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Abstract

Purpose — This study aims to analyze how different room-committing practices affect the occupancy and
profitability of hotels and it critically reviews the role of minimum-length-of-stay (MLOS) requirements given
these findings.

Design/methodology/approach — The approach uses statistical analysis of simplified contexts to
develop understanding, and simulations of more complex situations to confirm the relevance in realistic
contexts.

Findings — The study demonstrates that proper solutions of the room-committing problem improve
occupancy and profitability, in particular, for hotels working in high-season and high-occupancy situations.
Smart committing algorithms diminish the role of MLOS requirements. More demand can be accepted
without sacrificing late-arriving long reservations.

Originality/value — To the best of the authors’ knowledge, this work, building upon a previous one cited
in this paper, is the first to rigorously study the room-committing problem and to demonstrate its relevance in
practical situations and its implications on MLOS rules.

Keywords Hotel management, Hotel procedures, Optimal algorithms, Room-committing problem,
Simulation-based optimization, Information technology, Optimization
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1. Introduction

The paper (Battiti et al, 2020) introduces the “Room Committing Problem,” dealing with the
choice of a specific room number among the ones compatible with the sold “room type.” The
standard assumption is that guests are not relocated to different rooms after their check-in.
This problem deals with fixing (“pinning”) physical room numbers for each accepted
reservation, and it has nothing to do with the “room allocation problem” considered in
revenue management (RM), in which one decides how many rooms to allocate to the
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Figure 1.
Room plan
(Ciaomanager PMYS)

different “products,” and different products are typically associated with different price
levels. A recent analysis of hotel revenue management is Baker ef al. (2020).

Traditional “joint overbooking-allocation methods” (Gallego and Van Ryzin, 1997; Zhang
and Weatherford, 2017) consider a different problem of deciding about prices and number of
rooms to make available for sale (“capacity allocation”) in the different periods, depending
on the demand forecast. Their methods estimate the opportunity cost of selling a room
prematurely when it could be sold in the future at a higher price, and use dynamic
programming and approximations thereof to identify pricing and capacity allocations to
maximize revenue. After the optimal capacity is chosen, one is still left with a different
problem of ensuring that most of the allocated capacity in the agenda can be effectively
filled with reservations while avoiding guest relocations during their stay. This second
problem is completely orthogonal and it exists independently of “joint overbooking-
allocation methods.” Even if a hotel allocates all available rooms for sale and the demand is
so large to potentially fill the hotel, the final achieved occupancy may be far from 100%
because of the interference between short and long stays in the agenda. To avoid
overbooking, some hotels close online selling on online travel agencies (OTAs) before
reaching full capacity because they are not sure that additional reservations can be placed
on the agenda. There can be some slots still available but there is no guarantee that an
appropriate permutation of room numbers associated with reservations will create
contiguous space for long stays.

It is precisely to avoid this confusion of terminology that the problem considered by us is
called “Room Committing Problem” (RCP for short). The “Room Committing Problem” is
often not considered worthy of attention by the management, being delegated to desk
personnel, or automated software connections with different sales channels (also known as
channel managers), so that a reservation is assigned a room number immediately after
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receiving it. When many reservations for long stays are requested by customers, this lack of
strategic consideration causes inefficiencies and a sizable loss of profit because the
achievable average occupancy is far from the nominal maximum availability. Indeed, a
suboptimal allocation of guests into rooms creates small “bubbles” (gaps) between
reservations in the room plan (the map specifying the room numbers associated with the
accepted reservations). The presence of bubbles between reservations that cannot coalesce
into a larger contiguous stripe to create space for long-stay reservations causes the denial of
many long reservations. Denials tend to occur in high-season periods when the hotel is close
to full occupancy and rooms sell for the highest prices.

A concrete case is in Figure 1, which illustrates the room plan for a period in February
2021 and the room type “Suite Deluxe.” The initial situation (top figure) is messy: if a request
for a long reservation in the period February 17-February 28 arrives, it is not clear if it can
be allocated. The final situation after the optimal permutation executed by RoomTetris is at
the bottom. Two rooms (405 and 406) are now empty and ready to accept long reservations.
A red pin on a stripe means that the reservation is fixed (“pinned”) to a specific room. In the
normal daily operation, only the reservations with check-in today or at an earlier date are
fixed, because current guests cannot be relocated, while the other reservations remain free-
floating. If additional reservations arrive, the optimal situation may imply a different
permutation of the free-floating ones.

