: Fixed costs of opening a distribution center i [Ndc.
� Ve

i : Capacity of i [N\Nc, e [ E.
� di: Demand of beneficiaries i [Nc.
� Qk: Capacity of vehicle k [Ke, e [ E.
� Rk: Number of available vehicles of type k [Ke, e [ E.
� The maximum time allowed to complete the deliveries

from the depot to the final beneficiaries.

Decision variables:
� xkij ¼ 1 if arc (i, j) [ Ae is traversed by vehicle k [ Ke, e [ E;

otherwise, 0.
� zi ¼ 1 if a distribution center i [Ndc is open; otherwise, 0.
� qkij¼ Accumulated load of vehicles of type k [ Ke that

traverse an arc (i, j) [Ae of echelon e [ E.
� wks¼ 1 if a vehicle type k [ K3 departs from station s [ Ns;

otherwise, 0.
� ui � 0 auxiliary variables to avoid subtours.

3.2Mathematical model
In this section the formulation of the mathematical model is
shown, as well as the description of each equation. The
e-constraint method was used to model the MM3E problem
due to its potential to achieve efficient points in a nonconvex
Pareto Front. The objective selected to be the objective
function is the one related to costs (f1) and the objective related
to delivery time (f2) is handled as a series of constraints which
are explained below as well:

min f1; f2ð Þ
f1 ¼

X
e2E

X
k2Ke

X
i;j2A

ckijx
k
ij 1

X
i2Ndc

Fizi

f2 ¼ T

(1)

s.t.

ta0ix
a
0i 1 tbijx

b
ij 1

X
j;kð Þ2A3

tcjkx
c
jk � T a 2 K1; b 2 K2;

c 2 K3; i; jð Þ 2 A2 (2)X
k2K1

qk0i ¼
X
j2Ns

X
k2K2

qkij i 2 Ndc (3)

X
i2Ndc

X
k2K1

qk0i � V0 (4)

X
j2Ns

X
k2K2

qkij � V1
i zi i 2 Ndc (5)

X
j2Nc

X
k2K3

qkij � V2
i i 2 Ns (6)

qk0i � Qkxk0i i 2 Ndc; k 2 K1 (7)

qkij � Qkxkij i; jð Þ 2 A2; k 2 K2 (8)

X
i2Nc

X
j2fNs[Ncg

dixkij � Qk k 2 K3
(9)

X
i2Ndc

zi � 1 (10)

X
i;jð Þ2Ae

xkij � Rkzi k 2 Ke; e 2 Enf3g (11)

X
k2K1

xk0i � zi i 2 Ndc (12)

X
k2K3

X
j2fNc[Nsg

xkij ¼ 1 i 2 Nc (13)

X
j2fNc[Nsg

xkij ¼ wki i 2 Ns; k 2 K3
(14)

X
j2fNc[Nsg

xkji ¼ wki i 2 Ns; k 2 K3
(15)

X
j2fNc[Nsg

dixkij ¼
X

j2fNc[Nsg
dixkji i 2 Nc; k 2 K3

(16)

ui ¼ 1 i 2 Ns (17)
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uj � ui 1 1� jNc [Nsjð Þ 1�
X
k2K3

xkij
� �

i; jð Þ 2 A3
(18)

2 � ui � jNc [Nsj i 2 Nc (19)

qkab � 0; xkij 2 f0;1g i; jð Þ 2 A; k 2 Ke; e 2 E (20)

wks 2 f0;1g s 2 fNs;Ncg; k 2 Ke; e 2 E (21)

zi 2 f0;1g i 2 Ndc (22)

