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Abstract
Purpose – To reduce the heat load of a gas turbine blade, its surface is covered with an outer layer of
ceramics with high thermal resistance. The purpose of this paper is the selection of ceramics with such a low
heat conduction coefficient and thickness, so that the permissible metal temperature is not exceeded on the
metal-ceramics interface due to the loss ofmechanical properties.
Design/methodology/approach – Therefore, for given temperature changes over time on the metal-
ceramics interface, temperature changes over time on the inner side of the blade and the assumed initial
temperature, the temperature change over time on the outer surface of the ceramics should be determined. The
problem presented in this way is a Cauchy type problem.When analyzing the problem, it is taken into account
that thermophysical properties of metal and ceramics may depend on temperature. Due to the thin layer of
ceramics in relation to the wall thickness, the problem is considered in the area in the flat layer. Thus, a one-
dimensional non-stationary heat flow is considered.
Findings – The range of stability of the Cauchy problem as a function of time step, thickness of ceramics
and thermophysical properties of metal and ceramics are examined. The numerical computations also
involved the influence of disturbances in the temperature on metal-ceramics interface on the solution to
the inverse problem.
Practical implications – The computational model can be used to analyze the heat flow in gas turbine
blades with thermal barrier.
Originality/value – A number of inverse problems of the type considered in the paper are presented in the
literature. Inverse problems, especially those Cauchy-type, are ill-conditioned numerically, which means that a
small change in the inputs may result in significant errors of the solution. In such a case, regularization of the
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inverse problem is needed. However, the Cauchy problem presented in the paper does not require
regularization.

Keywords Turbine blade, Cauchy type problem, Energy balance equation,
Inverse heat conduction problem, Two-layer area

Paper type Research paper

Nomenclature
ani;i�1, a

n
i;i , a

n
i;iþ1 = elements of matrix [an]; see equation (12), [–];

b n
i = elements of matrix [b n]; see equation (12), [–];

cm, cc = specific heat of metal and ceramics, respectively [J/kgK];
d = thickness of ceramics [mm];
g = thickness of metal layer [mm];
d = thickness of the wall (d = gþ d )[mm];
g = element of matrix [a]; see equation (17);
lm, l c = heat conduction coefficient of the metal and ceramics, respectively [W/mK];
Qi = temperature at the nth moment at point xi, [8C];
rm, r c = density of metal and ceramics, respectively [kg/m3];
r = spectra radius of the stability matrix; equation (26);
s 1 = maximal singular value of the stability matrix [-];
t = time variable [s];
T(x,t) = temperature [8C];
Dt = time step [s];
unk ;w

n
k = parameters defining ~wn

k ; see equation (20), [W/(m2K)];
~wn
k = element of matrix [a]; see equation (19), [W/(m2K)];

x = space variable [m];
Dx = space step [m]; and
qg = heat flux on the metal-ceramics interface.

1. Introduction
To reduce the thermal load of a blade in a gas turbine, the blade’s outer surface is coated
with a layer of a ceramics of a high thermal resistance. The crucial problem in this area is
such selection of the ceramics conductivity and thickness that the permissible temperature
of the metal on the metal-ceramics interface is not exceeded. Otherwise, the metal may lose
its mechanical properties. Hence, for the prescribed changes of temperature over time on the
metal-ceramics interface, given temperature on the inner side of the blade and the initial
temperature, the changes of temperature over time on the outer surface of the blade should
be determined. This is the inverse problem of the Cauchy type.

The bibliography of inverse issues is very rich and covers various types of problems.
The inverse problems are ill-posed, the solutions are not stable with respect to perturbation
on the input data and the results are frequently not unique. These may include problems of
identifying thermal conditions on a part of the boundary of the studied area, identifying the
shape of the area, thermophysical coefficients, sources andmore.