In some hotels, a painful reallocation of the room numbers is executed periodically
by the more expert employees in a kind of room Tetris (Demaine et al., 2003), to create
larger gaps (sets of contiguous days in a specific room) and make space to accept
longer reservations. The work (Battiti ef al., 2020) analyzes different procedures for
committing specific room numbers to reservations and defines some heuristic
schemes and an optimal algorithm. The RoomTetris algorithm has the global
optimality property: provided that a new reservation covers days so that at least a
room is available for each day, the algorithm will identify an optimal permutation
of rooms assigned to reservations to create a contiguous set of available slots. The
new reservation will then be allocated to a single physical room without any guests’
relocations. RoomTetris assumes that all reservations are free to be allocated to a
room of the given type and that no fixed committing of room numbers is done before
the check-in date. We extend the previous results in the following directions:

» (Given the stochastic nature of reservation arrivals, it is not trivial to understand the
effect that accepted reservations of different length of stay (LOS) have on the
possible denial of future reservations. We analyze the rejection probability in
simplified cases and argue that a phenomenon similar to phase tranmsitions in
physics can arise.

»  We revisit the role of the traditional minimum-length-of-stay (MLOS) constraints in
the light of the new algorithms and argue that, by adopting the optimal RoomTetris
algorithm, the use of MLOS requirements for accepting reservations should be
reconsidered. MLOS should either be eliminated or limited to cases that cannot be
solved by more flexible pricing policies to encourage longer stays.

» We run extensive software simulations for realistic demand processes with seasonal
effects.

In Section 2, we summarize the algorithms proposed in Battiti et al. (2020), and in Section 3,
we analyze the probability that a reservation request must be rejected as a function of hotel
occupancy level and reservation length. The role of minimum-stay constraints as an
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alternative strategy is discussed in Section 4 and compared with the optimal algorithm.
Finally, experiments with more realistic demand streams are analyzed in Section 5.

2. Summary of smart algorithms for committing rooms

To make this paper self-contained, let us briefly summarize the algorithms introduced in
Battiti ef al. (2020). A reservation request can be accepted if a room is available for the entire
requested period of stay (i.e,, if it is free for all reservation days), and it must be rejected (or
denied) otherwise. To avoid superficial complications related to nights located between two
days, we assume that a hotel sells individual days. We assume that the complete state of the
hotel is summarized by a RoomPlan matrix with 7,,,,,s rows and 74, columns. RoomFlan
[room]day]is equal to 1 if the given 7oom is occupied at the given day, and 0 if it is free. The
list of algorithms is the following one. In all cases, if no room is available, the reservation
request is rejected.

ImmediateRandom: As soon as a new request arrives, the rooms are considered in
random order. The reservation is allocated to the first available room. It can be considered as
a “no intelligence” benchmark.

Smarter approaches are based on the “greedy” algorithm design principle (Cormen et al.,
1990), a problem-solving heuristic of making the locally optimal choice at each stage. Each
reservation is allocated with some short-sighted optimization in mind, but after a
reservation is fixed to a room it is never re-allocated in the future. The three considered
algorithms following “greedy” principles are: ImmediateFirstFit, ImmediateMinSlack,
ImmediateMaxSlack. In ImmediateFirstFit: The reservation is allocated to the first available
room, considering a fixed order of consideration.

Another greedy method is motivated by avoiding the “fragmentation” of contiguous
days while aiming at maintaining large gaps between reservations. Large gaps imply that
there will be more contiguous days to allocate future long-duration stays. Let us define as
“slack” around a reservation the number of free days immediately following or preceding it.

ImmediateMaxSlack: Among the available rooms, the reservation is placed in the room
which maximizes the slack around it.

A second greedy way to reduce fragmentation of free space is to minimize the slack
around a reservation, ideally placing a new reservation immediately attached to other
existing reservations, again leaving other large contiguous spaces free for placing long-
duration stays.

ImmediateMinSlack: Among the available rooms, the reservation is placed in the room
which munimizes the slack around it.

The above algorithms fix reservation requests as soon as they arrive. This early fixing is
conservative and permits to answer future requests without the doubt that they cannot be
fixed into the room plan. In the proposed optimal strategy, reservation requests are accepted
if and only if they do not create inevitable overbooking, but they are not fixed to specific
rooms until the customer checks in. If the total request of rooms is less than the total
available for all days in a request, the request is accepted, otherwise, it is rejected. This
criterion is necessary to accept a new reservation without creating overbooking, but not
sufficient to guarantee that a suitable gap of contiguous days will be available after
allocating other reservations.

