To read this content please select one of the options below:

Finite element analysis of magnetostrictive vibration energy harvester

Behrooz Rezaeealam (Department of Electrical Engineering, Lorestan University, Khorramabad, Iran)
336

Abstract

Purpose

The paper aims to analyze the behavior of the Galfenol rods under bending conditions that are employed in a vibration energy harvester by illustrating the spatial variations in stress and magnetic field.

Design/methodology/approach

This paper describes a 3‐D static finite element model of magnetostrictive materials, considering magnetic and elastic boundary value problems that are bidirectionally coupled through stress and field dependent variables. The finite element method is applied to a small vibration‐driven generator of magnetostrictive type employing Iron‐Gallium alloy (Galfenol).

Findings

The 3‐D static finite element modeling presented here highlights the spatial variations in magnetic field and relative permeability due to the corresponding stress distribution in the Galfenol rods subjected to transverse load. The numerical calculations show that about 1.1 T change in magnetic flux density is achieved which demonstrates the effectiveness of the inspected vibration‐driven generator in voltage generation and energy harvesting. The model predictions agree with the experimental results and are coherent with the magnetostriction phenomenon.

Originality/value

This paper fulfils the behavior analysis of Galfenol rods under transverse load that includes both compression and tension. The compressive and tensile stresses contributions to change in magnetic flux densities in the Galfenol rods were calculated by which the effectiveness of the inspected vibration‐driven generator in voltage generation and energy harvesting is demonstrated.

Keywords

Citation

Rezaeealam, B. (2012), "Finite element analysis of magnetostrictive vibration energy harvester", COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, Vol. 31 No. 6, pp. 1757-1773. https://doi.org/10.1108/03321641211267100

Publisher

:

Emerald Group Publishing Limited

Copyright © 2012, Emerald Group Publishing Limited

Related articles