Many monographs and publications were devoted to the ill-posed and inverse problems
and methods of searching approximated and stable solutions (Alifanov, 1994; Bakushinskii
and Goncharsky, 1995; Engl et al., 2000; Gockenbach, 2016; Kurpisz and Nowak, 1995;
Ramm, 2004; Tikhonov and Arsenin, 1977) and other. Inverse problems of various types
have been considered in many publications. In particular, these papers involved the Cauchy
problem and the heat flow in a two-layer area. The method presented in Caillé et al. (2019)
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refers to the three-dimensional Helmholtz equation in which the solution of the Helmholtz
equation obtained from the solution of the Dirichlet problem with the values of the normal
derivative on a part of the boundaries is reproduced. The issue considered in Marin (2010)
concerns heat flow in a multilayer area with different thermophysical properties of the
partition material for a non-stationary one-dimensional case. The paper (Liu and Wei, 2011)
concerns a solution of a non-stationary linear direct problem in a multilayer area using the
Fourier transform. Each layer has different thermophysical properties. In Simões et al.
(2012), a solution to the non-stationary problem of one-dimensional heat conduction equation
in a two-layer area with different thermophysical properties of each (partition) materials was
considered. The problem is formulated as the Cauchy problem with zero initial temperature.
The inverse problem was solved in the frequency domain using the modified Tikhonov
regularization method. The solution of the Cauchy problem in multilayered domain was
implemented in the frequency domain by applying the Fourier transformation method (Xiong
and Hon, 2013). The authors stated that the modified Tikhonov regularization (implemented
in the frequency domain) is more efficient as the classical approach to this method. Yang et al.
(2019) used the modified Tikhonov regularization and the truncation method for solving the
Cauchy problem of the Helmholtz equation. A Cauchy problem on the semiline for a non-
linear diffusion equation is considered in De Lillo et al. (2006), with a boundary condition
corresponding to a prescribed thermal conductivity at the origin. The problem is mapped into
a moving boundary problem for the linear heat equation with a Robin-type boundary
condition. Such a problem is then reduced to a linear integral Volterra equation of II type,
which admits a unique solution. In Marin and Lesnic (2005), the application of the method of
fundamental solutions to the Cauchy problem associated with two-dimensional Helmholtz-
type equations is investigated. The resulting system of linear algebraic equations is ill-
conditioned and therefore its solution is regularized by using the first-order Tikhonov
functional, while the choice of the regularization parameter is based on the L-curve method. In
Haò (1995), a mathematical consideration concerning the Cauchy problem is presented. Non-
characteristic Cauchy problems for parabolic equations are frequently encountered in many
areas of the heat transfer. These problems are well-known to be severely ill-posed. In this
paper, a solvability criterion for a class of such problems is established.

In Liu andWei (2011), the authors transformed the original ill-posed problem into a well-
posed problem. They implemented method of lines to reconstruct a stable approximation of
the moving boundary. An analytical formulation of the temperature distribution in multi-
layered and multi-dimensional bodies was performed in Haji-Sheikh et al. (2003). The
authors performed a numerical simulation of steady-state heat conduction for two-layered
bodies in steady state – they indicate that their steady-state simulation has a high level of
accuracy if each layer is homogeneous or orthotropic.

Solutions to inverse problems were applied for analyzing the heat flow in gas-turbine blades
(Frąckowiak et al., 2017, 2019b) and other crucial thermal and flowing inverse problems (Grysa et al.,
2012; Joachimiak et al., 2019b; Joachimiak and Krzy�slak, 2019). The authors analyzed also many
other inverse problem available in the literature (Frąckowiak et al., 2019a; Grysa et al., 2014, 2018;
Joachimiak andCiałkowski, 2018;Maciag and JehadAl-Khatib, 2000;Maciąg andGrysa, 2016).

The presented paper addresses an inverse problem in a two-layered domain. A layer of the
ceramics is thin comparing to the thickness of metal layer. Also, the thickness of the two layers
together is relatively thin, so it is assumed that the problem is examined in the domain of a flat
layer. Therefore, a one-dimensional unsteady flow is considered. The problem is non-linear
because thermophysical properties of both layers depend on temperature. Previously, a one-
dimensional transient Cauchy problem with the thermophysical properties assumed to be
temperature independent has been solved in a two-layer domain (Ciałkowski et al., 2020).
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Discretization with respect to time and space is applied. The temperature is set on the metal-
ceramics interface. The purpose of the calculation is to determine the outer surface temperature.
Then calculations are carried out under the conditions of equal heat flux and temperature on the
interface. The system of equations was supplemented by the condition of energy conservation in
integral form in the area of ceramics to stabilize an unknown temperature on its outer surface. This
leads to the inverse Cauchy problem, but the condition of energy conservation is ensured the
stability of the inverse solution. Such problem is ill-posed in the Hadamard sense (Alifanov, 1994;
Hadamard, 1902; Tikhonov and Arsenin, 1977) and generally needs a regularization (Frąckowiak
and Ciałkowski, 2018; Joachimiak, 2020; Joachimiak et al., 2019a, 2016). However, the adopted
method of calculation makes the problem under consideration possible to be solved without
regularization. The range of stability of the Cauchy problem in the function of time step, of the
ceramics thickness and of thermophysical properties of themetal and the ceramics is investigated.

