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Abstract
Purpose – This paper aims to propose a simulation-based performance evaluation model for the drone-based delivery of aid items to disaster-
affected areas. The objective of the model is to perform analytical studies, evaluate the performance of drone delivery systems for humanitarian
logistics and can support the decision-making on the operational design of the system – on where to locate drone take-off points and on assignment
and scheduling of delivery tasks to drones.
Design/methodology/approach – This simulation model captures the dynamics and variabilities of the drone-based delivery system, including
demand rates, location of demand points, time-dependent parameters and possible failures of drones’ operations. An optimization model integrated
with the simulation system can update the optimality of drones’ schedules and delivery assignments.
Findings – An extensive set of experiments was performed to evaluate alternative strategies to demonstrate the effectiveness for the proposed
optimization/simulation system. In the first set of experiments, the authors use the simulation-based evaluation tool for a case study for Central
Florida. The goal of this set of experiments is to show how the proposed system can be used for decision-making and decision-support. The second
set of experiments presents a series of numerical studies for a set of randomly generated instances.
Originality/value – The goal is to develop a simulation system that can allow one to evaluate performance of drone-based delivery systems,
accounting for the uncertainties through simulations of real-life drone delivery flights. The proposed simulation model captures the
variations in different system parameters, including interval of updating the system after receiving new information, demand parameters:
the demand rate and their spatial distribution (i.e. their locations), service time parameters: travel times, setup and loading times,
payload drop-off times and repair times and drone energy level: battery’s energy is impacted and requires battery change/recharging while
flying.
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Paper type Research paper

1. Introduction

The uniqueness of the disaster scenarios poses critical
challenges to the delivery of aid packages to people trapped in
cutoff regions which include the destruction of transportation
networks, need for timely delivery, scarcity of human resources
and rapid changes of the situation. Unmanned aerial vehicles
(UAVs), commonly known as drones, have recently attracted
much attention as a promising solution for the delivery of aid
items in disaster-affected areas (Otto et al., 2018). Distinct
characteristics of drones can offer multiple potentials to address
the challenges associated with the timely delivery of aid items in
disaster-affected areas. Effectively, drones are aerial vehicles
capable of reaching cutoff regions in disaster-affected areas as
they are not restricted to land-based transportation networks.

Furthermore, drones are deemed as fast, effective and pilotless
alternatives to traditional last-mile delivery modes, like trucks,
and do not require expensive and sophisticated launching
infrastructure (Otto et al., 2018; Rejeb et al., 2021).
Like most real-world systems, drone-based delivery systems

involve many sources of variabilities. Undoubtedly, one of the
most critical sources of uncertainty in disaster scenarios is the
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information related to the demand, including the number of
demand points and their corresponding geographical locations.
During the very first few hours after a disaster strike, there is
usually not enough information about the number and location
of people who may need immediate attention. In such
situations, as time goes by, the rescue teams may receive more
updates and calls for help from people stuck in the disaster-
affected areas. Therefore, the decisions on the scheduling of
drone trips need to be frequently updated according to the
arrival of new sets of information. Other serious sources of
uncertainty originate from the operational performance of
drones themselves. Even given an exact distance between a
drone platform and a demand point, a drone’s flight duration
and drop-off time may vary as different fluctuating factors, like
wind and temperature, can impact its flight speed (Kim et al.,
2018).
To address various factors associated with drone-based delivery

of aid items to disaster-affected areas, optimization techniques are
widely used in practice and theory. Although optimization
models can offer powerful decision-making tools and provide
recommendations, they often fail to capture the randomness and
dynamics of such a system since the underlyingmodel assumptions
usually oversimplify the problem for algorithmic tractability. On the
other hand, simulation modeling allows the representation and
examination of a system through simulating real-life situations with
minimal assumptions (Fu et al., 2015). In a drone-based delivery of
aid items in disaster scenarios, the high level of fluidity of the system
and variability of the parameters necessitates developing simulation
tools to evaluate alternative solutions and strategies and prepare for
different future contingencies. For example, a simulation model
can evaluate the performance of different routing strategies based
onpossible enrouteweather changes.
Another major application of a simulation-based tool is the

opportunity of performing analytical studies to improve solutions
obtained from an optimization model. Indeed, optimization
models typically fail to adequately capture the dynamics and
uncertainties of complex systems; therefore, the optimum
solutions derived by these models may not be the best solution
when it comes to real-life situation realizations (Fu et al., 2015).
Thus, simulation models can be integrated with optimization
methods to offer a simulation-optimization tool that can improve
the solutions obtained by an optimizationmodel. For instance, as
will be done in this paper, neighborhood search algorithms can be
integrated with the simulation model to find solutions that
outperform the solutions obtained from an optimization model
alone.
This paper presents a simulation-based performance

evaluation model for the designing of a system for timely delivery
of aid packages via a fleet of drones. The goal is to develop a
decision support framework that allows one to evaluate
performance of drone-based delivery systems, accounting for the
uncertainties through simulations of real-life drone delivery
flights. In this regard, we leverage a simulation model to predict
contingencies, evaluate and improve the drone-based delivery of
aid items in humanitarian logistics. The proposed simulation
model captures the variations in different system parameters,
including Interval of updating the system after receiving new
information, Demand parameters: the demand rate and their
spatial distribution (i.e. their locations), Service time parameters:
travel times, setup and loading times, payload drop-off times and

repair times and Drone energy level: battery’s energy is impacted
and requires battery change/rechargingwhile flying.
We can summarize the main contributions of this paper in

the following three categories:
1 Decision support framework: This research introduces a

significant contribution by designing a decision support
framework, moving beyond simple optimization or simulation
models. We introduce a simulation-based performance
evaluation model for effective decision-making in drone
location and delivery scheduling. Our innovative approach
leverages a simulation model to evaluate and enhance drone-
based delivery systems. The flexibility of our framework allows
for easy adoption of different strategies, scenarios and
optimization algorithms.

2 Simulation-based performance evaluation tool: The goal is to
design a simulation model to perform analytical studies,
support decision-making process, verify the performance
and applicability of different solutions, evaluate
alternative strategies and predict future contingencies and
scenarios based on the current situation. Our underlying
simulation model considers the stochasticity induced by the
fluidity of demand information and variability in drone
operations. In this paper, we study different configurations,
scenarios and strategies to showcase the effectiveness and
applicability of our research.

3 Simulation-optimization procedure: This paper leverages the
simulation model to learn from the inner dynamics of the
system and improve the decisions made by optimization
models beforehand.We introduce a simulation-optimization
procedure that aims at improving the drone platform
locations using a simple but effective algorithm.

This paper stands out from the literature of drone-based
delivery of aid items in humanitarian logistics in different ways.
Rather than using merely optimization models, we propose a
decision-support tool that brings optimization and simulation
models together to improve the decision-making process. In
this model, the optimization is embedded within the simulation
model and optimizes the delivery lists and routing decisions as
the realizations are happening. We assume multiple scenarios,
strategies and uncertainty sources in our system (see Section 5).
Furthermore, our model presents a generic framework which
can easily adopt different predesigned logistics systems,
evaluate them and improve them through a simulation-
optimization procedure (see Section 6.1).
The remainder of this paper is as follows: Section 2 reviews

the most relevant literature on the drone-based delivery of aid
items in humanitarian logistics and discusses the original
contributions of this paper. In Section 3, we formally describe
the problem addressed and elaborate on the scope and
assumptions. To provide a more understandable picture of the
situational context of our problem and goals, Section 4
provides an illustrative example. Section 5 presents the
simulation-based performance evaluation model. Subsection
5.1 elaborates on the simulation model and its components. In
Subsection 5.2, we briefly review our timeslot formulation for
optimizing the drone scheduling problem. This section also
introduces multiple efficient algorithms to solve the drone
scheduling problem in a timely manner. Section 6 presents a
series of experimental analyses for several instances and a case
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study of Central Florida. Finally, Section 7 summarizes our
findings and suggests some future research directions.

2. Literature review

In this section, we review the relevant literature on the problem
of drone-based delivery of aid items in humanitarian logistics
and discuss different optimization and simulation models
designed to address this problem.

2.1 Delivery drones in practice
Over the past few years, there has been a growing interest in the
application of UAVs for the delivery of aid and medical items in
both practice and theory. Further, many companies across the
world have initiated drone-based delivery projects to provide
remote communities with medical supplies. In Africa, DHL
developed a drone-based delivery system to provide last-mile
delivery services for medical items and lab specimens in regions
with poor transportation infrastructures (Kaplan, 2020). In the
USA, during the COVID-19 pandemic, Zipline and Matternet
were authorized to use drones to deliver medical items, e.g.
prescription medications and personal protective equipment,
to hospitals and retirement communities (Takahashi, 2021;
Vincent, 2021).
The unique potential of drones has also given rise to research

efforts on drone-based delivery of aid items in humanitarian
logistics. In this regard, operations researchers are developing a
variety of platform location optimization models and solution
approaches to address the critical aspects dealing with the
logistics of a drone-based delivery humanitarian aid. Given the
limitations and uniqueness of drone systems and the urgency of
emergency scenarios, critical factors include limited coverage
range of drones, limited payload capacity of drones, timeliness
of delivery, limited resources and capacities and uncertainty in
several aspects of the system.

2.2 Delivery drones in operations research
In one major line of research, several researchers studied the
possibility of integrating drones’ operationwith other transportation
modes, particularly trucks, to compensate for the limited
operational range of drones. In 2015, Murray and Chu (2015)
proposed a mathematical formulation for a synchronized truck-
drone delivery system where drones perform delivery tasks in
tandem with a truck. In that system, a truck supports the drone’s
operation while the truck acts as a moving depot. Some researchers
have continued this line of research by developing optimization
models for different combinations of synchronized operations of
drones and trucks. Recently, Dayarian et al. (2020) proposed a
synchronized drone-truck delivery systemwhere the drone supports
the truck operation by resupplying its load. For a comprehensive
review of truck-drone delivery models, see e.g. Chung et al. (2020)
andMacrina et al. (2020).
In another research line, some researchers focused on

developing optimization models for the routing and scheduling
problems in drone delivery systems as variants of the traveling
salesman problem (TSP) and vehicle routing problem (VRP).
Detailed reviews on TSP and VRP variants of drone delivery
models are also given in Otto et al. (2018) and Macrina et al.
(2020).