The following room-committing algorithm guarantees that the above criterion is both
necessary and sufficient for global optimality (Battiti et al, 2020). RoomTetris: when a
reservation request is received, it is just stored in memory. Physical rooms are allocated only
when the check-in day arrives. On check-in day, reservations are allocated by starting from
the longest ones. The reservations are placed in the first available room. The algorithm acts



in an online manner, without assuming knowledge of future reservations. The optimality of RoomTetris in

RoomTetris is demonstrated in Battiti et al. (2020): if there are no overbooked days, and if all
reservations are free to be allocated to specific rooms of a given type, it can always fit the
reservations without relocating guests during their stay.

An example of a RoomPlan for a hotel with ten rooms associated with a type is shown in
Figure 2. In this simulation, a set of requests with varying LOS (from 1 to 7 days) is
generated stochastically and assigned room numbers with different algorithms: Random
(above), FirstFit (middle) and RoomTetris (bottom). The sequence of requests is the same for
all algorithms. At the moment when the optimal algorithm reaches 100% occupancy for the
ten rooms, the simulation and the generation of requests are stopped. FirstFit fills almost
entirely the low-numbered rooms but it leaves many bubbles in rooms with higher numbers
and causes a denial of 9.5% reservations. Random leaves even more unoccupied spaces in all
rooms and causes a denial of 15.5% reservations. Unoccupied spaces are directly related to
revenues that are lost by using a suboptimal allocation and that could be salvaged by a
proper permutation of rooms assigned to the various reservations.

3. Phase transitions in rejection probability

One of the main reasons to introduce MLOS requirements is to avoid denial of long
reservations because of too many short ones already occupying the room plan. A critical
issue is therefore the effect that short reservations have on the acceptance or denial of longer
reservations. The presence of scattered one-day reservations will fragment the available
sequences of contiguous days in the individual rooms and, therefore, reduce their average
length. When a request for a long-duration reservation arrives, the probability that it must
be rejected increases with the number of one-day reservations present. The available
number of rooms for a specific type and the duration of stays have an impact on the final
result. The objective of this section is to analyze this impact quantitatively.

In this statistical investigation, we consider the presence of one-day reservations placed
randomly in the room plan and the arrival of a reservation request for L days, with L being
greater than one. We analyze the negative effect that short (one-day) reservations already
fixed to specific rooms have on the probability that the longer reservation can be accepted.
In particular, we determine the occupancy level, which marks the transition between a high
and low probability of acceptance.

We assume that one-day reservations are created and placed randomly and
independently on the room plan, with uniform probability over the various rooms and days,
so that each room on each day is occupied with a probability p (equal to the occupancy ratio).
We can derive the probability of rejection for a reservation of length L as follows. For a
specific room, the probability that a single day is free is (1 — p), and the probability that all
days of the new reservation request are free is (1 — p)-, because of the independence
assumption. The probability that the room is not available to allocate the new reservation is
1 — (1 — p)F. If a group of R rooms is available for a given room type, the probability that al

R
rooms are not available, and that the reservation request is rejected is (1 —(1- p)L ) .

Three plots of the rejection probability for different numbers of available rooms (1, 10
and 100) and different lengths of the new reservation request are shown in Figure 3. With
one available room and a new one-day reservation, the probability is trivially a straight line
(the rejection rate is equal to the occupancy level). For reservations of longer duration, the
rejection rate increases rapidly, even for modest occupancy rates, because of the low
probability to find e/l days available to fix it.
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Figure 2.

Results of different
room allocation
strategies
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The probability that an L-day reservation must be rejected because no room is available for
the whole period tends to show a rapid transition from 0 to 1. The transition becomes steeper
and steeper the more rooms are associated with the given room type. This kind of rapid
change in the possibility to solve a problem (in our case, in the possibility to find a free slot
of a sufficient length) is known for many hard problems in computer science (Monasson
et al., 1999) and studied with methods originating from statistical physics (Stanley, 1971).

The probability of rejection is significant even at small occupancy levels and a
reasonable number of ten rooms, giving more possibilities to find an available empty period
of L contiguous free days. For example, at 50% occupancy, about 5% of two-day
reservations must be rejected, 26% of three-day reservations, 52% of four-day reservations
and up to 92% of seven-day reservations must be rejected. This result has a dramatic impact
on profitability; even if the hotel is 50% empty (on average), the large majority of one-week
reservations must be rejected. Even if 100 rooms are associated with a given room type (a
situation which can be found only in the largest hotels), a careless fixing of 1-day
reservations will lead to a rejection of about half 1-week requests at a 50% occupancy level.