2. Basic equations
Figure 1 shows a two-layer computing domain. In domain h0, gi, the heat conducting
material is metal with thermophysical coefficients lm, rm, cm, and in the domain x e hg, gþ
d i, the conductive material is ceramics with thermophysical properties l c, r c, cc. In a
particular case, the entire area can be filled with metal.

In the two-layer area under consideration, the equations describing the heatflow are as follows:
� metal area (indexm refers to the metal)

rmcm
@Tm

@t
¼ @

@x
l m

@Tm

@l x

� �
; xeh0; gi; t > 0 (1)

� ceramics area (index c refers to the ceramics)

r ccc
@Tc

@t
¼ @

@x
l c

@Tc

@x

� �
; xehg; g þ d i; t > 0 (2)

with the following conditions
� initial condition, for t = 0

T x; 0ð Þ ¼ f xð Þ; xeh0; g þ d i (3)
� boundary condition on the surface x = 0

T 0; tð Þ ¼ T0 tð Þ (4)

Figure 1.
Computing domain
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� condition of equality of temperature and heat flux (energy) streams on both sides of
the metal-ceramics interface, x = g

Tm g; tð Þ ¼ Tc g; tð Þ ¼ Tg tð Þ (5)

qg ¼ lm
@Tm g; tð Þ

@x
¼ l c

@Tc g; tð Þ
@x

(6)

In fact, equation (2) with conditions (3), (5) and (6) is a classic Cauchy problem particularly sensitive
to data inaccuracies. In general, the Cauchy problem requires regularization, which results from
the instability of the solution. This instability is the result of numerical errors and hence failure to
fulfil energy conservation in the area of ceramics. Solutions of equations (1) and (2) with conditions
(3)–(6) will bemade for the temperature dependent thermophysical parameters.

The essence of the problem consists in finding how the temperature of the outer surface of the
ceramics changeswith time during heating up, provided the temperature Tg on themetal-ceramics
interface is known from measurement or by assumption. The reason for the latter is that Tg may
not exceed the level resulting in the loss of mechanical properties of the metal. Consequently, it
determines admissible value of the ceramics surface temperature Tf. The heat flux on the metal-
ceramics interface, qg (6), is unknown, and it determines a thermal transmission condition.

3. Linearization of the conduction equation
Equations (1) and (2) without reference to the type of thermally conductive material (indexes
are omitted) can be written as follows:

r Tð Þc Tð Þ @T
@t

¼ @

@x
l Tð Þ @T

@x

� �
(7)

The solution will be sought by the method of subsequent iterations in which the coefficients
r (T), c(T), l (T) will be determined for the temperature from the previous iteration step.
Therefore, equation (7) takes the form:

r Tnð Þc Tnð Þ @T
nþ1

@t
¼ @

@x
l Tnð Þ @T

nþ1

@x

� �
; n ¼ 1; 2; . . . (8)

and the iterative process ends when kTnþ1 –Tnk< « .
We will look for the solution of equation (8) in a discrete form on the grid (Figure 2).

This equation will be transformed to a discrete form. Discretization of the derivative with respect to
time (back differential quotient) and space (central differential quotient) leads to the equation:

r Tn
i

� �
c Tn

i

� �Tnþ1
i � Qi

Dt
¼

l
Tn
iþ1þTn

i
2

� �
� T

nþ1
iþ1 �Tnþ1

i
xiþ1�xi

� l
Tn
i þTn

i�1
2

� �
� T

nþ1
i �Tn�1

i�1
xi�xi�1

xiþ1þxi
2 � xiþxi�1

2

(9)

lim
n!1Tnþ1

i ¼ T xi; t � Dtð Þ ¼ Qi ; i ¼ 1; 2; . . . (10)

Substitute

Figure 2.
Discrete grid of a two-

layer area
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hi ¼ xiþ1 � xi ; hi1 ¼ xi � xi�1;

his ¼ xiþ1 þ xi
2

� xi þ xi�1

2
¼ xiþ1 � xi

2
þ xi � xi�1

2
¼ hi þ hi1

2

l i ¼ l
Tn
iþ1 þ Tn

i

2

� �
; l i1 ¼ l

Tn
i þ Tn

i�1

2

� �
; l is ¼ l i þ l i1

2
; r i ¼ r Tn

i

� �
; ci ¼ c Tn

i

� �
r ici
l isDt

Tnþ1
i � Qi

� �
¼ 1

his

l i

l ishi
Tnþ1
iþ1 � Tnþ1

i

� �
� l i1

l ishi1
Tnþ1
i � Tnþ1

i�1

� �� 	

Then the formula (9) takes the form:

l i1his
l ishi1

Tnþ1
i�1 � l ihis

l ishi
þ l i1his
l ishi1

þ r icih
2
is

l isDt

 !
Tnþ1
i þ l ihis

l ishi
Tnþ1
iþ1 ¼ � r icih

2
is

l isDt
Qi (11)