2.3 Delivery drones in humanitarian logistics
In the context of drone-based delivery of humanitarian aid
items, variants of facility location problems have been widely
used to address locational aspects of such systems. Given the
scarcity of resources, limited coverage range of drones and high
level of urgency, it is crucial to optimally locate and deploy the
available facilities so that all the demand points can be
sufficiently covered as fast as possible. In this context, the
facility location problem mainly involves finding the optimum
number, locations and corresponding service areas for depots
(Chowdhury et al., 2017), charging stops (Ghelichi et al.,
2021), medical centers (Kim et al., 2017) and drone launching
platforms (Gentili et al., 2022).
The limited payload capacity of drones implies that drones

cannot carry more than one payload in each trip. In this regard,
some studies considered the scheduling and sequencing of
separate deliveries for a fleet of drones (Gentili et al., 2022).
Recently, Ghelichi et al. (2021) proposed a timeslot formulation
to optimally locate drone charging stations and concurrently
scheduling and sequencing individual drone trips for the delivery
ofmedical items in rural and suburban areas.
A barely addressed critical aspect of a drone-based delivery of

aid items is uncertainty. In many disaster scenarios, the lack of
information, fluidity of impacting events and instability of the
situation induces a high level of uncertainty. Besides the
volatility of the situation, a drone’s operational performance
itself may be affected by different factors, e.g. temperature,
which can pose additional uncertainty with respect to the drone
flight time and completion of the deliveries. Failing to account
for these uncertainties may result in suboptimal or ineffective
system response.
In the context of the drone-based delivery of humanitarian aid

items, uncertainty is barely studied. Kim et al. (2019) developed a
chance constraint formulation to address the problem of locating
drone facilities while considering uncertain flight distance.
Kim et al. (2018) developed a robust optimization approach to
address the problem of drone scheduling problem under battery
duration uncertainty induced by the air temperature. Inspired by
demand uncertainty in disaster scenarios, Zhu et al. (2022)
presented a two-stage robust optimization model to address
the location-allocation problem for delivery drones. Recently,
Ghelichi et al. (2022) introduced a chance-constrained stochastic
optimization model to address the problem of timely delivery
of aid-items when the set of demand locations is unknown. They
developed a multi-stage solution approach that integrates
heuristic and nonparametric techniques to solve this delivery
problem.

2.4 A discussion on the literature andmain
contributions
Gauging the literature discussed above, the majority of studies
have focused on optimizing drone location and scheduling
problems offline in advance. The underlying models mostly fail
to adequately capture the dynamics and realizations of
uncertainties and random events as they occur (Fu et al., 2015;
van Steenbergen and Mes, 2020). As mentioned above, the
application of drone delivery drones involves multiple sources
of uncertainty, which stem from both drone system operations
and the fluidity of disaster scenarios. On the one hand, the
information about demands in a disaster scenario, such as the
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number of demand location, their corresponding location and
the demand realization time intervals, is very hard to predict, if
not impossible. On the other hand, drones’ operational
performance can be impacted by such factors. In this regard, a
stochastic simulation model that simulates the drone-based
delivery system, which includes the dynamics of real-life
situations, can be a viable tool to for evaluating and improving
the performance of the drone delivery system within a
framework of a simulation-optimization approach.
In the context of humanitarian logistics, simulation models

have been used in different research studies. To keep the focus
of our literature review on the intersection of delivery drones
and humanitarian logistics, we skip reviewing these studies.
However, interested readers may refer to (D’Uffizi et al., 2015;
Krejci, 2015; Mosterman et al., 2014; Paz-Orozco et al., 2023;
Yale et al., 2020).
Despite the importance of integration of optimization and

simulation models in designing drone-based delivery of aid
items in humanitarian logistics, the body of literature on
this topic is thin. Interested readers on the intersection
of optimization and simulation models may refer to the
Handbook of Simulation Optimization (Fu et al., 2015).
For the evaluation of drone-based humanitarian logistics
systems, van Steenbergen and Mes (2020) proposed a generic
simulation framework. Kim and Lim (2020) developed a
real-time routing and rerouting model for the flight of
delivery drones under uncertain flight times. They dealt
with uncertainty in the operational performance of drones
in a nonemergency context. Fikar et al. (2016) developed
a simulation and optimization decision-support tool to analyze
last-mile delivery of relief packages in disaster-affected
areas via off-road vehicles and drones. They proposed a
mixed-integer programming model to minimize the average
lead time over all requests and subsequently designed
an agent-based simulation and optimization to analyze the
problem settings.
Our goal is to design a simulation-based decision-support

tool to perform analytical studies, support the decision-making
process, verify the performance and applicability of different
solutions, evaluate alternative strategies and predict future
contingencies and scenarios based on the current situation. Our
underlying simulation model considers the stochasticity
induced by the fluidity of demand information and variability of
drone operations.
We first focus on the design of a simulation-based

performance evaluation model for drone-based delivery of aid
items in disaster scenarios. Then, we integrate a drone
scheduling algorithm into the evaluation model, where the
optimization objective is to allocate and sequence an optimum
set of trips for each drone so that a measure of total disutility/
cost is minimized. We define total disutility as the sum of
delivery and waiting time plus a penalty for unserved demands
within the planning horizon. For the sake of clarity, we refer to
the latter optimization problem as the “scheduling problem”

and the set of ordered deliveries assigned to the drones in the
fleet as “schedule.” To solve the scheduling problem in real
time, we develop and compare three heuristic algorithms and
study their impact on the overall performance for decision-
making.

3. Problem definition

We consider a disaster scenario where a set I of m drone
platforms sites are located to provide timely delivery of aid
items to disaster-affected areas. Examples of such aid items
include water, food and medications. A drone platform is a
structure hosting one dedicated drone. The drone platforms
provide launching and landing mechanisms, charging
equipment, loading mechanism and aid items for the drones.
For the sake of brevity, we refer to drone platforms as
“platforms.”Due to the limited payload capacity of drones, we
assume each drone can carry one payload at a time.
Each drone starts its trip from its dedicated platform, flies to

a demand location, delivers its load and returns to its
corresponding platform.We also assume each demand location
requires exactly one delivery. We assume that the drone
platforms are already located. The optimum location of thesem
drone platforms can be determined by solving drone location
models proposed by Gentili et al. (2022) and Ghelichi et al.
(2022). Below, we elaborate on the situational context that we
try to address in this paper. Table 1 shows the notations used in
this section.
Due to the fluidity of the situation and the lack of information

during the first few hours after a disaster strike, we consider a
scenario where initially the set of demand locations are not known,
but information about each demand location is received at
timestamps t. This set of information includes the number of
demand locations and the corresponding coordinates of each
demand location. The demand locations appear over time based
on a spatial probabilitymap, which gives the probability of demand
at each point on the plane. Let Jt ¼ {1,2,. . .,nt} be the set of
demand locations received by timestamp t, where nt is the number
of demands.We represent by (xj, yj) the coordinates of the demand
point j [ Jt. At timestamp t, upon receiving the new set of
information, the drone scheduling model assigns an ordered set of
tripsSt

i ¼ fjjzij > 0g to each drone in the fleet, where zij is a binary
variable that takes value 1 if demand location j [ Jt is assigned to
drone i [ I and 0 otherwise. We denote by Xt ¼ [i2ISi

t the
schedule assigned to the fleet of drones i [ I at timestamp t. To
efficiently schedule drone trips, we adopt the drone scheduling
model introduced by Ghelichi et al. (2022) and compare different
efficient algorithms to solve the drone scheduling problem in real
time. This model optimally schedules and sequences a set of trips
for each drone in the fleet such that a measure of disutility (cost) is
minimized (details given in Section 5.2). In this case, the disutility
is a function of the delivery and waiting time for each demand
location,which is nondecreasingwith respect to time.
Let random variable d be the length of the time interval after

which the system receives a set of new information. We refer to
random variable d as the “Update Interval.” That is, at every d
interval, the system is updated with a new set of information, i.e.
demands and their locations. Subsequently, the task list and
schedule of the drones must be updated to include the newly
received demands’ at this moment. We assume that demands
continuously arrive within the time interval [t, t 1 d], and each
demand point has a specific arrival time. However, all the
demands received within time interval [t, t 1 d] are scheduled
concurrently at the end of the interval whenwe update the system
state at t 1 d. Thus, there is a waiting time such wj � d for each
demand point j, which is the time between the moment the
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demand point j occurs until its delivery is scheduled at timestamp
t1 d. At any update time, the current state of the system must be
identified. The current state shows the set of the current location
of each drone and the distance from their corresponding
platforms and the status of the demands already scheduled at the
previous timestamp. Once the system is updated, the current
timestampwill be equal to t1 d.
At any timestamp such t, the status of the demands scheduled at

the previous timestamp can be labeled as either served or being
served (i.e. a drone is already flying toward it) or scheduled but not
served yet. If a demand location is already served or being served,
we remove it from the set of demand locations that are to be
scheduled or rescheduled at the update time. We let Ft denote the
set of all demand locations served by timestamp t. However, if
there is any demand scheduled at the previous timestamp, i.e. j [
Jt�d, such that its delivery is scheduled but not served yet, we
combine this demand with the set of newly received demands at
timestamp t, i.e. Jt. We let Kt denote the set of demands already
scheduled but not served until timestamp t. Therefore, at
timestamp t, the set of demands to be scheduled is updated to Jt¼
Kt| unserved demands in Jt. Then, our scheduling algorithm again
finds an optimum set of trips for each drone and updates Xt. We
repeat the same process over and over until the end of the planning
horizon. Note that our scheduling model needs to account for the
fact that some demands inKt have been waiting since the previous
timestamp. Therefore, we incorporate this additional waiting time
in the objective function of the schedulingmodel.
The variations in drone operational times are another source

of variability. Due to the variations in the drone velocity, we
assume the travel time follows a normal distribution with a
known mean and variance (Kim and Lim, 2020); this
distribution could be updated when new data is collected. Each
drone also requires a setup time for service, loading and battery
swapping/charging between two consecutive trips. The setup
time of drones and drop-off time at the demand location are
assumed to follow a known distribution (discussed in the
results section). Drones’ operational flight range is limited by
themaximum coverage range of Tmax in terms of time andDmax

in terms of distance. In the system studied, we assume all the
drones are identical. We remark that one of themost prominent
strengths of our simulation-based evaluation is that it is
relatively straightforward to change most of the operational

performance distributions and fleet mixtures to analyze other
scenarios.
Drone flights may face other nondeterministic effects.