The objective functions (1) minimize the total transportation
costs plus the cost associated with opening distribution centers,
and the total delivery time from the depot to the beneficiaries,
respectively. Constraints (3) ensure that traveling times do not
exceed themaximum time can take a delivery from the depot to
the final beneficiaries. Constraints (4) establish that the
quantity delivered from the depot to the distribution centers
must be equal to the quantity delivered from the distribution
centers to the stations. Constraints (5)–(7) avoid that the
quantity delivered from the depot/distribution center/station
does not exceed their corresponding capacity, respectively.
Constraints (8)–(10) avoid to exceed vehicle capacities.
Constraints (11) establish that at least one distribution center
must be open. Constraints (12) ensure that the number of
vehicles used at each echelon does not exceed the maximum
number available. Constraints (13) force to send product to
open distribution centers. Constraints (14) establish that each
beneficiary must be served for only one vehicle. Constraints
(15)–(16) determine that if a vehicle departs from a station i [
Ns, then there must be an arc that exits and enters to that
station. Constraints (17) are flow conservation constraints.
Constraints (18)–(20) avoid are Miller–Tucker–Zemlin
constraint to avoid subtours. Constraints (21)–(23) represent
the variable domain.

4. Case study

The proposed model was implemented for a case a study
occurred in Mexico on September 19, 2017, where a Mw 7.1
earthquake occurred with an epicenter at 55 km (34mi) from
the south of the city of Puebla that lasted for approximately 20 s
(Working Group of the National Seismological Service and
UNAM, 2017). The earthquake caused damage in Guerrero,
Mexico City, Morelos, Oaxaca and Puebla. A total of 369
people died, and more than 7,000 people were injured (Criales
andMota, 2019).
InMexico, immediately after a natural disaster, an extraordinary

emergency declaration is established and resources of the Fund for
Emergency Attention (FONDEN) are immediately distributed to
address the primary needs of the affected population (food, shelter
and health).
Fuerza M�exico is a digital platform that contains data from

the Ministry of Finance and Public Credit of different agencies
and entities involved in the reconstruction tasks from the
earthquakes occurred on September 7 and 19, 2017. This
platform does not provide information, documentary support
on donations or actions carried out by the private sector.
According to the general rules of FONDEN, entities must
follow fourmain steps after a natural disaster:

1 Request emergency support to meet the immediate needs
of the population.

2 Request immediate partial supports (charged to
FONDEN) to obtain resources for the execution of
emerging actions, the restoration of communications,
basic services and the removal of debris from the affected
area to avoid further damage and protect the population.

3 Once immediate partial supports have been received, a
damage evaluation committee is installed to evaluate and
quantify the damages in different sectors. Entities may
request resources to cover expenses derived from the
damage assessment work carried out from the natural event.

4 The necessary works and actions for the reconstruction
are determined.

4.1 Data
The proposed mathematical model is developed around a three-
echelon system consisting of a depot, distribution centers,
stations, demand nodes (beneficiaries) and different
transportation modes per echelon. Table 2 lists the case study
elements, andFigure 2 illustrates them in the context ofMexico.
It is important to consider that, for the adoption of drones in

response to natural disasters where roads are damaged, the
entities in charge of distributing products must have access to
infrastructure to use drones, consider the climate conditions of
the area, and be aware of UAVs management policies in the
region where the vehicles will be used. InMexico, these policies
include the following: UAVs can only be operated during the day
in areas not classified as prohibited, restricted or dangerous; they
must be at least 9.2 km from controlled airports, 3.7km from
uncontrolled aerodromes and 900m from heliports; and they
must not drop objects that could cause damage to people or
property. Moreover, for drones that weigh more than 2kg,
authorization from the Direcci�onGeneral de Aeron�autica Civil is
required, and the drone operator must have a pilot license
(Secretary of Communications and Transportation, 2019).

Table 2 Case study elements

Element
Case study representation and
characteristics

Depot Mexico City International Airport
Distribution centers The center of the most affected states
Stations The most affected municipalities of each

state
Demand nodes The most affected communities of each

affected municipality
Transportation modes in
the first echelon

Truck (artic type): Loading capacity of
24,500 kg at a velocity of 40 km/h

Transportation modes in
the second echelon

Truck (18 ton): loading capacity of 9,500 kg
at a velocity of 55 km/h
Truck (7.5 ton): loading capacity of 3,000 kg
at a velocity of 60 km/h

Transportation modes in
the third echelon

Large van: Loading capacity of 1,000 kg at a
velocity of 65 km/h
Drones: Loading capacity of 180 kg at a
velocity of 50 km/h

Source: Created by authors
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Indeed, these policies must be considered to help address future
natural disasters inMexico.