Although the assumptions of random allocation considered in this analysis represent an
extreme case, the situation in which rooms are allocated without smart algorithms and room
types are not defined strategically are frequent in many hotels. The case is particularly
dramatic for hospitality businesses that do not use types but sell individual rooms. In their
case, this obstructive effect caused by short stays is significant even at modest occupancy
rates (top plot of Figure 3).

4. Revisiting the role of minimum-stay constraints

The statistical analysis in the previous section was a simplified scenario. We now consider a
traditional method to maintain space in the room plan to be able to accept longer
reservations. The technique is based on LOS constraints. LOS was studied in hospitality
management in the context of using LOS controls to optimize revenues (Jain and Bowman,
2005; Pekgtin et al, 2013; Quain et al, 1999; Wilson et al, 2015), traveler satisfaction,
expenditure and accommodation selection (Barros and Machado, 2010; Salmasi et al., 2012).
LOS controls have been used to “shift demand from sold-out periods to slack periods”
(Quain et al. 1999), and to make customers stay at your hotel for a longer period than they
want. For example, New Year’s Eve is a hot day with many requests, but selling it as a
single-day prejudices the possibility to sell a longer-duration period.

Weatherford (1995) states that new, sophisticated LOS heuristic controls can allow hotels
to reap benefits as high as about 3% of revenues, depending on the characteristics of the
property. Legal implications are discussed in Wilson (2001): the MLOS controls appear to
violate state case law and state statutes that require a hotel to provide a room when rooms
are available. By setting extremely high daily rack rates for days of the year where expected
demand is high and where the hotel wants to discourage one-night stays, the hotel can still
offer a room to all who desire to stay for just one night. The hotel can set a rate high enough
to offset the revenue generated by a longer stay and does not have to turn away a guest
when there is availability. Empirical studies of the relationship between prices and LOS are
analyzed in Riasi et al (2017), which discovers in their context that longer stays are
correlated with higher daily prices, contrary to the belief that quantity discounts should
always be applied. Recently, Barros and Machado (2010) measure a declining average in the
tourism LOS, and people tend to travel more often but with shorter vacations.

In this section, we study the degree to which LOS controls can be omitted, or greatly
reduced, through a smarter placement of rooms. If one does not consider very special days
(like New Year’s Eve) and assumes a random mixture of short- and long-stay reservation



requests, short-stay reservations occurring early make long stays more and more difficult to
fit. Having a large required MLOS at the beginning of the reservation window is a way to
encourage the placement of long reservations before short ones. Unfortunately, the
competition is only one click away in internet time, and rejecting a customer request implies
losing the related profit, with a high probability. Few customers have the patience to wait
and come back later to see if the minimum-stay requirements have been canceled. In
addition, removing the MLOS later in the booking window because of lack of demand is
risky because people could cancel and rebook without the MLOS, or it may cause negative
customer reactions for those who accepted the MLOS.

If the hotel manager is not careful, MLOS requirements can lead to a situation in which
7o long-term reservation (longer than or equal to the MLOS) is possible, although the hotel is
not fully booked. Some days are still available but the remaining slots are just too short to fit
long reservations and will never be sold. In the following, we study maximum occupancy
reachable with a mixture of long and short random reservations. The unconstrained
demand is generated to be equal to the maximum occupancy, but with randomized
overbooking possible because of the “balls into bins” phenomenon explained in Section 4.1.

Let p; be the probability of generating one-day reservations, so that 1 — p; is the
probability to generate seven-day reservations. The experiments study the effects on the
final occupancy rate of varying probabilities for short reservations, for different room
allocation algorithms. Figure 4 shows the results for a randomized committing (in a first-
come-first-fixed manner, provided that no overbooking is created). Figure 5 shows the
results obtained with a strict MLOS requirement of two. Figure 6 shows the results obtained
by RoomTetris in the same conditions, without any MLOS requirement.

There is only a common result between the two contexts of Figures 4 and 6, the case
corresponding to having only one-day reservation requests (the rightmost points in the
plots). For example, if only one room is available, the reached occupancy rate is 63.17% in
both cases. The only rejected requests are in both cases those corresponding to overbooked
days. At first, given that 365 randomized reservation requests are generated during a year,
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Figure 5.
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the occupancy level of 63.17% looks surprisingly low. The explanation is related to the
“balls into bins” phenomenon explained in Section 4.1.