Factors such as low temperatures and battery efficiency
variations can induce interruptions in the battery performance
(Kim et al., 2018). In our simulation model, we assume such
factors can impact the energy level of the drone and influence
the success of completing some deliveries. To capture these
effects, we assume drones may face a battery failure with a
known distribution and failure rate. Subsection 5.1 presents
two alternative drone routing strategies when they face battery
failures.

4. An illustrative example

To provide a clear overview of the associated drone logistics
problem and issues of managing the fleet, we present an
illustrative example in this section. Assume after a disaster
event, two drone platforms are located to dispatch aid packages
to demand locations. The optimum location of these platforms
can be determined by solving drone location models similar to
the ones in Gentili et al. (2022). The system is provided with a
probability map that gives the chance of having demand at each
point throughout the disaster-affected area. We assume
demands are arriving based on this probability map. Figure 1
illustrates such a probability map where areas with lighter
colors have a higher probability of a request for aid. Although
such a probability map can be provided by some agencies that
observe such disaster situations, e.g. the trajectory of hurricanes
given by the National Hurricane Center (NHC, 2024), the
Kriging method can also be implemented to obtain this
probability map. For more details about the Kriging technique,
the readermay refer toOliver andWebster (1990).
At some timestamp t1 (refer to Figure 2), a set of new

information that includes five demand locations and their
corresponding locations (red icons), i.e. Jt1 ¼ j1; j2; j3; j4; j5f g; is
available. Upon receiving the information, a schedule for the
fleet of drones is generated, where each drone is assigned
an ordered list of scheduled deliveries. The scheduling model
in Ghelichi et al. (2022) can, for example, be used to find
the schedules for each drone in the fleet. Table 2 shows
the ordered list of deliveries (or schedule) for drones i1 and i2

Table 1 Table of notations

Notation Description

I5 {1,. . .,m} Set of located drone platforms
Jt 5 {1, 2,. . .,nt} Set of demand locations received by timestamp t
Kt Set of demands already scheduled but not served by timestamp t
Ft Set of demand locations served by timestamp t
Sti ¼ fjjzij > 0g Ordered set of trips assigned to drone i at timestamp t
zij [{0,1} Equals to 1 if demand j [ Jt is assigned to drone i [ I and otherwise
Xt ¼ [

i2I
Sit The schedule assigned to the fleet of drones at timestamp t

nt Number of demands received by timestamp t
d Random time interval
wj Waiting time for each demand point j until it is served; wj � d

Tmax, Dmax Drone coverage range in terms of time and distance, respectively

Source: Table created by Zabih Ghelichi
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Figure 1 Illustration of a probability map

Figure 2 Illustration of the system status at timestamp t1
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and their current distance from their platforms at the
timestamp t1.
Once the deliveries are assigned, drones depart their

platforms heading to the first demand location in their task list.
Although the scheduling model assumes a flight duration
between any two points, the real flight duration might be
impacted by different factors, such as wind and air density.
Therefore, the real flight duration for each drone on each trip
can be deemed as a random variable.
At this point, we simulate drone flights. The simulation

model will provide realizations of drone setup times, flight
times and load drop-off times. Furthermore, we assume the
possibility of facing battery failure during any trip. Given
drone’s battery might be impacted by an internal or external
factor, like temperature, we need to continuously monitor the
energy required to finish the trip and the remaining amount of
energy in the drone’s battery.
Now, after some time interval d, the rescue team receives a new

set of information at timestamp t2 ¼ t1 1 d. Within the time
interval [t1, t2], the drones have been performing the deliveries
based on their assigned schedules. Figure 3 shows the current

position of drones at the timestamp t2 and the status of the
demand points. At timestamp t2, there are four different types of
demand locations:
1 demand locations from the timestamp t1 that are already

served (shown in gray);
2 demand locations from the timestamp t1 that are being

served (shown in orange);
3 demand locations from the timestamp t1 that are already

scheduled but not yet served (shown in green); and
4 new demand locations at timestamp t2 (shown in red).

Figure 3 also shows that drone at platform i1 is on the way
toward demand location j5, and drone at platform i2 is
returning to its platform after serving demand location j2.
Observe that, at the timestamp t2, the demand locations j1, j2
and j3 are served, j5 is being served, j4 is scheduled but not served yet,
and the new demand locations j6, j7 and j8 have requested aid
packages, i.e. Ft ¼ {j1, j2, j3, j5}, Kt2 ¼ fj4g and Jt2 ¼ fj6; j7; j8g.
At this time, the rescue team needs to update the schedule of
drones based on the current position of drones as well as the
unserved demand points and new demand locations. By
combining the unserved demand points from the previous
timestamp and new demand locations in one pool, i.e.
Jt2 ¼ Jt2[Kt2 , the scheduling model generates an updated
schedule of deliveries for each drone. Not that, at this point, the
scheduling model needs to take the current position of the
drones into account to generate the schedule for each drone. At
timestamp t2, the current distance of drone i1 and i2 from their
platforms are x1 and x2, respectively. We assume once a drone

Table 2 System status at timestamp t1

Drone Current distance to the platform Schedule

i1 0 j1, j5, j4
i2 0 j2, j3

Source: Table created by Zabih Ghelichi

Figure 3 Illustration of the system status at timestamp t2
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departs its platform to serve a specific demand point, it must
finish its trip, and the schedule for that trip cannot be changed.
Table 3 shows the current state of drones and the updated
schedule. The system repeats this process over the planning
horizon.

5. Simulation-based performance evaluation
model

In this section, we describe the details of our simulation system
for drone-based delivery of aid packages. In this system, we
integrate a scheduling model within a simulation model, which
interactively exchanges information such that the output of the
model is fed as an input to the othermodel and vice versa.

5.1 Simulationmodel
The proposed simulation model captures the variability in the
following sources:
� interval of updating the system after receiving new

information;
� demand parameters: the demand rate and the spatial

distribution;
� time parameters: travel time, setup and loading time,

payload drop-off time and fixing time; and
� drone energy level, and possibility of battery failure while

delivering.

Figure 4 schematically illustrates the simulation platform
procedure. At every update interval, the simulation model
evaluates the status of the system. In this stage, the simulation
model identifies the current configuration and requirements of
the system including the information about the new demands,
the status of the previously received demands, the status of
drones and drones’ current locations. It is worthy to note that
the update interval d is a random variable independent
from drones’ operation. Then, this information is fed into a
schedulingmodel, which generates a set of decisions corresponding
to the system status. The output of the scheduling model is an
ordered list of deliveries fed back into the simulation model. In this
way, the simulation and scheduling model continuously interact
with each other. Together, they obtain a set of decisions from the
scheduling model and the realizations of the uncertain parameters
to enable the simulationmodel to simulate the flights and deliveries
for thefleet of drones (yellowbox inFigure 4).
To cope with the drone battery failure and energy level

disruption, we discuss two alternative strategies for routing the
drones when they face a potential interruption. This part of the
simulation is devised to make real-time rerouting decisions in
response to uncertainties that may impact drones’ battery
performance and, in turn, drone coverage ranges.
The first strategy is “Avoid & Return” (A&R), which

enforces the system to avoid the risk of losing a drone – by
enforcing the drone to return to its platform if it cannot

complete a delivery. Figure 5 shows the schematic details of the
A&R strategy. In this scheme, a monitoring system constantly
observes the energy level and the status of each drone in the
fleet. Once a drone departs from its platform toward an
assigned demand location j, the monitoring system starts to
observe the drone’s status. If the drone faces an issue that
impacts its energy level, for example, a sudden drop in the
temperature or failure in the battery, then the system
reestimates the energy required to complete the trip. If the
energy is enough to complete the trip – we say a drone completes
its trip when it successfully performs the delivery and returns to
its corresponding platform – then the drone will continue its
trip, and the monitoring system will keep observing the drone
status until the delivery is completed. Once the delivery is
completed, the demand location j is added to the set of served
demands Ft and the drone returns to its platform. Otherwise,
the drone will be immediately forced to return to its platform,
and the delivery for demand location j will be scheduled in the
next timestamp, i.e. j is added to setKt.
The simulation model realizes the interruptions at an

assumed failure rate. A failure function can be designed to
capture these interruptions. For instance, we can simulate the
failure by introducing interruptions with a uniform distribution
within 2 to 5min interval and 10% chance of a major impact.
Given the flexibility of the proposed framework, one may
assume a different failure function that better fits their case.
The drone energy consumption rate is assumed to be a function
of drone mass, payload weight, estimated distance to fly and
drone’s specification (Figliozzi, 2017).
An alternative routing option is a “Push & Retrieve” (P&R)

strategy, where the system tends to accept some level of risk
when facing a potential failure in the drone battery. In contrast
to the A&R scenario, where a drone immediately returns to its
platformwhen the energy level is not enough to complete a trip,
the P&R strategy considers the possibility of making the
delivery even though the drone may not be able to return to its
platform. That is, the P&R strategy accepts the risk of losing the
drone at the expense of making the delivery.
Figure 6 schematically shows the P&R strategy and its

components. In this scheme, after facing an interruption, the
system estimates the required energy to complete the trip, i.e.
making delivery and return. If the remaining energy is enough
to complete the trip, the drone continues its trip and the
monitoring system keeps observing the flight. Otherwise, the
system evaluates the possibility of making the delivery by
estimating the energy required to reach the demand point. If
the energy is not enough to make the delivery, the drone
immediately returns to its platform, we add the demand
location j to the setKt for scheduling it later again. If the energy
is sufficient to make the delivery but not enough to make the
return flight, the drone will be allowed to continue its trip, make
the delivery, and stay at the demand location until it is
retrieved. This drone will not be available for future deliveries
until it is retrieved. In this strategy, we initialize a binary
variable “Return,” which equals to “True” if the drone returns
to its platform after having served the demand location, and
False if the drone stays at the demand location after having
served the demand and cannot return.
The system keeps monitoring the flight until the delivery is

completed. Upon the completion of the delivery, the demand

Table 3 System status at timestamp t2

Drone Current distance to the platform Schedule

i1 x1 j6, j7
i2 x2 j4, j8

Source: Table created by Zabih Ghelichi
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location j is added to the set of served demands Ft. At this point,
if Return is equal to “True,” the drone will return to its
platform; otherwise, the drone needs to stay at the demand
location j until it is retrieved. Technically, when a drone cannot
come back to its platform, we have lost that drone in the
system. In this situation, the “retrieval time” is the time
required to either pick up the failed drone, bring it back to the
platform and recharge/change its batteries or alternatively add a
new drone to the system. Let rij denote the retrieval time of
drone i from demand location j. We assume that the retrieval
time is a function of roundtrip from platform i to demand
location j and plus a preparation time.