5. Computational experience

The mathematical model was programmed with Python using
Anaconda Navigator – Spyder 4.0.1 on a MacBook Pro with a
2.7 GHz Intel Core i5 and an 8-GB 1867 MHzDDR3 with
Gurobi solver version 9 implemented.

5.1 Testing plan
For the purposes of this research, the Fuerza Mexico platform
was used as a data source for the delivery of emergency support
during the earthquake in question. The data includes demand
of emergency medical products, such as medicine, water and
supplies for doctors by the state. The proposed model was
tested for the case study main instance (Data 1-1) and the
instances derived from it (Data 1-2, Data 2-1, Data 3-1 and

Data 4-1). Subsequently, it was tested with instances of
different sizes and randomly generated parameter values to
analyze the capability of the model to process problems of
different sizes. Specifically, for the DataV1, DataV2, DataV3,
DataV4 and DataV5 instances, the demand and cost values
were generated with a uniform distribution between the
maximum and minimum values of each parameter. The
number of distribution centers, stations and demand nodes
were arbitrarily selected so that the number of total nodes in the
network was less than that of the main instance and its
derivatives. To perceive the effect of the number of vehicles
available in the third echelon in the central processing unit
(CPU) time, the number of vehicles available for the first and
second echelon was assigned a very large value, and the third
echelon was given a smaller number of vehicles available.
Vehicle and facility capacities remained the same. Tables 3 and
4 show the general characteristics of the instances used for this

Figure 2 Geographical representation of the states in the Mexican Republic

Table 3 General characteristics of the main case study instances

Instances characteristics Transportation modes
E1 E2 E3

Name n N0 Ndc Ns Nc Nc (%) Mode Res Mode Res Mode Res

Data 1–1 50 1 4 10 35 100 1 4 2 16 2 20
Data 1–2 50 1 4 10 35 100 1 4 2 16 2 12
Data 2–1 20 1 2 5 12 79 1 4 2 16 2 16
Data 3–1 11 1 1 2 7 57 1 4 2 16 2 14
Data 4–1 31 1 2 5 23 21 1 4 2 16 2 16

Notes: n denotes the number of nodes, N0 the number of depots, Ndc the distribution centers, Ns the stations, Nc the demand nodes, Nc (%) the percentage
of covered demand, E1 the first echelon, E2 the second echelon, E3 the third echelon, Mode denotes the transportation modes available and Res is the
number of vehicles of eachmode that can be used
Source: Created by authors
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project. For the instances that yielded results in a short CPU
time, a Pareto front is presented, and for the instances with a
highCPU time, theGAP performance is analyzed.

5.2 Computational results
From Table 5, it is evident that, due to a lack of memory, the
largest instance for the case study (Data1-1) was not optimally
solved; moreover, there is no noticeable reduction in the
optimality GAP while running the program with the same
delivery time for 1 h vs 8.5days (Figure 3). Also, despite the
time established to make the deliveries in the last mile, only
land transportation was used; however, the cost value
decreased as the delivery time increased. For the instance Data
1-2, still covering 100% of the demand, with almost half fleet

available and with a maximum routing time of 12.2 h, no
optimal solution was found, but with 400h for the time value, it
was possible to generate a dominated solution with a GAP of
0.36% (Figure 4). Optimal solutions were found for Data 2-1
in less than 12min covering 79% of the demand, and for Data
3-1 in less than 2 s covering 57% of the demand. Ultimately,
dominated solutions were yielded for Data 4-1, which covers
21% of the demand. No significant difference can be observed
in the GAP value regarding delivery time. With an epsilon time
restriction of 12.2 h, a significant decrement in the GAP value
can be observed in the first minute, but thereafter, it improves
slightly (Figure 5). Alternatively, when the delivery time is
400h, theGAPdoes not change.
Considering that the instance size is given by the number of

total nodes in the network and the number of vehicles available
for use in the third echelon, the generated instances are smaller
than those of the case study, and therefore, an optimal solution
was found for all of them, and a Pareto front was built for each
(Table 6). TheCPU time required to identify optimal solutions
for DataV1 was below 14 s, whereas that for DataV2 ranged
from 7 to 5,501 s. ForDataV3, the CPU time< 72 s, and though
DtataV4 is the largest generated instance, the CPU was < 11 s.
ForDataV5, theCPU timewas between 8 and 491s.
Generally, in the first and second echelons, the decisions

made in the model are about what distribution centers to open
and what vehicles to use depending on their capacity; the
differences in delivery time and costs when using different
resources are notorious but not extreme. On the other hand,
the most critical decisions of the model are those of the third
echelon related to the last-mile decisions because the delivery
time and the costs depend on the vehicles to be used (as they
differ in costs and capacities) and the routes to perform, which