Apart from this very particular case, there is a qualitative difference between the
algorithms. In the random placement of Figure 4, one notices a decrease in occupancy level
when the probability of a one-day reservation increases up to about 0.7. In this case, the
presence of short-duration stays reduces the probability to accept longer stays. This is a
strong motivation for having MLOS in the hotel business rules. The situation is particularly



dramatic for a single room. One starts from an occupation level of 49% (because of the
random placement, some seven-day requests share some days and are therefore in
overbooking), drops to a level of 42.9% for a 0.7 probability of one-day reservations, and
then increases again with a predominance of one-day reservations. The more rooms are
available, the larger is the final occupancy level: because of statistics, there are more rooms
to try before abandoning a reservation request.

If a strict MLOS of two is adopted for all reservations (only requests for more days are
accepted), the result is illustrated in Figure 5. For small probabilities of one-day reservations
(e.g. p1 = 0.1 or p; = 0.2), the occupancy tends to remain much more stable than without
MLOS requirements, and the allocation of the seven-day reservations is not spoiled by the
presence of one-day ones. When the fraction of one-day reservations increases, the
occupancy decreases rapidly because all one-day reservations are lost given the MLOS. Of
course, it is expected that an intelligent hotel owner will relax the minimum stay
requirement when the check-in date is getting closer, but the precise timing is complex and
requires precise estimation of the demand. For example, if most requests for short
reservations occur before relaxing the constraint, they will be lost forever. Let us underline
that this late relaxation of MLOS could create cancellations (and rebooking without the
MLOS) or negative reactions by customers who accepted the MLOS. With the growing
diffusions of OTAs, price comparison sites and public daily prices on hotel booking engines,
the information asymmetry between hoteliers and customers is rapidly decreasing and
business practices that made sense years ago should be strongly revised. The current usage
of MLOS is one of the practices which needs a strong revision. Long-term forecasts
(Weatherford and Kimes, 2003) are indispensable for rigid MLOS rules, but the difficulties of
accurate long-term forecasts are increasing given the rapid changes in customer preferences
and the highly dynamic competitive context. In this rigid-MLOS rule without late relaxation,
after the occupancy level is high and the presence of many short holes in the agenda implies
that MLOS cannot be satisfied anymore, additional reservation requests will be denied. The
remaining “fragmented” inventory will be lost forever, together with the associated revenue.

The situation is qualitatively different in Figure 6: in this case, the occupancy level keeps
increasing when there are more one-day reservations. If a room is available, the priority
given by the RoomTetris strategy to long reservations favors a better utilization of the
single room. If more rooms are present, the performance rapidly improves to reach a level
between 80.68% (p1 = 0) and 87.5% (p1 =1).

The above results demonstrate that the RoomTetris placement of rooms is a
recommended alternative to LOS controls to reach a higher occupancy level and a higher
profit. Of course, a second motivation for MLOS requirements can be related to the cost
structure. For example, if one is renting apartments with a fixed price per day and a high
variable cost per reservation for a complete cleaning, the marginal profit may well become
negative for a very short reservation. A possible alternative is to differentiate the cost
according to the duration, either with an explicit cleaning fee or, depending on marketing
and communication, with a decreasing cost per day for longer reservations. In both cases,
the choice will be up to the customers: if they are prepared to pay more for short stays, they
should be allowed to do it. Hotels will increase potential revenues if customers accept
variable prices.

4.1 Balls and bins. stochastic arrivals reduce expected occupancy

In the previous experimental setting, we assumed that the total number of requested days is
equal to the total available inventory and ended up with 12% excess demand for ten
available rooms, caused by overbooked days. Although puzzling, this result is easily
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explained by the “balls into bins” problem. Even if the total request of rooms is equal to the
total available inventory, statistical fluctuations create a variation of demand in the
individual days, leading to under-booked and overbooked days.

The “balls into bins” problem in probability theory (Kolchin and Sevast, 1978) involves m
balls and n boxes (or “bins”). Each time, a single ball is placed into one of the bins, in a
stochastic manner with uniform probability for all bins. After all the balls are in the bins, one
looks at the number of balls in each bin — defined as the load on the bin — and asks a variety of
questions. In our case, a ball is a single one-day reservation and a bin is a single day.