Accepting designation

ani;i�1 ¼
l i1his
l ishi1

; anii ¼
l ihis
l ishi

þ l i1his
l ishi1

þ r icih
2
is

l isDt
; ani;iþ1 ¼

l ihis
l ishi

; b n
i ¼

r icih
2
is

l isDt
(12)

equation (11) can be rewritten as follows:

ani;i�1T
nþ1
i�1 þ aniiT

nþ1
i þ ani;iþ1T

nþ1
iþ1 ¼ �b n

i Qi; i ¼ 1; 2; . . . (13)

or in the matrix form
an10a

n
11 an12
an21 an22 an23

an32 an33 an34

. .
. . .

. . .
.

anN�1;N�2 anN�1;N�1 anN�1;N

2
666666664

3
777777775

T0

T1

..

.

TN�1

TN

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;

¼

�b n
1

�b n
2

�b n
3

. .
.

�b n
N�1

2
666666664

3
777777775

Q1

Q2

..

.

QN�2

QN�1

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;

(14)

For the ceramics layer, the set of mesh internal points is as follows xNþ1, xNþ2, . . ., xNþM-1. The
conduction equation is met inside the test area. However, in view of the adopted discretization
technique, the point on the metal-ceramics interface is omitted. Thus, the matrix corresponding
to the equation of conduction in the two-layer area has the following form:

i ¼ N � 1

i ¼ N þ 1

an10 an11 an12 0 ..
.

0 0 0 0

0 . .
.

0 0 ..
.

0 metal 0 0

0 anN�1;N�2 a
n
N�1;N�1 a

n
N�1;N 0 0

. . . � � � � � � � � � � � � � � � � � � � � � � � �
0 0 0 anNþ1;N

..

.
anNþ1;Nþ1 anNþ1;Nþ2 0 0

0 ceramics 0 0 ..
.

0 0 0

0 0 0 0 ..
.

0 anNþM�1;NþM�2 a
n
NþM�1;NþM�1 a

n
NþM�1;NþM

2
666666666666666664

3
777777777777777775

Tnþ1
0

Tnþ1
1

..

.

..

.

..

.

..

.

Tnþ1
NþM

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>;

¼

¼

�b n
1

..

.
0 0 0

. .
. ..

.
0

0 0 �b n
N�1

..

.
0 0 0

� � � � � � � � � � � � � � � � � � � � �
0 0 0 ..

. �b n
Nþ1 0 0

0 0 0 ..
.

0 . .
.

0

0 0 0 ..
.

0 0 �b n
NþM

2
666666666666666664

3
777777777777777775

Q1

Q2

..

.

..

.

..

.

QNþM�2

QNþM�1

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

or in a compact form
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an½ � Tnþ1f g ¼ b n½ � Qf g; dim an½ � ¼ N � 1þM � 1ð Þ � N þMð Þ (15)

The overall dimension of the matrix [an] is (N þM – 2) � (N þM). The remaining
elements of the matrix will be supplemented with the boundary condition (4) and the
assumed temperature on the interface of the layers metal–ceramics, i.e. with the
condition (5).

In the interval xehg, g þ d i, the Cauchy problem for the equation (2) is solved.
Therefore, it is necessary to know the temperature and heat flux at x = g = xN. The
condition of the heat flux equality on both sides of the interface is expressed as
follows:

lm Tn
N

� � dTn
m

dx







x¼xN

¼ l c Tn
N

� � dTn
c

dx







x¼xN

where index m refers to the metal layer and index c to the ceramics layer. In the discrete
form, the condition reads as follows:

l m Tn
N

� �Tn
N � Tn

N�1

xN � xN�1
¼ l c Tn

N

� �Tn
Nþ1 � Tn

N

xNþ1 � xN
(16)

Hence, the heat fluxes compliance condition is finally expressed by the following
formula:

Tn
N�1 � 1þ gð ÞTn

N þ gTn
Nþ1 ¼ 0; g ¼ l c Tn

N

� �
l m Tn

N

� � � xN � xN�1

xNþ1 � xN
(17)

Due to the discrete form of the equation describing heat flow, it is necessary to
take into account the conditions on the boundaries of the ceramics layer, which will
allow to fulfil energy balance equation in the closed interval hg, g þ d i. This can
be obtained by requiring the integral equation to be satisfied. In addition, it imposes
a condition on the unknown temperature TNþM and makes the inverse problem
stable. Integrating equation (2) in the area of ceramics hg, g þ d i we get the
following:

ðgþd¼xNþM

g¼xN

r Tnð Þc Tnð Þ
Dt

Tnþ1 � Q
� �

dx ¼ l Tnð Þ dT
nþ1

dx
jx¼xNþM

� l Tnð Þ dT
nþ1

dx
jx¼xN

(18)

Numerical integration method with parameter H (for the trapezoidal methodH = 0.5) used
to calculate the integral to the left side of equation (18) (denoted I) leads to the following
results:
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I ffi
Xk¼NþM�1

k¼N

rðTn
k ÞcðTn

k Þ
Dt

ðTnþ1
k � QkÞHþ rðTn

kþ1ÞcðTn
kþ1Þ

Dt
ðTnþ1

kþ1 � Qkþ1Þð1�HÞ
� 	

ðxkþ1 � xkÞ ¼

¼ rðTn
NÞcðTn

N Þ
Dt

ðTnþ1
N � QN ÞHðxNþ1 � xN Þþ

þ
Xk¼NþM�1

k¼Nþ1

rðTn
k ÞcðTn

k Þ
Dt

ðTnþ1
k � QkÞHðxkþ1 � xkÞ þ

rðTn
k ÞcðTn

k Þ
Dt

ðTnþ1
k � QkÞð1�HÞðxk � xk�1Þ

� 	

þ rðTn
NþMÞcðTn

NþMÞ
Dt

ðTnþ1
NþM � QNþMÞð1�HÞðxNþM � xNþM�1Þ ¼

¼ rðTn
N ÞcðTn

N Þ
Dt

ðTnþ1
N � QN ÞHðxNþ1 � xN Þþ

þ
Xk¼NþM�1

k¼Nþ1

rðTn
k ÞcðTn

k Þ
Dt

ðTnþ1
k � QkÞ½Hðxkþ1 � xkÞ þ ð1�HÞðxk � xk�1Þ�

� 	
þ

þ rðTn
NþMÞcðTn

NþMÞ
Dt

ðTnþ1
NþM � QNþMÞð1�HÞðxNþM � xNþM�1Þ

Finally

I ¼
Xk¼NþM

k¼N

wn
kT

nþ1
k �

Xk¼NþM

k¼N

wn
kQk (19)

Here

wn
k ¼

r Tn
N

� �
c Tn

N

� �
Dt

H xNþ1 � xNð Þ for k ¼ N ;

r Tn
k

� �
c Tn

k

� �
Dt

H xkþ1 � xkð Þ þ 1�Hð Þ xk � xk�1ð Þ
h i

for k ¼ N þ 1; . . . ;N þM � 1;

r Tn
NþM

� �
c Tn

NþM

� �
Dt

1�Hð Þ xNþM � xNþM�1ð Þ for k ¼ N þM:

8>>>>>>><
>>>>>>>:

For constant values of density r , specific heat c and temperatures T and Q, the value of
integral I is as follow:

I ¼ rc
Dt

T � Qð Þd

The right side of equation (18) can be transformed as follows:

l Tnð Þ dT
nþ1

dx
jxNþM

� l Tnð Þ dT
nþ1

dx
jxN ffi l Tn

NþM

� �Tnþ1
NþM � Tnþ1

NþM�1

xNþM � xNþM�1
� l Tn

N

� �Tnþ1
Nþ1 � Tnþ1

N

xNþ1 � xN
¼

¼ Tnþ1
N � Tnþ1

Nþ1

� � l Tn
N

� �
xNþ1 � xN

� Tnþ1
NþM�1 � Tnþ1

NþM

� � l Tn
NþM

� �
xNþM � xNþM�1

¼
Xk¼NþM

k¼N

unkT
nþ1
k

where

unf g ¼ l Tn
N

� �
xNþ1 � xN

;
�l Tn

N

� �
xNþ1 � xN

; 0; . . . ; 0;
�l Tn

NþM

� �
xNþM � xNþM�1

;
l Tn

NþM

� �
xNþM � xNþM�1

( )T

Hence, the energy balance equation in the ceramics layer takes the following form:
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Xk¼NþM

k¼N

wn
kT

nþ1
k �

Xk¼NþM

k¼N

wn
kQk ¼

Xk¼NþM

k¼N

unkT
nþ1
k

or Xk¼NþM

k¼N

~wn
kT

nþ1
k ¼

Xk¼NþM

k¼N

wn
kQk (20)

with ~wn
k ¼ wn

k � unk .
Equations (17) and (20) complement the system of equations (15) written in a matrix form

in a two-layer area. So finally, the matrix of equations has the following form:

an10 an11 an12 0 0 ..
.