Table 4 General characteristics of the generated instances

Instances characteristics Transportation modes
E1 E2 E3

Name n N0 Ndc Ns Nc Mode Res Mode Res Mode Res

DataV1 15 1 2 2 10 1 32 2 80 2 6
DataV2 18 1 2 3 12 1 32 2 80 2 10
DataV3 16 1 3 2 10 1 32 2 80 2 7
DataV4 25 1 2 2 20 1 32 2 80 2 6
DataV5 19 1 3 3 12 1 32 2 80 2 10

Notes: n denotes the number of nodes; N0 the number of depots; Ndc the
distribution centers; Ns the stations; Nc the demand nodes; E1 the first
echelon; E2 the second echelon; E3 the third echelon; Mode denotes the
transportation modes available and Res is the number of vehicles of each
mode that can be used
Source: Created by authors

Table 5 Solutions of the case study principal instance and its derivatives

Solution
Instance Time Cost [US$] Nc (%) Solution type CPU time [s] GAP (%)

Data 1-1 12.2 40,185.40 100 D 3,600.00 0.36
400 40,111.60 3,648.44 0.18
400 40,083.18 748,088.34 0.09

Data 1-2 12.2 – 100 NS 3,600.00 –

400 37,429.80 D 3,600.00 0.65
Data 2-1 12.2 20,134.50 79 ND 679.32 0.01

400 20,134.50 474.66 0.01
Data 3-1 2.16 20,030.80 57 ND 0.74 0.00

2.2 20,030.80 0.11 0.00
2.3 20,030.80 0.31 0.00
2.4 20,030.80 0.06 0.00
2.5 20,030.80 0.72 0.00
2.6 20,030.80 0.01 0.00
2.7 20,030.80 0.39 0.00
2.8 20,030.80 2.03 0.00
3 20,030.80 0.47 0.00

Data 4-1 12.2 20,063.80 21 D 3,670.54 0.26
400 20,058.30 3,600.08 0.24

Notes: “Time” denotes delivery time; “cost” denotes objective value; “Nc (%)” denotes the percentage of the total demand that is satisfied in the indicated
instance; D denotes the dominated solution; ND denotes the nondominated solution; NS denotes no solution
Source: Created by authors
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may require significant computational resources when the size
of the instances increases.
Table 7 shows the dominated solution obtained, for instance,

Data 1-1, which has a minimum delivery time of 12.2 h, CPU
time of 1 s and GAP of 0.36%. Indeed, two out of the four
distribution centers were opened, and only six out of the 10
stations available were used. In the second echelon, only one of
the two transportation modes was used, i.e. the one with the
lowest load capacity. In the third echelon, only land
transportation was used, and 10 routes were constructed to
satisfy the 35 demand nodes.
In general, the solutions for the generated instances were

similar. When the epsilon constraint on the delivery time was
large, cheaper and larger capacity vehicle modes were used.
On the contrary, when time was more restricted, faster
transportation modes were selected despite their capacity,
leading to an increase of transportation costs due to the use of
drones (Figures 12 and 13). Accordingly, when the delivery

time is larger, fewer routes are constructed in the third
echelon, and the total cost is reduced (Figures 7–11).
Moreover, it was found that the size of the instances involves
more complexity to the problem. As the number of nodes
increases, the CPU time increases as well. Also, if the number
of vehicles available in the third echelon increases, the
computational time increases significantly. Therefore,
nondominated solutions were found for all the instances
generated because they are considerably smaller than the case
study instance and because they consider less vehicles
available for delivery in the last mile.