Given #z balls and » bins, if one throws balls into bins sequentially uniformly at random,
the probability for a ball 7 to fall into a given bin is exactly P (ball 7 falls into bin7) = 1/n. If X
denotes the number of empty bins, then one can demonstrate that: £[X] = n(1 — 1/n)" similar
to n/e for large n values. The fraction of empty bins is equal to 1/e ~ 0.3678. In the case of
one-day reservations occurring randomly with the same probability for all days, 1/ is also
the approximate ratio of rejected reservations. They ended up in occupied days and
therefore had to be rejected. In this case, the estimated occupancy is 1 — 0.3678 ~ 0.6322, in
close agreement with the 63.17% occupancy measured in the simulation in the previous
section for the case of one-day reservations and one room.

To demonstrate the above results, one can use indicator variables. Let Y be the number of
empty bins. One wants to calculate the expected value F]Y]. If one defines the indicator
variables X; so that X;is 1 if bin 7 is empty and 0 otherwise, one obtains:

Y=Xi+Xo+...+X,
By linearity of expectation,
ElY] = E[X|]| + E[X,] + ... + E[X,)

So now the problem reduces to calculating the E[X;] for each z. But this is fairly easy, as
E[X;] =1P(X; =1) +0P(X; = 0) = P(X; = 1) = P¢bin 7 is empty) = (1 — 1/n)", where
the last equality is because balls 1,2, ..., m must a(ll go in a bin other than 7, each with
probability (1 — 1/n).

This simplified context reminds us that, in general, the stochasticity of demand is bound
to reduce the achievable occupancy. Even if the expected demand for each day could make
the owner think that the hotel will be fully booked, its stochasticity can greatly reduce the
experimented occupancy. This conclusion holds unless the hotel finds ways to convince
customers to shift reservations to nearby days which are still available when the requests
arrive, for example, for tourists without rigid constraints.

5. Simulating realistic demand processes

This part is concerned with simulating more realistic situations, to assess whether the
superiority of RoomTetris is confirmed also for more complex scenarios. Experimenting
with real hotels is notoriously difficult because it involves assuring repeatability — while the
overall context is always changing — and because experiments tend to interfere with daily
activities. On the other hand, a growing fraction of experimental science is currently based
on realistic software simulators which are extremely useful also for hospitality research.
Tunable simulators with stochastic demand generators can be adapted to different scenarios
and are a promising alternative to i vivo experiments. The reproducibility of results is
guaranteed, and a sound statistical analysis can be based on analyzing hundreds or
thousands of simulations, with different seeds for the random number generators.



In general, an optimizing modeling approach to hospitality research has the advantage to RoomTetris in

address the increasing levels of management complexity that characterizes modern hotels, without
being limited by unrealistic assumptions. The interplay of various choices and strategies can be
modeled by running simulations, and optimal or at least improving settings can be obtained
through simulation-based optimization like it is routinely done in many modern engineering areas
(Gosavi, 2015). In an era of big data, one can calculate probabilities in real-life scenarios with good
accuracy, and the approach becomes practical. The final expected results on financial key
performance indicators can be easily predicted as soon as the macroscopic characteristics of the
demand (seasonality, distribution of LOS and expected occupation levels) and the pricing strategy
are fed to software simulators like the one developed by our research team.

For example, a computer-simulated hotel-reservation and revenue-management system
was used in Choi and Kimes (2002) to test electronic distribution channels’ effect on hotel
revenue management. Zakhary ef al (2011) uses Monte Carlo simulation for forecasting
hotel arrivals and occupancy. A simulation-based approach for the overbooking problem is
adopted in Fouad et al (2014). Hotel simulation as a decision-making tool for learning and
promoting users’ confidence is considered in Ampountolas et al. (2019). A flexible discrete-
event simulator for the hotel reservation process and an experimental methodology which
carefully separates a “training” phase from the final “validation” phase is studied in Brunato
and Battiti (2020).

A more realistic demand distribution has been implemented by simulating seasonal
variability of demand. The two time-dependent parameters are the expected number of
reservations per day (R) and the expected LOS (L), which have been modulated to describe
the typical bimodal distribution of a mountain town, with a winter and a summer season,
with shorter, business-like stays throughout the year. The duration of the simulated period
is one year, and the number of rooms is 50. The parameters for all months, represented by a
couple of values (R, L) are: January: (15, 2); February: (20, 4); March: (25, 4); April: (10, 2);
May: (5, 1.5); June: (10, 2); July: (15, 4); August: (25, 4); September: (15, 2); October: (5, 1.5);
November: (5, 1.5); and December: (15, 2).