0 0 0 0

0 . .
.

0 ..
.

0

0 anN�1;N�2 anN�1;N�1 anN�1;N
..
.

0 0

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
0 0 0 0 anNþ1;N

..

.
anNþ1;Nþ1 anNþ1;Nþ2 0 0

0 0 0 0 0 ..
. . .

.
0 0 0

0 0 0 0 0 ..
.

0 anNþM�2 anNþM�1 anNþM

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
0 0 0 0 1� g ..

.
g 0 0 0

0 0 0 0 ~wn
N

..

.
~wn
Nþ1 0 0 ~wn

NþM

2
6666666666666666666666666664

3
7777777777777777777777777775

Tnþ1
0

Tnþ1
1

..

.

..

.

..

.

..

.

..

.

..

.

..

.

Tnþ1
NþM

8>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>;

¼

¼

�b n
1 0 0 ..

.
0 ..

.
0 0 0 0

0 . .
.

0 ..
.

0 ..
.

0 0 0 0

0 0 �b n
N�1

..

.
0 ..

.
0 0 0 0

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
0 0 0 ..

.
0 ..

. �b n
Nþ1 0 0 0

0 0 0 ..
.

0 ..
.

0 . .
.

0 0

0 0 0 ..
.

0 ..
.

0 0 0 0

0 ..
.

0 ..
. �b n

NþM�1 0

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
0 0 ..

.
wn
N

..

.
wn
Nþ1 0 0 wn

NþM

2
666666666666666666666666664

3
777777777777777777777777775

Q1

Q2

..

.

QN�1

QN

QNþ1

..

.

..

.

..

.

QNþM

8>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>;

(21)

or

a½ � Tf g ¼ b½ � Qf g (22)
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dim a½ � ¼ N þMð Þ � N þMð Þ ; dim b½ � ¼ N þMð Þ � N þMð Þ

Because the temperature T = T0 is set at x0 = 0 and the temperature T = Tg is at xN = g, so
the equation (21) can be written as follows:

TN ¼ Tg

an11 an12 0 ..
.

0 ..
.

0 0 0

0 0 ..
.

0 ..
.

0 0 0

0 0 ..
.

0 ..
.

0 0 0

� � � � � � � � � � � � � � � � � � � � � � � � � � �
0 0 0 ..

.
1 ..

.
0 0 0

� � � � � � � � � � � � � � � � � � � � � � � � � � �
0 0 0 ..

.
0 ..

.
0 0 0

� � � � � � � � � � � � � � � � � � � � � � � � � � �
0 0 1 ..

.
0 ..

.
g 0 0

0 0 0 ..
.

0 ..
.

~wn
Nþ1 � � � ~wn

NþM

2
66666666666666666666666664

3
77777777777777777777777775

Tnþ1
1

Tnþ1
2

..

.

..

.

Tnþ1
N

..

.

..

.

..

.

..

.

Tnþ1
NþM

2
66666666666666666666666664

3
77777777777777777777777775

¼

�an10
0

..

.

..

.

..

.

..

.

..

.

..

.

..

.

0

2
6666666666666666666666664

3
7777777777777777777777775

T0 þ

�an1N
�an2N

..

.

..

.

..

.

..

.

..

.

..

.

..

.

�anNþM ;N

2
66666666666666666666666664

3
77777777777777777777777775

Tg ¼

¼

�b n
1 0 0 ..

.
0 ..

.
0

0 . .
.

0 ..
.

0 ..
.

0 0

0 0 �b n
N�1

..

.
0 ..

.
0

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
0 0 0 ..

.
0 ..

.
0 0 0 0

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
0 0 0 ..

.
0 ..

. �b n
Nþ1 0 0

0 0 0 ..
.

0 ..
.

0 . .
.

0 0

0 0 0 ..
.

0 ..
.

0 0 �b n
NþM�1 0

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
0 0 0 ..

.
0 ..

.
0 0 0 0

0 0 0 ..
.

wn
N

..

.
wn
Nþ1 0 0 wn

NþM
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666666666666666666666666666666664
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Q1

Q2

..

.

..
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QNþ1

..

.

..

.

..

.

QNþM

8>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>;

(23)

or in a simpler form:

annew
� �

Tnþ1f g ¼ bn0
 �

T0 þ bng
 �

Tg þ b n
new

� �
Qf g (24)

dim annew
� � ¼ dim b n

new

� �
; dim Tnþ1f g ¼ dim bn0

 � ¼ dim bng
 � ¼ N þM :

Hence, the solution is as follows:
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Tnþ1f g ¼ annew
� ��1

b n
new

� �
Qf g þ bn0

 �
T0 þ bng

 �
Tg

n o
(25)

For n!1, the stability matrix has the following form:

astabil½ � ¼ lim
n!1 annew

� ��1
b n

new

� �
(26)

For the non-linear problem, the stability matrix [astabil] has a different form for each
subsequent time step.