5.3 Discussion
The previous information reflects that with the application of a
model such as the one proposed in this research, more
conscious decisions can be made. For Data 2-1, the optimal
solutions do not suggest using drones in the last mile, and there
is no improvement in cost value, even when the value assigned
to delivery time increases dramatically, which contradicts what
other studies have stated about the minimization of costs with
the use of drones; therefore, it is worth it to check the
parameters with which the costs are measured in other studies
to guarantee a fair comparison. Likewise, in the optimal
solutions for Data 3-1, last-mile deliveries were not assigned to
drones regardless of delivery time, so drones keep being the last
option to use in the last mile. Nevertheless, a minimal
improvement in costs was detected (Figure 6). Finally, though
no optimal solutions were found for Data 4-1, the dominated
results show a significant decrease in the cost value when
increasing the delivery time. In this case, drones were used
regardless of delivery time, not leaving clear the situation in
which the mathematical model uses drones to deliver the
products.
The proposed model is effective to solve small to medium-

sized humanitarian logistics supply-chain problems that use
drones as a transportation mode in the third echelon of the
network. Nevertheless, for big-size problems, we encourage
the use of approximated methods. One of the key factors that
affect the performance of the model is the number of available
drones for use; the greater the number, the more

Figure 3 Evolution of Gurobi solutions (Data 1-1)

Note: To obtain the solutions presented in the graph, the

algorithm was run with a total time limit (ε-constraint) of 400 h

for 3,600 s (CPU time)

Source: Created by authors

Figure 4 Evolution of Gurobi solutions (Data 1-2)

Note: To obtain the solutions presented in the graph,

the algorithm was run with a total time limit 

(ε-constraint) of 400 h for 3,600 s (CPU time)

Source: Created by authors

Figure 5 Evolution of Gurobi solutions (Data 4-1)

Note: To obtain the solutions presented in the graph,

the algorithm was run with a total time limit

(ε-constraint) of 12.2 h for 3,600 s (CPU time)

Source: Created by authors
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combinations, therefore, the higher CPU time. Because of
the above, we encourage the demodulation of the model as
well.
To deal with large-scale humanitarian logistics problems,

some meta-heuristics like genetic algorithm (GA) or
neighborhood search can be used, as well as a fix-and-
optimize approach where the value of the binary variables are
defined by a meta-heuristic and the rest of the variables’
values are obtained from the optimization of the model. The
above is to reduce the computation time because these
problems must be solved in seconds to expedite aid
operations.
On the other hand, as we have seen in other research works

and case studies, the use of drones expedites the delivery of
different products in a matter of time and accessibility;
however, their use in real-life situations implies some

limitations. On the economic side, the use of drones requires
strong economic investments for their purchase and for their
infrastructure, making their use unattractive for governments
that do not have the resources, which is why it is important to
carry out these types of studies to show the benefits of their
long-term use. Socially speaking, the use of drones implies
considering different risk situations to face. For example, in
dangerous areas, there may be loss of equipment or product,
so it is important to consider it both at the budget level and at
the tactical level in operations. Finally, the commercial
implications include the providers of said drones, as well as
the necessary resources for their operation. To regulate the
above, including the economic and social implications as
well, it is necessary to generate special policies for the use of
drones in disaster situations and aid distribution in such a
way that these minimize conflicts that may arise between the
different sectors.
Moreover, it is important to consider that using drones can

cause ethical and legal implications. If a drone brings help to
people in a private property, it can lead to property invasion
problems. If the drones are used to explore areas in any type
of risk through cameras, it can be considered a violation of
privacy. In the worst case, if a drone presents a technical
failure or is handled incorrectly, it can cause an attack on the
integrity of people or property, as well as on the drone itself.
Therefore, insurance services must be provided for drones
that bring aid during disasters, and regulations must be
developed for the use of drones during these specific
situations in which the integrity of people and property is put
at stake.
Finally, this model can be adapted to address other

logistical challenges in natural disaster and pandemics such as
COVID-19; nevertheless, the greatest challenge is in
responding to limited-access areas; therefore, major changes
must be made in the last-mile deliveries, data of these regions
can be obtained with the Google API routes including the
traveling distance and time between places for land and air
vehicles.