5.2 Schedulingmodel
In this section, we describe an optimization model to solve the
drone scheduling problem. Given a set of prelocated drone
platforms and demand locations, the scheduling model generates
an optimum ordered list of deliveries for each drone in the fleet.
This model minimizes a measure of disutility/cost, which is
nondecreasing in terms of time. Examples of such disutility/costs
include delivery times, perishability, deadlines and waiting times.
We adopt the timeslot drone scheduling formulation developed by
Gentili et al. (2022) to optimally schedule drone trips.
Given a set I of m drone platforms and a set J of n demand

locations, the problem is to optimally schedule and sequence

Figure 4 Illustration of the proposed simulation model

Figure 5 Illustration of the Avoid & Return routing strategy
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individual trips for each drone in the fleet and concurrently
determine the assignment of deliveries to each drone over an h
hours operational period. The objective is to minimize the total
delivery and waiting time of the served demands plus a penalty
for unserved demand locations. By adopting timeslots of length
[, we denote by T ¼ f1;2; . . . ; 60he g the index set of all timeslots
over an h hour operational period. Let dij be the number of
timeslots that a drone requires to make a roundtrip between
platform i [ I to demand location j [ J. Assuming roundtrip is
limited by the drone’s flight range Tmax, we let the binary
parameter aij [{0,1} be equal to 1 if dij� Tmax; and 0 otherwise.
We also assume that a drone requires one timeslot between
every two consecutive trips for setup and charging operations.
Given that requests for demands may arrive at any point in time
and we schedule the deliveries at discrete intervals, we let wj be
the waiting time of a demand at location j, from the time that it
sends a request for service until the delivery is scheduled.
Binary decision variable xijt [{0,1} is equal to 1 if a drone from
platform i [ I returns to its corresponding platform at timeslot t
[ T after having served demand location j [ J. In this setting, a
demand at location j [ Jmay not receive a delivery due to either
being out of coverage range, i.e. 6 9 i 2 I : aij ¼ 1 or because it
is impossible to schedule a delivery within h hours. Either way,
we assign a penalty m as the disutility for the unserved demand.
An additional binary decision variable yj [{0,1} determines if a
demand location j [ J is served or not:

Min
X
i2I

X
j2J

X
t2T

xijt t � dij
2

1wj

� �
1

X
j2J

1� yjð Þm (1)

X
i2I

X
t2T

xijt � 1 8 j 2 J (2)

X
k2J:j 6¼k

Xt

t2T:t¼t�dij

xikt � M̂ 1� xijtð Þ 8i 2 I; j 2 J; t 2 T (3)

X
j2J

X
t2T :t�dij

xijt ¼ 0 8i 2 I (4)

yj �
X
i2I

X
t2T

xijtaij 8j 2 J (5)

xijt 2 f0;1g 8i 2 I; j 2 J (6)

yj 2 0;1f g 8j 2 J (7)

The objective function minimizes the total delivery and waiting
time plus a penalty associated with unserved demand locations.
We refer to this measure as “disutility.” Constraint (2) ensures
each demand point is served at most once. Constraint (3)
account for the scheduling and sequencing of drone trips.
Specifically, Constraint (3) state that while drone i is serving
demand location j, it cannot be any other trip until it completes
its delivery at timeslot t. That is, if drone i is scheduled to serve
demand location j at time t, it is booked from time t�dij to t. In

these constraints, M̂ ¼ dij
minifdikg represents a maximum number

of trips that a drone can make during the timespan of [t�dij., t].
Constraint (4) guarantees that the completion of the first
delivery of the day for each drone i cannot be less than its
roundtrip. Constraint (5) determines if the demand location j is
served. Finally, Constraints (6) and (7) specify integrality of the
decision variables xijt and yj.
Given that the simulation model responds in real time, it is

essential to develop and implement time-efficient solution
methods to solve the drone scheduling problem in real time. In

Figure 6 Illustration of the Push & Retrieve routing strategy
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this study, to solve the scheduling model in real time, we
implement three approximate solution algorithms and compare
their results. The first two solution algorithms are the greedy
algorithm (GA) and the iterated greedy algorithm (IGA) (see
Algorithms 1 and 2, respectively). Let’s denote byXi¼ {1,2,. . .j},
the set of scheduled demand locations assigned to drone i. GA
starts with a sorted list of demand locations in descending order
with respect to the sum of the total roundtrip time and waiting
time denoted by Pj. Then, for each demand location j in the
sorted list, GA selects the drone i� such that by assigning the
demand j to the end of the schedule of drone i�, the total disutility
isminimum:

Algorithm 1. Greedy Algorithm (GA)

1. Initiate the set of unscheduled demand locations .

2. Sort demand locations in descending order of = ∑ ∈ +

3. For each demand ∈ :

4. Find the drone ∗ ∈ to be assigned demand such that the total disutility is 

minimized.

5. Assign demand to drone ∗

6. Update the drone schedule: Ω ∗ ← Ω ∗ ∪ { }.

7. Remove demand from the set of unserved demands.

8. end

IGA extends the GA method by iterating over successive
destruction and construction phases. In IGA, lmax denotes the
maximum number of iterations and Cijk denotes the completion
time of serving demand location j if it is assigned to the kth position
of the schedule of drone i. Given an initial feasible solution, the
destruction phase randomly removes one demand, i.e. its task of
delivery, from the scheduled set of deliveries for each drone and
forms the set of unscheduled demands J’. Then, the construction
phase repairs and improves the solution by finding the position k�

on the schedule of drone i� such that Ci� jk� is minimum. IGA
repeats this process over lmax iterations. For more information
about IGA,we refer toGhelichi et al. (2022):

Algorithm 2. Iterated Greedy Algorithm (IGA)

1. Find a feasible schedule Ω for each drone ∈ (for example using GA)

2. while ≤ do
3. For each drone ∈ :

4. Randomly remove a demand from the schedule of drone :  Ω ← Ω − { }

5. Assign the removed demands to a set of unscheduled demands: ′ ← ′ ∪ { }

6. end
7. For each demand ∈ ′ : 

8. For each drone ∈ :

9. Find the best position on the schedule of drone to assign demand and update 

10. end
11. Find ∗, , ∗ ← , , { }

12. Insert delivery to ∗ position of the schedule of drone ∗

13. Update the drone schedule: Ω ∗ ← Ω ∗ ∪ { }.

14. Remove demand from the set of unserved demands.

15. end
16. ← + 1

17. end

The third algorithm is a myopic first in first out (FIFO)
approach that assigns the first available demand in the set of
unserved demands to the first available drone. FIFO starts with
a sorted list of demands in descending order of waiting times.
For demand locations with identical waiting time, the
algorithm sort them again in descending order of the sum of the
total roundtrip time, denoted by P 0

j. Then, for each demand in
the list of sorted demands, FIFO assigns the first demand in the
list to the first available drone in the fleet:

Algorithm 3. First-In-First-Out (FIFO)

1. Initiate the set of unscheduled demand locations .

2. Sort the demand locations in descending order of waiting time .

3. For demand locations with identical arrival time, sort them in descending order of 

′ = ∑ ∈

4. Assign the first demand location to the first available drone that can reach to the 

demand point.

5. Remove the demand location from the set of unscheduled deliveries: ← − { }.

6. Update the schedule of the drone: Ω ← Ω ∪ { }.

7. Return to step 4 until all the demands are assigned.

6. Experimental analyses

In this section, we discuss a series of analytical studies to shed
light on the potential benefits that the proposed simulation
performance evaluation tool can provide for decision-makers.
All the numerical studies were conducted on a macOS with 64
GB memory and a 3.3GHz Intel Core i5 processor. We have
organized our experimental analyses into two subsections. In
the first set of experiments (Subsection 6.1), we use our
simulation-based evaluation tool for a case study for Central
Florida. The goal of this set of experiments is to show how the
proposed system can be used for decision-making and decision-
support. The second set of experiments (Subsection 6.2)
presents a series of numerical studies for a set of randomly
generated instances. This section studies the trade-off among
multiple parameters in our computational experiments.
The setting of these parameters are as follows unless it is

mentioned otherwise:
� In all our experiments, we run a total of 50 replications of

the simulation model for each problem instance and
report on the average values.

� We assume the scheduling models in the simulation are
solved by using the IGA algorithm with 20 iterations.

� All drones are identical and can fly at the maximum speed of
60km/h with a maximum operational range of 80 km, i.e.,
Dmax ¼ 80 km. The amount of energy that a drone
consumes to make a roundtrip is calculated based on the
energy function developed by Figliozzi (2017). It is assumed
that the drone’s battery has a nominal operational range
of 80 km.

� We consider a failure rate of 10%. A failure rate of 10%
means every time that the drone faces a battery issue, there
is a 10% chance the battery has significant damage which
can interrupt its flight. Interruptions are simulated in time
intervals of every 5 to 10 min.
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In this section, we evaluate the performance of the systems by
reporting on different measures from the simulation model.
These measures include the total disutility [objective function
in Models (1)–(7)], waiting time, the percentage of served
demands and computational times of the scheduling model
(CPT), described as follows. The total disutility is the sum of
the total time from when the demand arrives until it is served
for served demand locations, plus a penalty of unserved
demand points. Waiting time is measured as the time from
when a demand arrives to the system until it is served. The
percentage of the served demands is calculated as the total
number of served demand at the end of the simulation divided
by the total number of received demands. For each measure in
each set of experiments, we report on the average CPU values
over all the replications of simulations.