Reservations have been generated by a Poisson process whose number of events per day
is regulated as explained before. Overbooking is not accepted: a reservation request is
accepted only if does not generate any single-day (inevitable) overbooking. This criterion
also agrees with the last room availability condition with OTAs. The hotel communicates to
the OTA the number of rooms available for each type and each future day (in the booking
horizon), and OTAs accept reservations if and only if each day in the reservation has
availability for sale of at least one.

As for the LOS, two different distributions have been tested. In the first case, only two
values (oneday and sevendays) were allowed, to simulate the behavior of a hotel that
encourages weekly accommodations, but also accepts short filler reservations from business
travelers; in this case, the probability of the two outcomes is adjusted to obtain the expected
value of L given above. As an alternative, the LOS has been allowed to take any positive
integer value by rounding (to the ceiling) the output of an exponential distribution generator
whose mean value varies according to given L values.

Table 1 collects the results of the two realistic simulations, for a mixture of one- and
seven-day reservations (case A) and a more complex mixture of durations (case B). The
standard error of the mean (SEM) is reported for the mean rejection rate. Given that 1,000
different tests are executed, this error is already very low.

The results in the cases are qualitatively similar. In case A of a simple mixture, random
loses about 12% of the reservations, the smarter committing algorithms about 3%, while all
reservations are fixed with no loss by RoomTetris. In case B of a more complex mixture, the
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Table 1.
Results of room-
committing
algorithms on
realistic demand
curves

final occupancy by all techniques improves. This result can be rationalized: if one starts
from a set of reservations of different lengths (1, 2, 3. . .7), there are statistically more ways to
fill the remaining slots, leading to a higher final occupancy rate. The simple mixture of one-
and seven-day reservations considered for many experiments in this paper should therefore
be considered more challenging for more diverse mixtures of reservations.

For a context with strong seasonality like the one considered, given that smart room-
committing algorithms tend to release additional occupancy in the high-season and high-
price periods, the expected percent increase of revenue will tend to be significantly larger
than the expected percent increase of occupancy, depending on the price variability between
the different periods.

6. Discussion and conclusions

It is widely recognized that applications of information technology and quantitative
methods in tourism and hospitality deliver a growing competitive advantage (Bilgihan et al,
2011; Baggio and Klobas, 2017; Law et al., 2019). Inefficiencies in the UK hotel industry are
investigated in Tan and Despotis (2021), while factors influencing profitability in the Italian
hospitality industry are studied in Menicucci (2018). Sainaghi et al. (2013) argues that “the
information and communication variables showed the great potential which technology
management may reveal, above all, in monitoring the various perspectives, in feeding new
performance indices and in managing efficiency and productivity in management
processes.”

In this paper, we focus on an aspect that has been almost neglected by research in
hospitality: the process by which specific physical rooms are fixed to reservations before the
guests’ check-in. The topic shows an interesting mix of information technology, internal and
external management processes, statistics and algorithms related to optimal permutations.
The relevance (Sainaghi ef al., 2019) of the “room committing problem” is demonstrated by
the fact that the seemingly irrelevant decisions about assigning room numbers to
reservations can have a dramatic impact on profitability, especially in high-season periods,
when the hotel is near to full occupancy and prices are higher.

6.1 Conclusions
This paper started from the previous work (Battiti et al., 2020) and studied the interplay
between optimal room-committing strategies and MLOS requirements. We analyzed the

Cases and algorithms Rejection rate (%) SEM Rejected days Occupancy (%)
Case A

Random 12.07 0.11 404.04 80.67
FirstFit 2.74 0.05 91.84 89.22
MinSlack 2.74 0.05 91.84 89.22
MaxSlack 319 0.06 106.89 88.81
RoomTetris 0 0 0 91.74
Case B

Random 11.07 0.08 382.39 84.19
FirstFit 4.46 0.06 154.21 90.44
MinSlack 445 0.06 153.80 90.45
MaxSlack 471 0.06 162.94 90.20

RoomTetris 0 0 0 94.67




effect of different room-committing practices on the occupancy and profitability of hotels,
and we critically reviewed the role of MLOS.

We demonstrated that intelligent solutions of the room-committing problem improve
occupancy and profitability, also in realistic situations. Smart committing algorithms
diminish the role of MLOS requirements, so much that they can be omitted in most
situations. More demand can be accepted flexibly without sacrificing late-arriving long
reservations.

Customers on the Web are used to the immediate gratification provided by a seamless
user experience and are easily diverted to competing hotels if their requests are not
answered immediately. The times of customers patiently waiting for a confirmation or
stoically adapting to rigid rules such as MLOS or specific arrival and departure dates (like
one week from Saturday to Saturday) are gone for good. Given the high practical relevance
of decisions related to MLOS requirements, our findings will catalyze a reconsideration of
standard business practices in hotel management, with significant implications on profits.