6. Conclusions and recommendations for future
research

Historically, the use of UAVs in logistics activities has great
benefits, and their flexibility makes them excellent modes of
transportation. However, in practice, their economic, political
and social limitations should always be considered. This makes
regulating the use of UAVs a priority issue to avoid violating the
privacy and rights of citizens when they are used.
In this research, a mathematical model for a humanitarian

logistics supply-chain problem using UAVs as an additional
transportation mode is developed. The model has been applied
to the case study of the Earthquake on September 19, 2017, in
Mexico.
The results of the study suggest that when the delivery time is

restricted, the transportation costs increase, and in the last
echelon, an increased number of routes are assigned to the
UAVs (because there is less response time to deal with the
emergency). When a larger delivery time is considered,
transportation costs decrease, and routes are assigned to
transportation modes with larger capacity, regardless of their

Table 6 Solutions of the generated instances

Solution Model I
Instance Time [h] Cost [US$] Solution type CPU time [s] GAP (%)

DataV1 1,130 3,230 ND 7.37 0.00
1,142 3,230 13.23 0.00
1,154 3,155 3.12 0.00
1,166 3,155 6.1 0.00
1,178 3,104 3.76 0.00
1,190 3,104 3.62 0.00
1,202 3,068 2.86 0.00
1,214 3,062 5.01 0.00

DataV2 1,215 3,448 ND 52.26 0.00
1,250 3,215 5,500.41 0.00
1,285 3,073 2.83 0.00
1,355 3,069 5.98 0.00
1,390 3,059 7.65 0.00
1,565 3,049 12.38 0.00

DataV3 765 4,110 ND 72.25 0.00
800 4,030 22.25 0.00
835 3,966 1.02 0.00
870 3,157 2.17 0.00
940 3,101 2.07 0.00

1,045 3,091 2.95 0.00
1,185 3,077 5.25 0.00
1,465 3,064 0.95 0.00
1,815 3,055 0.85 0.00

DataV4 705 3,136 ND 9.59 0.00
730 3,119 10.95 0.00
755 3,099 6.42 0.00
780 3,088 3.07 0.00
830 3,083 2.22 0.00
855 3,078 2.6 0.00
905 3,076 1.47 0.00
955 3,071 2.71 0.00

DataV5 745 4,022 ND 490,36 0.00
765 3,902 114.22 0.00
790 3,872 10.05 0.00
815 3,866 8.36 0.00
840 3,858 8.88 0.00
865 3,858 13.96 0.00

Source: Created by authors

Multiobjective mathematical model

Marisol S. Romero-Mancilla et al.

Journal of Humanitarian Logistics and Supply Chain Management



Table 7 Solution of the case study full instance (data 1-1)

Data 1-1 Instance characteristics Time [h] 12.20

Cost [US$] 40,185.40
CPU time [s] 3,701.33
GAP [%] 0.36%

First echelon
Depot Distribution center Product (kg) Transportation mode
Airport Morelos 3,835 Trucks 0
Airport Guerrero 2,131 Trucks 0

Second echelon
Distribution center Station Product (kg) Transportation mode
Morelos Ticuman 203 Trucks 2
Morelos Parque 19 de Febrero 633 Trucks 2
Morelos Club Paraíso 1,039 Trucks 2
Morelos Atenango del Río 1,960 Trucks 2
Guerrero Jojutla 203 Trucks 2
Guerrero Colegio Bach 1,928 Trucks 2

Third echelon
Station of origin Route Product (kg) Transportation mode
Atenang del Río Atenango del Río> Ciudad Ixtepec> Atenango centro> Copalillo>

Juitepec> Huajuapan Le�on> Atenango del Río
965 Truck

Atenango del Río> Tepecoacuilco> Istmo Tehuantepec> Iguala> Taxco>
San Jos�e Ayuquila> Atenango del Río

995 Truck

Club Paraíso Club Paraíso> Yecapixtla> Club Paraíso 203 Truck
Club Paraíso> Ocuituco> Jantetelco> Tetela Volc�an> Palacio Municipal>
EC San Gabriel