6.1 Case study for Central Florida
One of the most important features of such a system is the
provision of an agile decision-making tool that can evaluate
alternative solutions and strategies and support the process of
decision-making. In this section, we perform analytical studies
on the results obtained from platform locationmodels to improve
the decisions through a simulation-optimization procedure
(Section 6.1.1), compare the performance of alternative platform
optimization location models, i.e. deterministic and stochastic
programming approaches (Section 6.1.2) and study the effect of
using different drone routing strategies, i.e. A&R and P&R
strategies (Section 6.1.3).
Following the experiments in Gentili et al. (2022), we

consider a case study for Central Florida with 25 candidate
drone platforms and 100 demand locations. Figure 7 shows the

geographical locations of the candidate drone platforms (red
icons) and demand locations (black icons).
In this set of experiments, we consider two alternative

platform location models: a deterministic model, proposed by
Gentili et al. (2022), and a stochastic model, proposed by
Ghelichi et al. (2022). For convenience, we refer to these two
models as the “deterministic” and “stochastic” models,
respectively. The deterministic model assumes all the demand
locations will have demand. On the other hand, the stochastic
model assumes that not all the demand locations will
necessarily have a demand; that is, it assumes that each demand
location has a specified demand uncertainty. The outcome of
these two models is a set of optimum locations for a given
number of drone platforms, i.e. m, to serve demand locations
in the disaster-affected areas. The stochastic model needs an
uncertainty parameter a [ [0,1], which we set to a value 0.9
in our computational experiments. Based on Ghelichi et al.
(2022), the stochastic model better shows its contribution over
the deterministic model when the confidence level is relatively
high, i.e. a ¼ 0.9. Therefore, we found this instance, a ¼ 0.9, a
more compelling case in our analyses when evaluating and
improving the performance of deterministic and stochastic
models under our simulation model. For more information
about the stochastic approach and its performance, refer to
Ghelichi et al. (2022).

6.1.1 Analytical studies of the simulation-optimization procedure
In this section, we report on the results of the set of experiments
we conducted designed to show the potential of the proposed
simulation-based performance evaluation tool for the
improvement of an initial decision. Our goal is to show how the
simulation model can be easily integrated into an optimization

Figure 7 Geographical locations of candidate drone platforms (red icon) and potential demand locations (black icon)
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procedure to offer a tool that can be used for improving initial
decisions. Specifically, we assumed that the demand points are
uniformly generated between 5 to 10 locations in 20 to 40-min
intervals within the disaster-affected area. We first select m
drone platform locations by using the platform location model
proposed by Gentili et al. (2022), a deterministic mathematical
formulation to determine the optimum locations of a
predefined number m of drone platforms in a disaster-affected
area.
Based on this model, we find the optimum solutions for

instances where m ¼ 8, 13 and 18 for the case study of Central
Florida. A solution to this problem is a list ofm locations where
the drone platforms must be located. We denote by l�m the set
of optimum platform locations when m drone platforms are
selected using this deterministic model. Successively, we
perform a set of analytical studies by evaluating the k-opt
neighbors to l �

m . A k-opt neighbor to the optimum solution
withm platforms is a list ofm locations that differs from l �

m in k
elements. In this study, we exhaustively explore the 1-opt
neighbors of the optimum solution of the platform location
models to find a better solution. The 1-opt neighborhood for
the instances of m ¼ 8, 13 and 18 include 136, 156 and 126
neighbors, respectively. By lim, we denote the i

th neighbor in the
1-opt neighborhood of l �

m . Once we have explored all the
neighbors to l�m, it is possible identify other solutions which can
outperform the current solution, if any exists.
In this process, we can evaluate the performance of the

system for each neighbor based on a set of measures, such as
total disutility value, total waiting time and percentage of served
demands, and check if there exists a neighbor (solution) that
performs better in terms of all the defined measures compared
with the current solution. We refer to the neighbors which
outperform the optimum solution simply as “better neighbors”.
The following algorithm shows the general simulation-
optimization procedure we applied for a general k-opt
neighborhood. Note that, in the results reported in this section,
we evaluated all the 1-opt neighbors and performed only one
repetition of the algorithm (Table 4).
Table 5 shows some results of the simulation model for the

optimal solutions l�m, from the deterministic model, and those
1-opt neighbors that outperforms this optimum solution for
different values of m. Table 5 clearly shows the significance of
using the proposed simulation model in the decision-making
process. This table shows that there are multiple solutions
which are better than the initial chosen solution obtained from

the deterministic model. For example, consider the scenario
when eight drone platforms were located. The deterministic
model suggested the solution l�8 [see Figure 8(a)]. However,
the simulation-optimization method could find a solution such
l148 that outperforms l�8 in terms of all measures, i.e. total
disutility, disutility per demand, waiting time per demand and
percentage of served. In this way, we can observe that a simple
1-opt neighborhood search can improve the obtained results in
all aspects. The reason for this observation lies in the fact that
the simulation model accounts for a higher level of uncertainty
compared to the deterministic platform location optimization
model. For instance, the simulation model accounts for the
waiting time of the demand from when it arrives to the system
until it is served along with the possible failure in completing
the deliveries.
Another interesting observation can be made by comparing

the difference between the optimum solution, i.e. l�m, and its
better neighbors, i.e. lim, with respect to different number of
available drone platforms (m). Table 5 shows that with a lower
number of available platforms, i.e. m ¼ 8, the difference
between the optimum solution and its better neighbors is more
significant. However, as the number of platforms increases, this
difference gets smaller, especially in terms of total disutility.
Onemajor reason for this observation is that when there are few
drone platforms available, one change in the location of a drone
platform can have a nonnegligible impact on the entire system
as it can significantly change the travel times and coverage of
demand location. On the other hand, when there is a larger
number of drone platforms available, the system is more robust
against uncertainties in demand realizations. By robustness, we
refer to amore solid and dependable system.
Figure 8(a) shows the locations of selected drone platforms

in the optimum solution, i.e. l�8, form ¼ 8, where the red icons
represent the selected platforms and black dots are the
nonselected locations. On the other hand, Figure 8(b) shows a
better neighbor, i.e. l148 , where the gray and blue icons are the
platforms, which are removed and added in the neighbors,
respectively. An interesting observation can bemade by looking
at the location of the new drone platforms in the better
neighbors, i.e. blue icons. Figure 8(b) shows that the new
platforms in the better neighbors are more prone to be placed
on the edge of the set of candidate drone platforms. In other
words, compared to the optimum solution in Figure 8(a), the
drone platforms in better neighbors’ solutions are more widely
distributed, i.e. less clustered, within the disaster-affected area.
The reason for this observation can be traced back to the
impact of the drone locations on the waiting time. Indeed, a
more distributed set of drone platforms tends to reduce the
waiting time for each demand location compared to the case
where all the drone platforms are clustered. Therefore, we can
conclude that in the case of adding a new platform to the
system, it would be more beneficial to add the drone platform
closer to the edges of the set of candidate drone platforms
rather than toward the middle of the location sites. In this way,
we can provide a better balance in the waiting time for different
areas of the disaster-affected area. Similar observations can be
done also for the cases whenm¼ 13 and 18.
Let’s now study the drone location problem using the

stochastic optimization approach proposed by Ghelichi et al.
(2022), where the set of demand points is unknown. A solution

Table 4

Simulation-optimization procedure

1. Solve the platform location problem by using an optimization model
2. Find the optimum set of platforms l �

m
3. Explore the k-opt neighborhood of l �

m
4. Run the proposed simulation model for l �

m and its neighbors lim
5. Evaluate the performance of each solution based on a set of measures
6. Identify neighbors ljm that outperforms l�m in terms of all measure

(if any exists)
7. l �

m ¼ ljm
8. Repeat Steps 2 to 6 until a stopping criterion is met

Source: Table created by Zabih Ghelichi
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to this model is also a set ofm drone platforms. To differentiate
the solutions of the stochastic model from the deterministic
one, we denote by g�m the set of optimum platform locations
when m drone platforms are selected using the stochastic
optimization model. Given the set of drone platforms obtained
from this model, Table 6 shows the results of the simulation
model for the optimum sets of drone platforms and their 1-opt
better neighbors for different values ofm.
Comparisons between Tables 5 and 6 show that the different

platform location optimization methods resulted in different
optimum solutions, i.e. l �

m and g�m. We can observe that although
the optimum solutions in the deterministic model, i.e. l �

m, are
better than their counterparts in the stochasticmodel, i.e. g �

m, the 1-
opt neighborhood search could find solutions in the neighborhood
of the optimum solution obtained with the stochastic model
can outperform the optimum solutions and their better neighbors
in the deterministic case. For example, g1028 has a waiting time
of 88.84 and outperforms any other solution obtained for m ¼ 8
in Table 5. Indeed, we can observe that evaluating the solutions
from an alternative approach can help us to improve the solutions.
In the next section, we have a more in-depth discussion on the
impact of using alternative platform location models for different
cases.
In conclusion, our findings in this section show how the

proposed simulation performance evaluation tool can be
effectively used to improve an initial selection of platform
locations obtained using platform location optimization models
and how the simulation tool can be of a great value to
improving the locational decisions. We observed that a simple
1-opt neighborhood search could significantly improve the
solutions obtained initially by the deterministic location
models. Therefore, we can expect that higher degrees of k-opt
neighborhood search methods or more sophisticated
algorithms can result in even better solutions.We also observed
that simulating the drone deliveries for the solutions obtained
from different platform location optimization models can result
in different solutions. In this regard, we can use the proposed
simulation tool to evaluate the solutions obtained from
different models and choose the best system correspondingly.
Wewill further discuss this point in the next section.