5. Numerical calculations
Numerical calculations were carried out for the following metal and ceramics (zirconium oxide)
parameters. For steel, constant values of the heat conduction coefficient l = 30 [W/mK], density r
= 7850 [kg/m3] and specific heat c = 450 [J/kgK] were adopted, while for ceramics variable
parametersl , r and c accepted. Their variabilitywith temperature is shown in Figures 3, 4 and 5.

A Cauchy problem is numerically ill-conditioned, which means that a small change in the
inputs leads to a large change in the final results. Therefore, the response of ceramics
surface temperature Tf to disturbances of temperature Tg on the metal-ceramics interface
has been analyzed. A sample distribution of temperature Tg, disturbed and undisturbed, is
shown in Figure 6. The errors reached6 1% of undisturbed values. The temperature Tg

impacts the heat flux on the metal-ceramics interface qg, which is presented in Figure 7.

Figure 3.
Heat conduction
coefficient l c for

zirkonium oxyde as a
function of

temperature

y = -2E-10x3 + 5E-07x2 + 7E-05x + 1.9365
R² = 1

1.8

2.0
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2.4

2.6

0 500 1,000 1,500

λ c
]

K
m/

W[

T [ᵒC]

λc = –2·10-10T3 +5·10-7T2+7·10-5T+1.9365

Figure 4.
Specific heat cc for

zirkonium oxyde as a
function of

temperature
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Propagation of errors in the considered Cauchy problem has been analyzed taking into
account the influence of disturbances to thermophysical properties (l , r , c) of the material
on temperature Tf. Figures 8 and 9 show disturbed heat conduction coefficient of the metal
(lm) and ceramics (l )c.

The iterative process ends when kTnþ1 – Tnk < « , « = 0.0000001. This accuracy of
calculations is achieved after five iterations. In a thin layer of ceramics, the temperature distribution
is practically linear, so three internal nodes in this area are sufficient. In calculations, their number
for a ceramics layer equal to 0.5mm is 5. For the metal layer, the number of internal nodes is 16.
Themesh, however, is constructed so that the lengths of the intervals adjacent to the interface x = g
are the same.

Condition number of matrix [anew] (equation (24) for the ceramics layer thickness d of
0.1� 0.3mm decreases with time (Figure 10), and its values are not significantly affected by
disturbances to temperature Tg.

For the assumed values of thermophysical coefficients and given conditions at x = 0,
x = g (metal-ceramics interface), the spectral radius of the stability matrix (26) was analyzed
for a constant time step Dt = 1 [s] and different thickness of the ceramics layer. Due to the
non-linearity of thermophysical parameters, the spectral radius of the stability matrix has a
different value for the next time. The changes over time in the spectral radius of the stability
matrix are shown in Figure 11. The values of the spectral radius obtained for disturbed and

Figure 5.
Density r c for
zirkonium oxyde as a
function of
temperature

Figure 6.
A sample distribution
of temperature Tg on
the metal-ceramics
interface: undisturbed
(solid line) and with
temperature
disturbances Tg61%
(plus signs)
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undisturbed values of temperature Tg do not considerably differ from one another
(Figure 11), which implies stability of the achieved solution. The magnitudes of the
condition number and spectral radius (as shown in Figure 10 and Figure 11, respectively)
indicate regularization properties of the applied equation (18).

For the temperature T = T0 þ Tg (1 – e0.01t) set at point x =g (bottom line in Figure 12), the
temperature changes over time on the outer surface of the ceramics are presented as a function of
the ceramics layer thickness for a metal layer thickness dm = g = 5mm. For ceramics thickness
d = 0.5mm, the temperature difference between the outer surface of the ceramics and the ceramics-
metal interface is about 900 [oC] (see Figure 12, bottom and top line). Results are pesented for
disturbed and undisturbed values of temperatureTg on themetal-ceramics interface.

The temperature distribution in the ceramics layer after the first second and after 200 s is
linear, as shown in Figure 13.

A very important issue is the monitoring of the heat load in a homogeneous material (for
example in the body of a steam or gas turbine) based on the temperature measurement at the
internal point. The question then arises as to how far (how deep) the thermocouple can be
placed so that the solution of the inverse problem is stable. This issue was solved for
G20Mo5 steel characterized by variable thermophysical parameters as functions of
temperature, which is shown in Figures 14, 15 and 16.