6.2 Theoretical implications
The approach used statistical analysis of simplified contexts to develop understanding, and
simulations of more complex situations to confirm the relevance in realistic contexts. Some
areas in hospitality research can be profitably enriched by methods of experimental science.
In vivo experiments are costly and can interfere too much with the hotel’s daily operations,
but simulation-based research like that of our paper is a pragmatic surrogate. Software-
based simulators can become “hospitality wind tunnels” to learn more about complex
processes in the area.

Tunable software simulators can be rapidly adapted to specific hotel and demand
characteristics to evaluate different decisions. Estimated averages and error bars (related to
the risk) can be obtained by repeating many stochastic simulations.

6.3 Practical implications

Management should spotlight internal procedures and automated methods to allocate
guests to rooms. The processes studied in our work are simple to adopt via automated
software systems. The revenue increase can be around 3%-10% for hotels operating close
to full occupancy in high season and having a mixture of reservations of different lengths of
stay. Depending on the current hotel's net profit margin, this impact can be extremely
relevant. Well-organized hotels are already using some form of “smart” room allocation
mechanisms. Our research adds the scientific rigor of measuring the effects on financial
performance in more complex and realistic contexts via tunable software simulators.

The findings are particularly relevant also for family run businesses, which are slower to
adopt information technology and software (Kilic and Okumus, 2005). The availability of
sophisticated services in the cloud at affordable prices will make them reap productivity
levels like those of the larger and better-organized hotels.

Methods and internal processes which fix rooms prematurely and rigidly tend to
deteriorate the optimal achievable occupancy. Given the interference between short- and
long-duration stays, short stays scattered on the room plan prejudice accepting future long-
duration reservations.

The difficulties in finding contiguous slots in the room plan increase when the hotel is
almost full. Therefore, the percent difference in occupancy levels reachable by smarter
allocation algorithms produces amplified revenues because high-request and high-season
periods are related to higher prices.
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Adding MLOS requirements is a traditional way to avoid this negative effect of short-
duration stays, but the price to pay can be high: renouncing many short reservations tends
to decrease profit because the average customer is not patient, does not wait for
requirements to be relaxed and often switches to a competing and better-organized hotel. In
addition, late relaxation of MLOS is risky for the hotel’s reputation. Earlybird customers
should be treated with respect and fairness.

Provided that the optimal RoomTetris algorithm is adopted, hotel managers should
seriously reconsider the use of MLOS requirements, limiting them to cases that cannot be
solved by more flexible pricing giving more choice to the customers. MLOS may not
be needed as frequently when using RoomTetris, particularly when forecasts are inaccurate
and the decision to implement an MLOS is tricky. One complication is that the
unconstrained demand is unknown and difficult to estimate from the “censored” observed
demand.

One needs to distinguish between two kinds of overbooking. Inevitable overbooking
occurs if some days in a reservation are completely sold out. Avoidable overbooking arises
because of the suboptimal assignment of reservations to rooms. OTAs request from the
hotels only availabilities for the different days (not detailed room plans) and some hotels are
forced to close online selling prematurely when they are almost sold out to ward off
avoidable overbookings. They are afraid to receive reservations by OTAs which cannot be
assigned to a single physical room and which cause painful monetary and reputation
penalties. The RoomTetris algorithm makes this premature closure unnecessary so that the
hotels will sell all available slots and eliminate the headaches related to overbooking.

In addition to marketing and customer segmentation, the strategic choice of room types
should also consider the effects on room allocation. Statistics will help in allocating rooms
because of some forms of the “law of large numbers” (Dekking et al, 2005). When the
numbers of rooms for each type become exceedingly small, the possibility of permuting
rooms decreases, and the negative effects of sub-optimal allocations are magnified.

6.4 Limitations and future research

A limitation of the research is the considered context of reservations, which can be fixed
to arbitrary rooms in each “room type” set. If a subset of rooms need to be fixed before
check-in day (e.g. because the customer is allowed to specify the preferred room
number), more complex heuristics need to be developed. A promising avenue for further
research is on the interaction between traditional RM methods and room-committing
strategies. As explained, the two problems are different, but choices in both areas can
interact. As an example, the opportunity cost of allowing a customer to choose room
numbers should be evaluated so that different reservation rules can be designed with
different pricing strategies.
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