6.1.2 Computational studies to evaluate alternative solution strategies
This section aims to show the potential of the proposed
simulation system for evaluating and validating the solutions
obtained from different platform location optimization models.
For this, we conducted a series of simulations to study the
solutions obtained from the deterministic and stochastic
models for different cases.
Table 7 compares the average total disutility and waiting

time of the deterministic and stochastic models over all runs
when the number of platforms to be located is equal to 8, 13
and 18, and where a total number of approximately 50 and 80
demand locations are received within an 8-h planning horizon.
We assumed the intervals of updates are uniformly distributed
within the range of [20,40] min. The reason for considering a
different number of total demand locations is because not
necessarily all the identified demand locations will have
demand in a real-world scenario. Therefore, we wanted to
understand how these different models perform when a low
number of demands, i.e. 50, occur, and a high number of
demands, i.e. 80, occur. Another factor we considered is the
number of platforms which impact the performance of the
system.
Table 7 reveals interesting findings on the performances of

different models and their requirements. First, we can observe
that the only case where the solution from the stochastic model
outperforms the deterministic models is when there are a small
number of platforms to locate, i.e. m ¼ 8, and a small number
of potential demand locations. This observation is in line with
the finding of Ghelichi et al. (2022), where with more limited
resources and demands, a stochastic model can result in better
solutions. That is, a stochastic model for decision-making
under uncertainty can capture the effects of the stochasticity on
the set of demand locations and, in turn, lead to more robust
solutions. This is especially important when the resources,
e.g. the number of available platforms, are limited as the
importance of the decisions on where to locate drone platforms
becomemore relevant.
However, when the number of available platforms increases,

we can see that the deterministic model results in higher quality
solutions. This is mainly because a larger number of platforms
can provide better coverage and accelerate the delivery

Table 5 Results of the simulation of the 1-opt neighborhood search for the deterministic model

M Solution Total disutility Disutility per demand Waiting time per demand Percentage of served (%)

8 l�8 18,001.88 207.48 96.64 76.91
l148 16,045.79 196.02 93.27 78.59
l228 17,045.82 201.41 91.91 77.19
l248 17,598.81 202.27 93.62 77.36
l878 17,137.78 200.23 92.97 77.65

13 l�13 7,580.63 91.78 59.78 93.33
l5113 7,300.64 88.95 59.53 93.86
l11113 7,361.62 90.31 59.76 93.63

18 l�18 6,177.50 72.59 51.26 95.55
l2918 5,752.01 67.25 50.70 96.60
l6818 5,509.63 68.20 50.44 96.3
l10418 5,900 71.94 50.89 95.61

Source: Table created by Zabih Ghelichi
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operations; the deterministic model, where it is assumed that all
the demand locations require deliveries, covers all the
contingencies and, in turn, can produce better solutions.
Another interesting observation can be found through

looking at the results with respect to the number of demands.
We can observe that with higher demand 80, regardless of the
number of available drones, the deterministic model
outperforms the stochastic model. The reason for this
observation lies in the fact the deterministic model assumes all
the demand locations will require deliveries. Therefore, when

we expect a larger number of locations from the set of all
locations will require deliveries, the deterministic model tends
to better capture the requirements of the system when it is
compared to the stochastic model which ignores some
scenarios.

6.1.3 Computational studies to evaluate “avoid & return” vs “push
& retrieve” routing strategies
The proposed simulation system’s capability of studying
different routing strategies to prepare for battery-related

Figure 8 Platform locations in the optimum solution and its 1-opt neighbors for the deterministic model

Drone location and delivery scheduling

Zabih Ghelichi, Monica Gentili and Pitu Mirchandani

Journal of Humanitarian Logistics and Supply Chain Management



interruptions is studied in this section. In particular, we
compared the A&R versus P&R routing strategies when facing
an interruption in drones’ battery performance. In this set of
experiments, we only used the deterministic model. Update
intervals are assumed to be uniformly distributed between
[20,40], where 5 to 10 demand locations are uniformly
generated within each time interval. Table 8 reports on the total
disutility, waiting time per demand location and percentage of
the served demand for different combinations of the number of
located platforms (m), the coverage range of drone (Dmax), i.e.
the battery capacity of the drone, the routing strategies and the
drone retrieval times when the failure rate is 10%.
For P&R experiments, we set the retrieval time rij equal to the

roundtrip, i.e. dij, to retrieve the drone plus a lead time, i.e. 60,
30 and 0min. Nevertheless, one may consider the case if the
failed drone is not retrievable anymore due to serious damages
or lack of resources to retrieve the failed drone. In this case, an

alternative case is to add a new drone to the system and desert
the failed drone. However, this decision may depend on many
factors including the availability of new drones, their price as
well as the time required to get a new drone. To account for this
scenario, we consider a scenario where acquiring a new drone
takes 10min. In case of completely losing a drone and not being
able to add a new one, we can simply set rij (length of the
planning horizon) equal to a very large value, which implies that
the platform i is not operational anymore.
Table 8 compares the performance of the two routing

systems with long-range (Dmax ¼ 80km) and short-range
Dmax ¼ 30km) drones. As it was expected, when longer-range
drones are used, the system significantly performed better in
terms of total disutility and percentage of covered demand
points compared to the case with short-range drones – for both
the routing systems. However, it is surprising that the waiting
time for each demand point for long-range drones is
significantly higher than the short-range ones. The reason for
this observation can be traced back to the fact that with longer-
range drones, the system can cover more demands, and, in
turn, more tasks will wait for service for each drone. Therefore,
more demands can be served at the expense of a higher average
waiting time for the demands. The percentage of the served
demands in Table 8 also confirms this analysis. We can also
observe that the percentage of served demands for cases with
long-range drones is significantly higher than those for short-
range drones.
In addition, we can observe that the difference between the

solution of long-range and short-range systems, especially in
terms of waiting time per demand and percentage of served
demands, decreases as the number of platforms (m) increases.
To provide a clearer picture of this observation, Figure 9
compares the waiting time per demand between long-range and
short-range drones for different values of m and different
routing strategies. The x-axis shows the number of available
drone platforms (m) under each strategy and the y-axis shows

Table 6 Results of the simulation of the 1-opt neighborhood search for the stochastic model

m Solution Total disutility Disutility per demand Waiting time per demand Percentage of served

8 g �
8 18,526.85 213.66 98.01 75.9

g178 17,367.76 203.77 92.77 76.87
g238 17,066.72 200.54 94 77.80
g988 16,596.96 192.91 95.54 79.71
g1028 17,169.55 200.84 88.84 76.66
g1048 16,647.72 197.13 93.51 78.41

13 g �
13 8,171.06 95.92 61.74 92.87

g5013 7,803.24 94.42 60.35 92.90
g5613 7,863.05 92.29 59.45 93.16
g10513 7,581.25 90.64 60.36 93.69

18 g �
18 6,523.57 75.34 52.14 95.17

g2518 6,185.61 71.57 50.99 95.71
g2918 6,305.68 73.79 50.65 95.18
g3218 6,101.36 72.07 50.82 95.57
g5918 6,137.18 71.58 51.05 95.72
g11418 6,115.30 73.31 52.08 95.58
g11918 6,144.33 70.41 51.75 96.11

Source: Table created by Zabih Ghelichi

Table 7 Results of comparison between deterministic and stochastic
models

m Total demands Model Total disutility Total waiting time

8 50 Deterministic 7,247.76 4,156.55
Stochastic 6,644.31 3,946.71

80 Deterministic 18,001.88 8,353.87
Stochastic 18,302.71 8,558.71

13 50 Deterministic 3,685.16 2,945.96
Stochastic 3,806.56 2,923.35

80 Deterministic 7,580.64 4,911.83
Stochastic 8,070.49 5,190.49

18 50 Deterministic 3,051.41 2,725
Stochastic 3,257.50 2,825.50

80 Deterministic 6,177.50 4,353
Stochastic 6,437.24 4,526

Source: Table created by Zabih Ghelichi
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the corresponding waiting time per demand. This figure clearly
reveals that regardless of the strategy, the difference of the
waiting time per demand between long-range and short-range
systems constantly decreases with respect to increasing the
number of platforms. For example, for m ¼ 8 and A&R
strategy, the difference between the waiting time per demand of
Dmax ¼ 80km andDmax ¼ 30km is equal to 72, while the same
comparison for m ¼ 13 and m ¼ 18 shows the difference
between waiting times per demand are 28 and 16, respectively.
The reason for this observation is rooted in the fact that a higher
number of drone platforms can bringmore demand locations in
the coverage area of drones as more drone platforms can
compensate for the limited coverage range. Roughly speaking,
the higher degree of coverage provided by a large number of
drone platforms decreases the advantage of long-range drones
over short-range drones. Therefore, when there are a large
number of drone platforms, each demand point has a higher
chance to receive service from multiple drone platforms, which
can reduce its waiting time, though drones may have a short
coverage range.
More insights can be gained by comparing the results for the

A&R and P&R routing strategies. Table 8 shows that compared

to the A&R strategy, the relative performance of the P&R
strategy correlated to the drones’ coverage range (Dmax), the
number of available drones (m) and drone retrieval time (rij)
after losing a drone. When longer-range drones are used, i.e.
Dmax ¼ 80km, we can observe that the A&R strategy generally
performs better than the P&R scenarios. For any value of m in
Table 8, the total disutility, waiting time per demand and the
percentage of the served demands of the A&R strategy are
either approximately equal or better than those from the
instances of P&R strategy with different values of rij. The reason
for this observation lies in the fact that long-range drones can fly
further distances, and in case of losing a drone at far demand
location, it takes a very long time to retrieve that drone.
Furthermore, as the long-range drones can fly for a longer time,
drones are more prone to multiple disruptions in each trip
which also adds to the low performance of the P&R strategy.
On the other hand, when shorter-range drones (Dmax ¼ 30km)
are used, the P&R strategy, especially with lower values of
drone retrieval time (rij), outperforms the A&R strategy.
Of course, the lower value of drone retrieval time the better

the P&R strategy performs. We assumed the lowest value of
returning a drone to be equal to rij ¼ dij, which means

Table 8 Obtained results for A&R and P&R strategies with a failure rate of 10%

m
Coverage range

(Dmax) Strategy
Drone retrieval
time (rij) (min) Total disutility

Waiting time per
demand (min)