Figure 7.
A sample distribution
of the heat flux on the

metal-ceramics
interface: undisturbed
(solid line) and with

disturbances to
temperature Tg61%
and heat conduction
coefficient62.5%

(plus signs)

Figure 8.
Heat conduction

coefficient lm for the
metal as a function of

temperature:
undisturbed (solid

line) and with
disturbances62.5%

(diamonds)
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Figure 17 shows a graph of the matrix spectral radius for various thicknesses of the flat
layer. The spectral radius r =max ((l ([astabil]

T [astabil]))
0.5) = k astabil k2 = s 1 of the stability

matrix, (26), is smaller than 1.0 up to a depth of approximately 4mm from the outer surface.
Figure 18 shows the spectral radius charts depending on the thickness of the flat layer
related to the depth of insertion of the thermocouple (relative position is equal d /(gþ d )).

Placing thermocouples at points where the spectral radius reaches the minimum is of
great practical importance, as the smaller the value of the spectral radius, the greater the
suppression of temperature measurement errors.

The solution of the Cauchy problem for a double-layer plate is a stable one, which was
obtained by introducing the integral form of the energy balance equation in the area of
ceramics. Therefore, this issue does not require regularization.

Figure 9.
Heat conduction
coefficient l c for the
ceramics as a
function of
temperature:
undisturbed (solid
line) and with
disturbances62.5%
(diamonds)

Figure 10.
Condition number of
matrix [anew]
(equation 24) for
undisturbed
temperature Tg (solid
line) and disturbed
temperature Tg

(markers)
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6. Conclusions
The non-linear inverse Cauchy problem solved in the present paper does not require regularization.
This is due to the need to fulfil the energy balance equation (18) in the ceramics layer. The paper
shows the influence of the depending on temperature heat conduction coefficient of the ceramics
layer on the temperature on its outer surface. The lower the value of the heat transfer coefficient of
the ceramics layer, the higher the temperature on the outer surface of the layer with the same
temperature on themetal-ceramics interface. Therefore, it is important to choose the thickness of the
ceramics layer d in such a way that the temperature on the metal-ceramics interface does not
reduce themechanical properties of themetal.

Figure 11.
Spectral radius r of
the stability matrix

[astabil] (formula (26))
for different ceramics

thickness d for
undisturbed (solid
line) and disturbed

(markers)
measurement of
temperature Tg

Figure 12.
Influence of ceramics

thickness on
temperature on the

outer ceramics
surface for

undisturbed (solid
line) and disturbed

(markers)
measurement of
temperature Tg
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Due to the non-linearity of thermophysical parameters, the spectral radius r of the stability matrix,
(26), is a function of time step. The thickness of the ceramics layer strongly affects the temperature
on the metal-ceramics interface. The thicker the ceramics layer, the greater the difference between
the temperature of the metal-ceramics interface and the outer surface of the ceramics. As the
monitoring of heat load in a homogeneous material based on the measurement of temperature at
the internal point is of great importance for the stable operation of the turbine, the answer to the
question of how far (how deep) the thermocouple can be placed, so that the solution to the inverse
problem is stable, is very important. This was tested for G20Mo5 steel characterized by variable

Figure 13.
Tempreture
distribution in the
ceramics thin layer

Figure 14.
Heat conduction
coefficient lm for
steel G20Mo5 as a
function of
temperature

Figure 15.
Specific heat cm for
steel G20Mo5 as a
function of
temperature
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thermophysical parameters as a function of temperature. The spectral radius of the stability matrix
turned out to be less than 1.0 to a depth of about 4mm from the outer surface. Placing
thermocouples at points where the spectral radius reaches the minimum is of great practical
importance, as the smaller the value of the spectral radius, the greater the suppression of
temperaturemeasurement errors.

The results presented in the paper are important in the selection of the thickness of the ceramics
layer, which guarantees a decrease in temperature on themetal-ceramics interface to a safe value for

Figure 16.
Density rm for steel

G20Mo5 as a function
of temperature

Figure 17.
Stability intervalls for

the stability matrix
(26) for homogenous

material (steel
G20Mo5 in the first
and second layer)

Figure 18.
Stability intervalls for

the stability matrix
(26) for homogenous

material (steel
G20Mo5 in the first

and second layer) and
relative position of
the thermocouple

from the boundary
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maintaining themechanical properties of the metal. The next result of the analysis is the location of
the thermocouple inside the area with homogeneous thermophysical properties to monitor thermal
loads. This is of particular importance, among others, when starting up a thermal turbine, so as not
to exceed the allowable thermal stresses.
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