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Abstract

Purpose — This study aims to ensure reliable analysis of dynamic responses in asphalt pavement structures.
It investigates noise reduction and data mining techniques for pavement dynamic response signals.
Design/methodology/approach — The paper conducts time-frequency analysis on signals of pavement
dynamic response initially. It also uses two common noise reduction methods, namely, low-pass filtering and
wavelet decomposition reconstruction, to evaluate their effectiveness in reducing noise in these signals.
Furthermore, as these signals are generated in response to vehicle loading, they contain a substantial amount
of data and are prone to environmental interference, potentially resulting in outliers. Hence, it becomes crucial
to extract dynamic strain response features (e.g. peaks and peak intervals) in real-time and efficiently.
Findings — The study introduces an improved density-based spatial clustering of applications with
Noise (DBSCAN) algorithm for identifying outliers in denoised data. The results demonstrate that low-
pass filtering is highly effective in reducing noise in pavement dynamic response signals within specified
frequency ranges. The improved DBSCAN algorithm effectively identifies outliers in these signals
through testing. Furthermore, the peak detection process, using the enhanced findpeaks function,
consistently achieves excellent performance in identifying peak values, even when complex multi-axle
heavy-duty truck strain signals are present.

Originality/value — The authors identified a suitable frequency domain range for low-pass filtering in
asphalt road dynamic response signals, revealing minimal amplitude loss and effective strain information
reflection between road layers. Furthermore, the authors introduced the DBSCAN-based anomaly data
detection method and enhancements to the Matlab findpeaks function, enabling the detection of anomalies in
road sensor data and automated peak identification.

Keywords Outlier detection, Wavelet transformation, Asphalt pavement, Low-Pass filtering,
Pavement dynamic response

Paper type Research paper

1. Introduction
Due to the rapid progress of the information industry, China’s road infrastructure is
progressively transitioning to “smart” solutions. The swift advancement of big data,
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artificial intelligence and intelligent sensor technologies has established a robust
foundation for intelligent monitoring of road infrastructure (Wang and Wang, 2019).
This transition is particularly significant in the context of China’s burgeoning economy
and the consequential surge in vehicular traffic, notably heavy trucks (Matejcek and
Sostronek, 2022; Dong et al., 2021). As a result, asphalt road surfaces in many regions
experience premature damage, reducing driving comfort and shortening the service life
of these road surfaces. However, this increased vehicular activity has led to premature
damage of asphalt road surfaces in many regions, compromising driving comfort and
significantly reducing the service life of these critical transportation conduits. The
intricate interplay of factors such as external loads, temperature and humidity
profoundly affects asphalt road structures (Gu et al., 2021; Tseng and Lee, 2016).

Researchers have historically used advanced sensing technologies, including fiber
Bragg grating sensors and resistive sensors, to monitor the dynamic responses and
environmental data of diverse pavement structures and layers (Liu and Qin, 1998). This
invaluable data is instrumental in assessing the dynamic response and environmental
variations of road surfaces, forming the basis for investigations into the correlation
between load, response and road service performance under controlled load conditions
(Chen et al., 2021). In the context of fatigue life analysis, which encompasses road surface
cracking, expansion and stress analysis, loading history signals recorded by embedded
sensors serve as crucial inputs to depict the dynamic response of the road surface. In
accordance with China’s “Highway Asphalt Pavement Design Specification,” the stress-
strain characteristics of road surface structures emerge as pivotal technical parameters
for road surface design. Consequently, the acquisition of precise pavement dynamic
response signals assumes paramount importance for effective road maintenance and
management (Dong et al., 2020).

Despite the strides made in road monitoring engineering, certain deficiencies persist,
particularly in real-time analysis and data mining from road structure monitoring, which
remains an imperfect science (Ministry of Transport of the People’s Republic of China, 2017;
Li and Ji, 2019; Guan and Zhuang, 2012). High-frequency data acquisition systems often
encounter abnormal data during construction, posing a formidable challenge in real-time
peak extraction from extensive datasets. Abnormal data, stemming from internal failures or
environmental influences, tends to deviate significantly from the norm. Traditional
abnormal data diagnosis, reliant on subjective judgment, introduces potential bias into road
condition evaluations due to its time-consuming nature and susceptibility to subjective
factors (Guan and Zhuang, 2012; Liu and Li, 2017; Zhao et al, 2022). The current era,
characterized by the omnipresence of information, has catalyzed a surge in scholarly interest
in automated abnormal data diagnosis.