% of served
demand points

8 80 km A&R – 32,890 118 65
P&R 601 dij 35,788 124 61

301 dij 34,891 121 62
dij 32,660 116 65
10 28,428 108 71

30 km A&R – 36,754 46 43
P&R 601 dij 36,869 47 43

301 dij 35,972 44 44
dij 35,627 41 44
10 35,627 41 44

13 80 km A&R – 13,340 68 90
P&R 601 dij 16,353 75 86

301 dij 15,571 73 87
dij 13,340 68 90
10 10,994 62 93

30 km A&R – 28336 40 57
P&R 601 dij 28,773 39 56

301 dij 28,106 38 57
dij 28,543 37 56
10 27,439 37 58

18 80 km A&R – 8,970 54 95
P&R 601 dij 8,970 54 95

301 dij 8,855 53 95
dij 8,740 52 95
10 7,843 49 96

30 km A&R – 20,930 38 70
P&R 601 dij 20,930 38 70

301 dij 20,263 37 71
dij 20,148 36 71
10 20,033 35 71

Source: Table created by Zabih Ghelichi
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immediately after the drone i lands at the demand location j, we
start to retrieve the drone from that demand location. We also
studied the case when the failed drone is abandoned, and a new
drone is activated after 10min. As expected, this case
significantly outperforms the A&R strategy for all the scenarios.
However, this scenario depends highly on the availability of
new drones and the time required to get one.
A more interesting observation can be found by comparing

the results of A&R and P&R strategies with respect to a
different number of available drones m. Table 8 shows that
when the number of available platforms increases, the solutions
obtained for both strategies converge. For example, when m ¼
8 and Dmax ¼ 80km, the largest difference between the waiting
time per demand and the percentage of served demands of
A&R and risk-take strategies are 10% and 6%, respectively.
However, the same comparison for m ¼ 18 and Dmax ¼ 80km
shows that the largest difference between waiting time per
demand and the percentage of served demands of these two
strategies are 3% and 1%, respectively.
The reason for this observation lies in the fact that a higher

number of platforms bolsters the system’s robustness against
uncertainties induced by losing drones. That is, with more
drones in the system, when one drone is lost or requires
maintenance, there are many other drones that can take over
the deliveries and perform the task. On the other hand, in the
case of having few drones, losing a drone puts a larger burden
on the entire system and increases the chance of further
failures.

6.2 Numerical studies for tradeoffs among system
components and parameters
This section reports on a series of numerical experiments to
demonstrate the applicability of the simulation-based evaluation

system and studies the trade-off among the parameters and
algorithms in a drone-based delivery system in humanitarian
logistics. These include embedded scheduling algorithms,
updating interval after receiving new information, number of new
demand arrivals in each time interval and distribution of flight
and service times. A summary of the parameter setting is given in
Tables 9 and 10, where notation Uniform (a,b) represents a
uniform distribution with parameters a and b. Table 9 shows the
parameter setting for different levels (low,medium, high and very
high) of the number of demand points in each time interval and
the parameter settings for different levels (high, medium, low and
very low) of the update intervals. Table 10 summarizes the details
and settings of different experiments carried out in this section.
Specifically, in Table 10, for each experiment, the following is
reported: scheduling algorithm choice, demand level, update
interval level and demand to interval ratio, for example, low
demand per interval to high frequency can be calculated as ratio
of 12 [mean of uniform (9,15)] to 15 [mean of uniform (10,20)]
equals to 0.8. The notation IGA (X) refers to the use of the IGA
algorithm to solve the scheduling problem with X number of
iterations, e.g. IGA (20) means the IGA algorithm with 20
iterations was used. In these experiments, we assume a set of 10
drone platforms, i.e. m ¼ 10, are located on the Euclidean plane
area of size 100km � 100 km. For each experiment, a set of
demand points is randomly generated on the foregoing plan.

6.2.1 Algorithm selection for drone scheduling problem
In this section, we study the effect of different scheduling
algorithms, used to solve the drone scheduling optimization
problem, on the quality of the obtained solutions. Our goal was
to identify the best algorithm and strategy for solving the
scheduling problem. One of themost important components of
the proposed system is the scheduling component model. The
scheduling of deliveries for drone is a problem that must be

Figure 9 Comparison of waiting time per demand for the A&R and P&R strategies with respect to different coverage ranges with a failure rate of 10%

Drone location and delivery scheduling

Zabih Ghelichi, Monica Gentili and Pitu Mirchandani

Journal of Humanitarian Logistics and Supply Chain Management



solved in real time and as fast as possible. However, there must
be a balance between the agility in decision-making and the
quality of the obtained decisions. Therefore, this section seeks
to show the potential of the proposed simulation tool to identify
the most appropriate scheduling algorithm which can provide
good quality solutions in a reasonable amount of time.
We compare the performance of FIFO, GA and IGA

algorithms. For the IGA algorithm, we consider 5, 20, 50 and
100 iterations. This section compares the results of EXP 1 to 6.
Table 11 shows the average values of the disutility per demand,
waiting time per demand, served demand points and
computational time (CPT) of the scheduling algorithm for 50
runs of the simulation model for each algorithm. The results
show that FIFO, a myopic algorithm, has the worst performance
with the highest disutility and waiting time and the lowest
percentage of served demands. On the other hand, IGAwith 100

iterations outperforms the other algorithms as it results in the
lowest disutility and waiting time and the highest percentage of
served demands. Indeed, we can observe that as the scheduling
algorithm gets more sophisticated [going from FIFO to IGA
(100)], the quality of its solution also improves. However, there is
a trade-off between the solution quality and the CPT of the
algorithm.
To provide a clearer picture of this trade-off, we visualized

the boxplots and average value (golden line) of the disutility per
demand, percentage of served demands and CPT of the
algorithms in Figure 11(a) to 11(c), respectively. These figures
unveil interesting observations from the performance of
different algorithms. Figure 10(a) shows that the total disutility
significantly decreases from FIFO to IGA (20), and, after this
point, the contribution of the more sophisticated algorithm is
not significant. On the other hand, Figure 11(b) illustrates that

Table 9 Table of parameter levels

Demands per interval Level Low Medium High Very High
Value Uniform (9,15) Uniform (15,25) Uniform (25,45) –

Update frequency (update interval) Level High Freq. Medium freq. Low freq Very low freq.
Value (min) Uniform (10,20) Uniform (20,40) Uniform (40,60) Uniform (70,100)

Source: Table created by Zabih Ghelichi

Table 10 Settings and details of experiments

Experiments Scheduling algorithm Demand per interval Update frequency Demand to interval ratio

Exp 1 FIFO Medium Medium freq. 0.7
Exp 2 GA Medium Medium freq. 0.7
Exp 3 IGA (5) Medium Medium freq. 0.7
Exp 4 IGA (20) Medium Medium freq. 0.7
Exp 5 IGA (50) Medium Medium freq. 0.7
Exp 6 IGA (100) Medium Medium freq. 0.7
Exp 7 IGA (20) Low High freq. 0.8
Exp 8 IGA (20) Low Medium freq. 0.4
Exp 9 IGA (20) Low Low freq. 0.24
Exp 10 IGA (20) Low Very low freq. 0.14
Exp 11 IGA (20) Medium High freq. 1.25
Exp 12 IGA (20) Medium Low freq. 0.4
Exp 13 IGA (20) Medium Very low freq. 0.24
EXP 14 IGA (20) High High freq. 2.34
EXP 15 IGA (20) High Medium freq. 1.17
EXP 16 IGA (20) High Low freq. 0.7
EXP 17 IGA (20) High Very low freq. 0.4

Source: Table created by Zabih Ghelichi

Table 11 Results for different scheduling algorithms

Algorithm Disutility per demand Waiting time per demand Served demands % CPT of the algorithm (sec)

FIFO 573.82 204.41 23.04 0.00
GA 539.23 193.09 27.89 0.01
IGA (5) 451.61 158.70 38.98 0.29
IGA (20) 421.24 146.32 42.72 0.97
IGA (50) 419.16 146.30 43.15 2.56
IGA (100) 416.48 144.97 43.43 4.77

Source: Table created by Zabih Ghelichi
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the CPT of the algorithm does not significantly change up to
IGA (20), while it grows after that. Not only does the
computational time of algorithm increase as we move from
FIFO to IGA (100) but also the boxplots show that the variance
of the computational time also increases. Figure 10(c) shows
that the number of served demand locations significantly grows

from FIFO to IGA (20) and then hits a plateau, while CPT
slightly changes from FIFO to IGA (20) and then rapidly
increases.
In these figures, we can observe that the CPT of the

algorithm from IGA (20) to IGA (100) goes from almost 1 s to
about 5 s in average, i.e. five times higher. Although this extra
computation time contributes to better quality solutions, it
delays all the decisions to be made in real time, and in case of a
higher number of demands, it can be an ineffective approach
for a real-time decision-making tool. Another issue regarding
using a time-consuming algorithm arises from the fact that the
system is dynamic. That is, during the longer time that a time-
consuming algorithm, such as IGA (100), takes to solve the
scheduling problem, the system may have changed significantly,
e.g. new information is received. Thus, the solution and schedule
obtained based on the system condition considered by
the algorithm at the beginning of the run is not of good quality as
the system has changed and new decisions must be made.
Therefore, we can conclude that IGA (20) represents a good
balance between quality of solutions and computational time of
the algorithm.

6.2.2 Trade-off between update interval and demand
This section studies the impact of the length of update/time
interval (d), i.e. at the end of each time interval the system
updates, and the number of demands received within each
interval. Following our findings in the previous section, we use
IGA (20) to solve the schedulingmodels.
Table 12 summarizes the results for EXP 4 and EXP 7–17.