836 Truck

Colegio Bach Colegio Bach> CEmiliano Zapata> Santuario Virgen> Zacatepec> BUAPP>
Colegio Bach

454 Truck

Colegio Bach >Tlayacapan > ExconventoXVI> Axochiapan > Colegio
Bach

609 Truck

Colegio Bach> Huitzuco> Palacio Cort�es> Buenavista Cuellar>
Teotitl�anFM> Templo Santiago A> Escuela H�eroes R> Colegio Bach

865 Truck

Jojutla Jojutla> Xochitepec> Jojutla 203 Truck
Parque 19 de Febrero Parque 19 de Febrero> Cuautla> Ayala> Iglesia San Juan B> Iglesia

Santa Cruz> Parque 19 de Febrero
633 Truck

Ticuman Ticuman> Yautepec> Ticuman 203 Truck

Source: Created by authors

Figure 6 Pareto front (Data 3-1): total cost vs total delivery time

Source: Created by authors

Figure 7 Pareto front (DataV1): total cost vs total delivery time

Source: Created by authors
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speed. Although the proposed model is limited to large-scale
applications, it provides a good representation of a
transportation network that can be designed and optimized to
increase the performance of the given response during a natural
disaster, extending it to consider the potential use of UAVs to
address this problem, which is one of the major contribution of
this research.

Alternatively, UAVs can be used to decrease delivery time in
the last mile to regions with limited access. Although some
researchers highlight the low maintenance cost of UAVs, their
implementation can result in high costs because it is a relatively
new technology, and therefore, implementing them is more
feasible with a large emergency budget. Furthermore, the
model can be adapted to problems that have arisen from the
COVID-19 pandemic. For example, they can be used to
respond to the high demand for oxygen tanks and distribute
them in areas that have difficult access, as well as for the
distribution of vaccines through cold chains. For problems
where demand is greater than UAVs’ capacity, modifications
should be made to the proposed model so that final users can
receive their products in more exhibitions, or it could be
considered not to use drones at all as a transportationmode.
This research has different implications in real-life situations.

Although the model can be adapted to any system anywhere in
the world for problems beyond humanitarian logistics, its
application may be limited by the economic, geographical and
social situation (security and crime rates) where it is
implemented, as well as regulations and policies for the use of
UAVs.
The economic impact of this research can be visualized in

both the short and long term. In the short term, investment in
UAVs is large, whereas, in the long term, as explained in the
literature review, their use can have a positive impact on
associated costs as well as on CO2 emissions. These economic
implications are consistent with the results obtained in this
research, as the more routes assigned to UAVs, the cost is
higher.
The use of UAVs during natural disasters can have a positive

and negative social impact. A positive impact can be achieved if
UAVs are seen as reliable vehicles that can help during any
emergency in the shortest possible time. However, a negative
impact is associated with privacy violations and vehicle damage
due to the crime rate in the area. Thus, regulations should be
made to address these problems and UAVs insurance services.
Regarding their economic impact, currently, UAVs are
relatively high-cost vehicles. However, with its continued
development, it is expected that the viability of its use will
increase in a few years.
For future research, the model can be adapted to allow

vehicles to make additional routes doing an adequacy of the

Figure 8 Pareto front (DataV2): total cost vs total delivery time

Source: Created by authors

Figure 9 Pareto front (DataV3): total cost vs total delivery time

Source: Created by authors

Figure 10 Pareto front (DataV4): total cost vs total delivery time

Source: Created by authors

Figure 11 Pareto front (DataV5): total cost vs total delivery time

Source: Created by authors
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vehicle routing problem with multiple routes in the last
echelon. To expand the model, more parameters should be
considered, such as vehicle–distance ratio and the number of
times a demand node can be visited by a vehicle. Furthermore,
because for larger scale instances, the proposed model, solved
by using a general-purpose solver, was not able to obtain
optimal (even feasible) solutions in a reasonable computing
time, it is recommended to explore the design and the
development of metaheuristics to obtain good quality solutions

efficiently. Some of the most used meta-heuristics for
multiobjective problems are GA-based solution methods,
which can be a good starting point for future research lines.
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