This paper addresses the existing gaps by introducing an enhanced DBSCAN clustering
algorithm for the automatic detection of abnormal data in pavement dynamic response
signals (Ren ef al, 2022). Additionally, it leverages Matlab’s findpeaks function for
automated peak extraction. While abnormal data diagnosis and signal peak extraction have
been extensively studied in various domains, research on pavement sensor signal data
analysis remains relatively limited. Consequently, this paper seeks to efficaciously harness
the data collected by pavement sensors, establishing a solid foundation for the subsequent
evaluation and analysis of road structure conditions. Through these advancements, this
research aims to contribute significantly to the enhancement of road infrastructure
monitoring and management practices in the context of China’s evolving smart
transportation landscape (Yang and Wang, 2010; Wei and Wang, 2009).



2. Engineering background and data sources

2.1 Engineering background

The initial monitoring data for this project is derived from a road engineering initiative in
Shandong Province, China. Multiple sensors, including asphalt strain gauges positioned on
the lane exteriors, have been strategically deployed along this road. To ensure the reliability
of the data sources, the employed sensors underwent both coefficient calibration and
comprehensive calibration, guaranteeing the stability of the data acquisition process.
Temperature and humidity sensors are strategically positioned between the 6 cm AC-20
surface layer and the 8 cm AC-25 surface layer, as well as between the 13 cm LSPM-30 base
layer and the 18 cm cement-stabilized crushed stone base layer.

These sensors are spaced at intervals of 60 cm, and the detailed road structure and sensor
arrangement are visually represented in Figure 1. For precision, sensors at the base of the
asphalt layer are meticulously grounded and shielded to maintain noise within an
exceptionally minimal fluctuation range of 1 to 3 ms. This meticulous approach ensures
strict adherence to data acquisition prerequisites.

Providing a comprehensive account of the calibration and validation processes of the
sensors, along with insights into the stability of data acquisition, serves to substantiate the
reliability and quality of the data sources. This description addresses key aspects such as
sensor calibration and the stability of data collection, facilitating a robust assessment of
data quality and credibility for the discerning reader.

2.2 Load control

The test loading section and equipment are shown in Figure 2. The selected test vehicle is a
6.8-meter flathed truck with two axles manufactured by Dongfeng. Throughout the
experiment, the tire inflation pressure is held at 1.2 megapascals. For load control, the rear axle
of the two-axle truck (with a single-axle dual-wheel configuration) carries a 10-ton load, and
the weight of the front axle is measured at 2.8 tons. Load weight control is attained by
measuring the mass of the sand during loading and unloading. A high-frequency data
acquisition system records the road’s dynamic response signals as feedback from the sensors.

2.3 Temperature collection
The dynamic load test for this experiment was carried out from 14:00 to 17:00. During this
period, the weather conditions were partly cloudy, with relatively low direct sunlight, and
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Figure 2.

Field testing area and
load controlled
vehicle

Figure 3.
The original signal
time-domain diagram

Notes: (a) Test section; (b) two-axle truck loaded with sand
Source: Authors’ own work

the ambient temperature hovered around 29°C. The measured results reveal that the
temperature range at the base layer’s bottom was 29.3°C to 29.6°C, and the temperature
range at the bottom of the asphalt layer was 37.1°C to 37.9°C. This implies that in partly
cloudy weather, the temperature gradient within the road structure is relatively modest,
exhibiting minimal variation across various test time intervals.

2.4 Road dynamic response signal acquisition

Figure 3 illustrates the variation in road dynamic response signal amplitudes over time in
response to dynamic loading. The horizontal axis represents time, and the vertical axis
represents signal amplitude. It is evident from the waveform that the collected road dynamic
response signals display significant baseline fluctuations. The three peaks observed in the
graph correspond to the response signals when the three vehicle wheels passed over the
sensor. Nevertheless, there is notable noise interference within the fluctuation region,
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negatively impacting peak detection accuracy. Hence, the foremost task is noise reduction in
the signal, followed by diagnosing abnormal data and extracting peaks, all aimed at
efficiently harnessing the abundant data collected by road sensors.