For the different combinations of update intervals of demand
per interval levels, this table shows the disutility per demand
location, percentage of served demands, percentage of
demands failed to serve, average waiting time per demand
location and CPT of the scheduling algorithm. This table
reveals interesting insights into the performance of the drone

Figure 10 Comparison of the result for different scheduling algorithms Figure 11 Comparison of percentage of served and failed to serve for
different levels of demand and update interval
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delivery system and the trade-off between update interval and
number of demands.
First, we can observe that for a given level of demands per

interval, increasing the length of update intervals improves all
the performance measures. This observation conforms to our
expectation as for an identical number of demands received
within each interval, a larger time interval gives enough time to
the system to perform the deliveries and, in turn, the systemwill
not face a large backlog. On the other hand, a shorter update
interval, i.e. higher frequency, will result inmore demands to be
delayed and scheduled within the next update interval, and as a
result, the disutility and system performance depreciate. That
is, for example, to process 20 demand locations, a 40-min
update interval will be enough to make all the deliveries and
complete the tasks, while a 20-min update interval will require
some demands to be delayed and scheduled within the next
update interval. We refer to these delayed demands from one
interval to another as “backlogs.” Also, note that with lower
intervals and an equal number of demands per interval, we will
receive a higher total number of demands within an identical
planning horizon, which itself adds to the effect of backlogs.
These backlogs are the main reason for increasing the

disutility value. To shed light on this, we show the trade-off
between the percentage of served/failed demands and different
levels of update interval in Figure 11. In this figure, we can
observe that increasing the interval significantly decreases the
number of demand locations that could not be scheduled.
Another evidence of this impact can be found by observing the
CPT of the scheduling algorithm for different levels of update
interval. Table 12 shows that the CPT of the scheduling model
are tightly correlated to the percentage of the failed demand
locations to serve. The backlogs accumulated within shorter
intervals greatly impact the computational time of the
scheduling model. That is, the accumulated backlog with lower

intervals requires the scheduling model to process a larger and
larger number of demand locations in each iteration of the
simulation model. Additionally, we need to consider the delays
added to the system due to frequent updates to all the decisions in
the system.
More interesting insights can be found by comparing the

results of the experiments with similar average demand to
update interval ratios. Table 13 compares the waiting time per
demand and CPT of scheduling problems for experiments with
similar ratios. When comparing the experiments with similar
demand to time interval ratio, we indeed study the frequency of
update interval for a constant demand rate. For example, EXP
8 and EXP 12 are comparable as they both have a ratio of 0.4.
That is, the experiment EXP 8 updates the system after every
30min after accumulating a total of 12 demands on average,
while EXP 12 waits for 50min to accumulate a higher number
of demands of 20 and then updates the system.
These comparisons are intended to provide deeper insights

into the trade-off between the number of accumulated demands
and the interval of updating the system. In other words, given a
demand rate, how long should the systemwait before updating its
decisions? As we update the system later, more demands are
accumulated and demands schedules are more delayed.
However, one major upside for a longer update time is the
possibility of accumulating more data and information and
consequently obtaining decisions and schedules which are more
effective and closer to the global optimum. Now, the question is:
given this trade-off, which policy is more preferred, update in
shorter intervals (higher frequency), with a smaller set of
information on demands or wait to accumulatemore information
and update the system in larger intervals? The idea that exploring
here contrasts with our previous discussion, where we compare
the results for experiments with an identical number of demands
per interval, e.g. EXP7 to 10.

Table 12 Obtained results for combinations of different levels of demand and update interval

Demand per levels Measures
Update frequency levels

High freq. Medium freq. Low freq. Very low freq.

Low Experiment EXP 7 EXP 8 EXP 9 EXP 10
Disutility per demand 446.21 330.38 216.36 137.75
Percentage of served 37.59 57.12 76.10 90.19
Percentage of failed to serve 62.41 42.88 23.90 9.81
Waiting time per demand 146.64 124.58 101.65 90.67
CPT of scheduling (sec) 1.58 0.22 0.04 0.01

Medium Experiment EXP 11 EXP 4 EXP 12 EXP 13
Disutility per demand 515.93 421.24 325.88 213.57
Percentage of served 26.02 42.72 59.73 79.37
Percentage of failed to serve 73.98 57.28 40.27 20.63
Waiting time per demand 160.85 146.32 132.59 114.54
CPT of scheduling (sec) 6.17 0.97 0.22 0.04

High Experiment EXP 14 EXP 15 EXP 16 EXP 17
Disutility per demand 574.57 502.83 436.26 342.65
Percentage of served 16.57 28.91 41.37 58.56
Percentage of failed to serve 83.43 71.09 58.63 41.44
Waiting time per demand 174.13 161.58 154.85 143.75
CPT of scheduling (sec) 21.56 4.69 1.38 0.30

Source: Table created by Zabih Ghelichi
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In this regard, Table 13 shows a higher frequency of updating
system, i.e. at shorter intervals, outperforms the case when
larger intervals are used. All measures for EXP 9, EXP 8, EXP
12 and EXP 4 dominate the corresponding values associated
with EXP 13, EXP 12, EXP 17 and EXP 16, respectively. The
reason for this can be traced back to the waiting time of the
demands from when they occur until they are scheduled and
served. Compared to the cases with lower update frequency
EXP 13, EXP 12, EXP 17 and EXP 16, the demands points are
processedmore frequently in EXP 9, EXP 8, EXP 12 and EXP 4;
thus, the waiting time for each demand point is less in these
scenarios. Note that the demands occur at different timestamps
during each interval. For instance, Table 13 shows that the waiting
time for each demand point in EXP 4 is 146, while EXP 16
requires each demand point to wait for 155 units of time. Another
major drawback to allowing larger intervals is the accumulation of
a high number of demands for scheduling, and, in turn, increasing
the computational time of the scheduling model. Table 13 shows
that for most of the cases the computational time of the system
with lower frequency (larger intervals) is higher than the high-
frequency case. With a growing number of demands, this impact
can also grow and render the system less effective. In such a
situation, it is better to either update more frequently or use other
scheduling algorithms that require smaller run times.
This set of analyses are intended to show the potentials of the

proposed simulation system for drone-based delivery of aid
items in humanitarian logistics. We observed that the system
has many parameters and components to study. This tool
allows us to determine the systems settings and parameters,
such as intervals of updating the system, selecting a suitable
algorithm to solve the scheduling problem in real time and
distribution of time-dependent parameters. Therefore, the
proposed simulation-based system can be used as a powerful
tool to identify the requirement of such a delivery system in a
short amount of time, perform analytical studies and predict
some future outcomes under different scenarios.

7. Summary and future directions

This paper presents a simulation-based performance evaluation
model for the designing a system for timely delivery of humanitarian
aid packages via a fleet of drones. The goal was to develop a
simulation system that can allow one to evaluate performance of

drone-based delivery systems. The applications of our system
included but are not limited to performing analytical studies,
supporting decision-making process, verifying the performance and
applicability of different solutions, evaluating alternative strategies
and predicting future contingencies and scenarios based on the
current situation.
A simulation model is designed to simulate the drone flight and

capture different sources of variations and uncertainties in a drone-
based delivery system, including interval of updating the system after
receiving new information, demand parameters: the demand rate
and the geographical locations, time parameters: travel time, setup
and loading time, payload drop-off time and fixing time, drone
energy level: battery failure while flying. One major source of
uncertainty in this system is the possibility of failures when a drone
is operating, e.g. failure in the drones’ battery or energy. We
proposed two alternative routing strategies to deal with such
failures. The first strategy requires a drone to immediately return
to its platform if the system notices that the drone cannot
successfully complete its trip by delivering the aid item and
returning to its platform.The second strategy requires the drone to
complete its delivery, even though it cannot make the return flight.
In the latter case, the drone stays at the demand location until it is
picked up or a newdrone is added to the system.
Given a set of located drone platforms, the simulation model

simulates the drone flights and delivery operations by realizing
the stochastic parameters. To obtain a feasible and valid
schedule for each drone, an optimization model is integrated
into the simulation system that schedules drone flights for a
given set of drone platforms and demand locations. The
proposed optimization model is a timeslot formulation that
essentially schedules and sequences individual trips for each
drone in the fleet and concurrently determines the assignment
of deliveries to each drone. Owing to the real-time context of
this problem and the computational complexity of the drone
scheduling model, we evaluated three heuristic algorithms,
namely, FIFO, GA and IGA to solve the optimization model in
real time.
To study different aspects of the proposed simulation model,

we conducted a series of experimental analyses. The first set of
experiments is designed for a case study of Central Florida. The
purpose of this set of analyses is to show the capability of the
proposed simulation-based performance evaluation model to
support the decision-making process by improving the

Table 13 Comparison between the experiments with similar demand to update interval ratio

Experiments Ratio Update frequency Waiting time per demand CPT of scheduling (sec)

EXP 9 0.24 Low freq. 101.65 0.04
EXP 13 Very low freq. 114.54 0.04
EXP 8 0.4 Medium freq. 124.58 0.22
EXP 12 Low freq. 132.59 0.22
EXP 12 0.4 Low freq. 132.59 0.22
EXP 17 Very low freq. 143.75 0.3
EXP 8 0.4 Medium freq. 124.58 0.22
EXP 17 Very low freq. 143.75 0.3
EXP 4 0.7 Medium freq. 146.32 0.97
EXP 16 Low freq. 154.85 1.38

Source: Table created by Zabih Ghelichi
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solutions obtained from platform location optimization models
and evaluating performance of the system under alternative
solutions, models and strategies. Our results and discussions
highlight the importance of developing a simulation tool for
supporting decision-making process, validation of system
configuration and evaluating different strategies. The second
set of experiments evaluates different system settings for
randomly generated instances. In this section, we study the
performance of multiple algorithms to solve the scheduling
model. The results indicate that the iterated GA with quite a
small number of iterations can find good quality solutions in a
reasonable amount of time. In addition, we analyzed the trade-
off between the update interval and the number of demands.
Our experiments show that a higher frequency for updating the
system (shorter update intervals) leads to a lower average
waiting time for demand points.
While delivery drones have the potential to revolutionize the

delivery of aid items in humanitarian logistics, they also come
with various challenges and limitations. Examples of these
limitations include payload capacity, limited range, battery
technology, reliability, weather and environmental conditions,
as well as authorization and regulations. To address these
challenges, we can propose several future research directions.
First, we should incorporate various parameters, strategies and
policies for a real-world drone-based delivery system in
humanitarian logistics into the simulation models. Examples of
such settings include, but are not limited to, considering
weather changes, no-fly zones, barrier avoidance and moving
demand points. Furthermore, we assumed that the drones are
dedicated to their platforms. However, the optimization and
simulation models can be adjusted to route and schedule
drones in a way that allows them to change their hosting
platforms. Finally, as demonstrated in this paper, the proposed
simulation tool can support the decision-making process by
enhancing the solutions obtained from the optimization models
through a simple 1-opt neighborhood search. In this regard,
more sophisticated algorithms and approaches can be
developed and integrated into the simulation model to further
improve the designed systems through optimizationmodels.
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