To read this content please select one of the options below:

Effect of finite wall thickness on entropy generation and natural convection in a nanofluid-filled partially heated square cavity

Muhamad Safwan Ishak (Department of Engineering, College of Foundation and Diploma Studies, Universiti Tenaga Nasional, Kajang, Malaysia)
Ammar I. Alsabery (Department of Refrigeration and Air-conditioning Technical Engineering, College of Technical Engineering, The Islamic University, Najaf, Iraq and Centre for Modelling and Data Science, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Malaysia)
A. Chamkha (Department of Mechanical Engineering, Prince Sultan Endowment for Energy and the Environment, Prince Mohammad Bin Fahd University, Al-Khobar, Saudi Arabia)
Ishak Hashim (Centre for Modelling and Data Science, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Malaysia)

International Journal of Numerical Methods for Heat & Fluid Flow

ISSN: 0961-5539

Article publication date: 5 December 2019

Issue publication date: 2 March 2020

149

Abstract

Purpose

The purpose of this paper is to study the effects of finite wall thickness on the natural convection and entropy generation in a square cavity filled with Al2O3–water nanofluid in the presence of bottom heat source.

Design/methodology/approach

The moving isothermal heater was placed on the bottom solid wall. The vertical walls (left and right walls) were fully maintained at low temperatures. The rest of the bottom solid wall along with the top horizontal wall was kept adiabatic. The boundaries of the domain are assumed to be impermeable; the fluid within the cavity is a water-based nanofluid having Al2O3 nanoparticles. The Boussinesq approximation is applicable. The dimensionless governing equations subject to the selected boundary conditions are solved using the finite difference method. The current proposed numerical method is proven excellent through comparisons with the existing experimental and numerical published studies.

Findings

Numerical results were demonstrated graphically in several forms including streamlines, isotherms and local entropy generation, as well as the local and average Nusselt numbers. The results reveal that the thermal conductivity and thickness of the solid wall are important control parameters for optimization of heat transfer and Bejan number within the partially heated square cavity.

Originality/value

According to the past research studies mentioned above and to the best of the authors’ knowledge, the gap regarding the problem with entropy generation analysis and natural convection in partially heated square cavity has yet to be filled. Because of this, this study aims to investigate the entropy generation analysis as well as the natural convection in nanofluid-filled square cavity which was heated partially. A square cavity with an isothermal heater located on the bottom solid horizontal wall of the cavity and partly cold sidewalls are essential problems in thermal processing applications. Hence, the authors believe that this present work will be a valuable contribution in improving the thermal performance.

Keywords

Acknowledgements

The work was supported by the Universiti Kebangsaan Malaysia (UKM) research grant DIP-2017-010. We thank the respected reviewers for their constructive comments which clearly enhanced the quality of the manuscript.

Citation

Ishak, M.S., Alsabery, A.I., Chamkha, A. and Hashim, I. (2020), "Effect of finite wall thickness on entropy generation and natural convection in a nanofluid-filled partially heated square cavity", International Journal of Numerical Methods for Heat & Fluid Flow, Vol. 30 No. 3, pp. 1518-1546. https://doi.org/10.1108/HFF-06-2019-0505

Publisher

:

Emerald Publishing Limited

Copyright © 2019, Emerald Publishing Limited

Related articles