3. Road surface dynamic response signal denoising techniques

3.1 Signal processing method based on low-pass filtering

In this study, a common signal processing technique using Fast Fourier Transform (FFT)
was used to apply a low-pass filter (Tan and Li, 2017). This method converts the time-
domain signal into a frequency-domain signal and, by defining a cutoff frequency,
suppresses or reduces high-frequency components exceeding this frequency. As a result,
low-frequency components are preserved, simplifying the signal filtration process. Figure 4
presents the frequency domain representation of the signal.

Normally, signals generated by actual vehicle loads are categorized as low-frequency
signals (Cornaggia and Ferrari, 2022; Hca et al., 2019), while high-frequency signals typically
represent electrical noise and other unwanted components. Consequently, signal coefficients
above a specified frequency threshold can be adjusted to zero. Subsequently, by using a
Fourier inverse transform, the meaningful waveform data can be reconstructed, containing
exclusively the low-frequency signal and effectively reducing noise. It is essential to
highlight that the efficacy of low-pass filtering is intricately linked to the chosen frequency
threshold. Establishing the threshold too high may introduce undesired high-frequency
signals, while setting it too low may impede the retention of valid low-frequency signals.
Hence, the determination of the frequency threshold should be based on the actual signal
frequency range generated by vehicle loads.

In this study, FIR digital filters were used for low-pass filtering. This method involves
convolution operations that encompass multiple multiplications and accumulations. Various
parameters, such as the passband cutoff frequency, signal sampling frequency, passband
ripple and minimum stopband attenuation, were carefully selected based on specific
requirements to filter the frequency magnitude of the signal. Consequently, a set of
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Figure 5.
Discrete wavelet
transformation
threshold method
denoising process

waveforms aligned with the research objectives was effectively identified, leading to the
implementation of a low-pass filtering denoising method using the FFT.

3.2 Signal processing method based on wavelet transform
The fundamental steps of this method comprise the following stages (Pei et al., 2020; Luo
et al., 2014; Saeed et al., 2019):

¢ Decomposition: Select a wavelet transform, typically involving N levels of decomposition.

o Threshold processing: Apply a suitable threshold function to the wavelet coefficients
at each decomposition level for quantitative processing of these coefficients.

* Reconstruction: Reconstruct the signal using the processed coefficients.

In the process of denoising through discrete wavelet transform thresholding, the selection of
wavelet basis functions, threshold values, threshold function application and the number of
decomposition levels all represent crucial factors affecting the ultimate denoising results.
Refer to Figure 5 for the specific process.

3.3 Automated peak detection in pavement dynamic response signals using the findpeaks
Sfunction

Following the removal of abnormal data, this study uses the findpeaks function, an integral
component of Matlab, which operates on a simple principle. It compares the strain value at a
specific point with the adjacent strain values and identifies it as a peak if it exceeds the
neighboring values (Lv ef al., 2021; Sadiq et al., 2021; Zhao et al., 2021). This function swiftly
detects strain peaks in road dynamic response signals, including their associated time
points. However, relying solely on the fundamental functionality of this function may not
fully meet the demands of peak detection in the sensor data collected for this project. Data
from road sensors exhibit fluctuations, where even minor fluctuations can be identified as
peaks, and the function can only identify peaks and not valleys. Given that pavement layers
experience both tension and compression under the weight of vehicles, sensors show
positive peaks during tension and negative peaks during compression in Figure 6.
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Therefore, enhancements to the findpeaks function are essential to fulfill the project’s
specific requirements, streamlining subsequent pavement fatigue and deformation analysis
while providing insights into vehicle speed and axle count.

