To read this content please select one of the options below:

Development of an adaptive part feeder for handling sector-shaped parts

S. Udhayakumar (Department of Mechanical Engineering, PSG College of Technology, Coimbatore, India)
P.V. Mohanram (Department of Mechanical Engineering, PSG College of Technology, Coimbatore, India)
S. Yeshwanth (Department of Mechanical Engineering, Charles Darwin University, Darwin, Australia)
Manas Ranjan Biswal (Department of Design & Development of Automotive and Mechanical Engineering, Esslingen University of Applied Sciences – Graduate School, Esslingen, Germany)
A. Sabareeswaran (Department of Mechanical Engineering Services, Robert Bosch Engineering and Business Solutions Ltd, Coimbatore, India)

Assembly Automation

ISSN: 0144-5154

Article publication date: 29 July 2014

178

Abstract

Purpose

The purpose of this paper is to discuss a linear vibratory part feeder for handling brake liners, typical sector-shaped components. Part feeders have been used in the industries for a long time to present the parts in a desired orientation. Berretty et al. (1999) discussed a class of mechanical filters that are capable of removing polygonal sections from the track of the feeder which are referred to as traps. The traps eliminate or reorient the parts until they reach the final desired orientation. A part feeder was developed using traps, to reorient the sector-shaped part to desired orientation. The desired orientation was the most probable natural resting orientation. The trap was mounted on a linear vibratory feeder. The adaptive part feeder developed was capable of identifying the size of the incoming part and adjust the trap to accommodate that. This set-up eliminates the use of different traps for different-sized sector-shaped parts and wastage of productive time in changing the traps for different sizes. A regression model was developed to predict the conveying velocity of part on the feeder.

Design/methodology/approach

A part feeder was developed using traps, to reorient the sector-shaped part to desired orientation. Acrylic material was found to be suitable for trap compared to aluminium. The adaptive part feeder developed was capable of identifying the size of the incoming part using proximity sensors. Depending on the size of the incoming part, the track width was adjusted dynamically with the help of a stepper motor, rack and pinion arrangement. A regression model was developed to predict the conveying velocity.

Findings

Typical brake liners in the size range of 40-60 mm (radius) were considered for developing the adaptive part feeder. Based on performance studies, the acrylic trap was found better than aluminium traps. The appropriate frequency and amplitude of vibration for maximum conveying velocity of the adaptive part feeder were found experimentally. Regression equation was developed to determine the conveying velocity based on input frequency and amplitude. The regression results were found to be in close agreement with the experimental results.

Research limitations/implications

The developed part feeder is suitable for handling sector-shaped parts only.

Originality/value

This paper demonstrates an inexpensive adaptive part feeding device for handling sector-shaped parts which can be extended for handling other asymmetric parts also.

Keywords

Acknowledgements

The authors thank the Department of Science and Technology, Government of India, for funding the project and M/s Neu Fricmat Ltd. for their kind support.

Citation

Udhayakumar, S., Mohanram, P.V., Yeshwanth, S., Ranjan Biswal, M. and Sabareeswaran, A. (2014), "Development of an adaptive part feeder for handling sector-shaped parts", Assembly Automation, Vol. 34 No. 3, pp. 227-236. https://doi.org/10.1108/AA-04-2013-043

Publisher

:

Emerald Group Publishing Limited

Copyright © 2014, Emerald Group Publishing Limited

Related articles