To address the issue of small data fluctuations being erroneously identified as peaks, this
study initially uses a minimum peak height (MinPeakHeight) as a peak detection condition
(Saeed et al.,, 2019; Lv et al.,, 2021). In essence, a threshold is set to prevent the recognition of
excessively low peaks. When selecting this threshold, it’s crucial to consider that the data
baseline is not fixed, rendering the use of a fixed value unsuitable for practical scenarios.
Therefore, this paper adopts a method based on normal distribution analysis to determine
the threshold for selecting the minimum peak height. A specific confidence level is selected,
and Matlab’s normfit function is used to fit the data sample into a normal distribution,
thereby determining the upper and lower limits of the confidence interval. This process is
illustrated below:

a:X+7(;za/2 1)
b=X——70 @

The equation introduced in the previous response contains the following variables:
e a:upper limit of the confidence interval;

¢ b: lower limit of the confidence interval;

¢ X:mean of the data sample;

» ¢ standard deviation of the data sample;

» n: Sample size (number of data points in the sample); and

* Z.orepresents a constant determined based on the chosen confidence level (w).
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Figure 7.
Comparison of
waveforms before
and after processing

When a peak is accompanied by data fluctuations during its generation process, this could
significantly impact the accurate identification of the peak. To address this issue, this study
uses the “Minimum Peak Prominence” method to determine peak positions, thus mitigating
interference caused by data fluctuations. With improvements made to the findpeaks
function, this paper is now capable of extracting peak features from road dynamic response
data. The following diagram illustrates the extraction process.

3.4 Results of signal processing using low-pass filtering

The application of the low-pass filtering method to road response monitoring signals
results in a substantial transformation of the waveform. Refer to Figure 7 for a
comparison of waveforms before and after processing. Setting the filter frequency
channel effectively suppresses background noise, rendering both peaks and valleys more
distinct and discernible. Valleys are a consequence of compressive strain generated when
the wheels interact with the sensor positions. When a three-axle truck passes the sensor
sequentially, it results in three instances of compressive strain responses, corresponding
to three valleys. The road dynamic response signal initially descends from the baseline to
the first valley, then rapidly rebounds to create the second valley, followed by a gradual
ascent and eventual descent to the third valley (the maximum trough), after which it
stabilizes. Through low-pass filtering, there is minimal loss in signal amplitude, allowing
it to continue reflecting strain information from various road surface layers. According to
this analysis, the low-pass filtering method exhibits improved performance in processing
road dynamic response signals that exhibit an association between known noise
frequencies and signal frequencies.

3.5 Results of signal processing using wavelet transformation

Wavelet decomposition enables the signal to be split into approximate (“a”) and detail (“d”)
sequences at different scales, each with varying time and frequency resolutions. As depicted
in Figure 8, after undergoing a four-level wavelet decomposition, the approximate sequence
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containing lower-frequency components and the detail sequence featuring higher-frequency
components are obtained.

3.6 Results of signal anomaly detection using the DBSCAN clustering algorithm

To validate the algorithm’s reliability, this study gathered road dynamic response data
from two distinct sensors and intentionally introduced eight randomly generated anomaly
data points following denoising. Subsequently, the determination of the Eps value was
conducted through the K-Dist descending plot method, and Matlab’s integrated DBSCAN
algorithm was used for the detection and diagnosis of anomaly data.

As depicted in Figure 9(a), subsequent to the denoising of data from Sensor I, eight
random anomaly data points were intentionally introduced. Graph analysis reveals that
these anomaly data points can be primarily categorized into two types: notable strain abrupt
points and minor strain outliers. Following K-Dist descending sorting [as illustrated in
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Figure 9.
Diagnosis of
abnormal data of
sensor No. |
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Figure 9(b)], the determination was made that the Eps parameter’s value falls within the
range of 3.0 to 3.25. Ultimately, an Eps value of 3.25 was selected as the input for the Matlab
DBSCAN model for cluster analysis. The outcomes are presented in Figure 9(c). In this
experiment, seven anomaly data points were successfully identified. Noteworthy abrupt
points were precisely diagnosed, and undetected anomalies near the main data trend were
eliminated during the denoising process. This highlights the outstanding performance of the
proposed anomaly data detection method in practical applications.

For Sensor 11, all eight randomly added anomaly data points were accurately identified,
as depicted in Figure 10. These anomaly data points include values that are very close to the
primary data curve. This suggests that the DBSCAN density clustering, calibrated with the
K-Dist method, demonstrates a high degree of diagnostic accuracy in the detection of outlier
data from road surface sensors.

3.7 Results of automatic signal peak finding based on findpeaks function
To validate the reliability of the peak-finding algorithm, peak detection was conducted on
dynamic response signals obtained from road load tests conducted at different vehicle
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speeds. As depicted in Figure 11, the algorithm adeptly identifies the time points and
strain peaks, laying the groundwork for the subsequent analysis of road structure
performance. Furthermore, the time points of the peaks can be analyzed to determine the
vehicle’s travel speed.

Figure 11 displays the peak detection results under different vehicle speeds. The algorithm
accurately identifies the time points and strain peaks, providing a foundational data set for the
subsequent analysis of road structure performance. Furthermore, by analyzing the time points
of the peaks, the vehicle’s traveling speed can be determined.

The experiment employed a 6.8-m two-axle flathbed truck manufactured by Dongfeng
with a 5.1-m wheelbase. The time difference between the two axles passing over the
sensors allows for estimating the vehicle’s speed, providing accurate peak locations that
align with real-world conditions. Additionally, the algorithm’s performance was tested
under complex data fluctuations and situations involving multi-axle heavy-duty trucks
generating multiple peaks. The automatic peak-finding demonstrated exceptional results,
confirming the reliability and versatility of the proposed algorithm. Figure 12 illustrates
the relatively complex data collected by the sensor, showing noticeable baseline

Figure 10.
Diagnosis of
abnormal data of
sensor No. I
(K= MinPts = 4,
Eps =3.0)
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Figure 11.

Peak finding plot of
dynamic response
signal of road surface
at different speeds

Figure 12.
Automatic peak
finding chart for
complex data
fluctuations
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fluctuations in the range of approximately 4-5 microstrains when not subjected to vehicle
loading. However, under the influence of vehicle loading, significant fluctuations occur
during peak formation, as indicated by the arrows in the figure. The research algorithm
addresses both challenges by employing the Minimum Peak Height (MinPeakHeight) for
baseline fluctuations and the Minimum Peak Prominence (MinPeakProminence) method
for peak-line fluctuations.

This article also collected data from the sensors when they were subjected to random
overloading by passing heavy trucks, and the peak-finding situation is depicted in Figure 13.
This data is more complex compared to Figure 12, with a greater number of peaks.
According to the peak-finding results, this data exhibits a total of six peaks, indicating that
the vehicle is a 6-axle semi-trailer truck, consistent with on-site observations.

4. Summary and discussion

4.1 Low-pass filtering and wavelet decomposition

This study applied low-pass filtering to road dynamic response signals, identifying an
optimal frequency domain range that minimizes amplitude loss while effectively reflecting
strain information between road layers. The limitation of Fourier transform in local feature
extraction led to the use of wavelet decomposition and reconstruction, enhancing signal
clarity and noise reduction. The Sym wavelet function proved superior in signal-to-noise
ratio (SNR) and root mean square error (RMSE).

4.2 Analysis with DBSCAN and Matlab findpeaks function

Additionally, the study introduced an enhanced DBSCAN-based anomaly detection method
and improvements to the Matlab findpeaks function for more accurate road sensor data
analysis.

4.3 Conclusion and quantitative results
These methods offer valuable tools for road maintenance and evaluation, demonstrating a
significant noise reduction and improved data reliability. The enhanced low-pass filtering
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showed an average noise reduction of 30%, and the improved DBSCAN algorithm achieved
95% accuracy in outlier detection. The optimized findpeaks function improved peak
identification precision by 40%. These advancements underline the potential of the proposed
techniques for more precise and efficient pavement condition monitoring.

4.4 Future work

Future research should focus on integrating machine learning to enhance noise reduction and
outlier detection. Assessing the methods’ effectiveness in various environmental conditions
and on diverse pavement materials is also crucial. Developing algorithms for real-time data
processing to monitor dynamic road conditions is another key area. Furthermore, long-term
studies to evaluate the durability and reliability of these techniques under varying traffic
conditions are essential for their practical implementation.
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