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Abstract
Purpose – The purpose of this paper is to increase productivity through smart maintenance planning by
including productivity as one of the objectives of the maintenance organization. Therefore, the goals of the
paper are to investigate existing machine criticality assessment and identify components of the criticality
assessment tool to increase productivity.
Design/methodology/approach – An embedded multiple case study research design was adopted in this
paper. Six different cases were chosen from six different production sites operated by three multi-national
manufacturing companies. Data collection was carried out in the form of interviews, focus groups and
archival records. More than one source of data was collected in each of the cases. The cases included different
production layouts such as machining, assembly and foundry, which ensured data variety.
Findings – The main finding of the paper is a deeper understanding of how manufacturing companies
assess machine criticality and plan maintenance activities. The empirical findings showed that there is a lack
of trust regarding existing criticality assessment tools. As a result, necessary changes within the maintenance
organizations in order to increase productivity were identified. These are technological advancements, i.e. a
dynamic and data-driven approach and organizational changes, i.e. approaching with a systems perspective
when performing maintenance prioritization.
Originality/value – Machine criticality assessment studies are rare, especially empirical research.
The originality of this paper lies in the empirical research conducted on smart maintenance planning for
productivity improvement. In addition, identifying the components for machine criticality assessment is
equally important for research and industries to efficient planning of maintenance activities.
Keywords Productivity, Bottleneck
Paper type Research paper

1. Introduction
The modern manufacturing sector is extremely competitive, particularly given increased
demands for quality, variety and shorter lead times. This competition has fueled the fourth
revolution in the manufacturing industry, especially through initiatives such as Industry 4.0
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and Smart Manufacturing (Thoben et al., 2017). The initiatives are characterized by
cyber-physical systems, where physical and engineering systems are connected through the
Internet of Things (IoT), i.e. digitalized manufacturing (Hermann et al., 2016). Digitalized
manufacturing has placed extremely high expectations on manufacturing systems to
deliver substantial increases in productivity, automation and resource efficiency
(Monostori et al., 2016). As a result, these places increased requirements for plant-level
reliability and availability. In order to realize these expectations, maintenance organization
needs to keep pace with the rapid advances in digitalized manufacturing. Dominant themes
have been identified that could have great influence on the internal environment of
maintenance organizations in the future: fact-based maintenance planning and maintenance
planning with a systems perspective are two of them (Bokrantz et al., 2017). Hence,
traditional maintenance must transform into smart maintenance, which is intelligent and
ready for these challenges (Acatech, 2015). However, traditional industrial maintenance
practices are well behind the theory, which is reflected in the poor performance of machines.
For example, overall equipment effectiveness (OEE) figures average 50–60 percent in
manufacturing companies (Ljungberg, 1998; Ylipää et al., 2017), whereas world-class OEE is
expected to by 85 percent. Traditionally, maintenance aims at maximizing only the
availability component of OEE, thereby increasing machine-level productivity. This
situation is prevalent in maintenance research as well, where single-machine problems have
been the primary focus of improvements for maintenance organizations (Helu and Weiss,
2016; Li et al., 2009). However important this may be, the effects of single-machine failures
on the system as a whole, i.e. ripple effects, are also a major concern. Ripple effects cause
blocked and starved machine states on other machines (idling losses), thereby
compromising system-level productivity and causing energy losses (Skoogh et al., 2011).
The effect is compounded further when multiple machine failures occur. The variability
caused by the idling losses needs to be mitigated through achieving a swift and even
production flow, which can increase productivity without reducing flexibility in production
(Schmenner and Swink, 1998). Therefore, simultaneously maintaining more than one
machine in a system (maintenance prioritization) is an important research problem that
needs to be addressed (Roy et al., 2016).

The prioritization of maintenance operations is an important task for achieving
production system efficiency (Levitt, 1997; Ni and Jin, 2012). However, there is a lack of
robust decision support tools for identifying critical machines for prioritizing maintenance.
A previous study showed that although manufacturing companies prioritize maintenance
operations, they do so without properly setting machine criticalities (Gopalakrishnan and
Skoogh, 2018). Additionally, the maintenance decisions at the shop-floor level were operator-
influenced or based on experiences of maintenance technicians. This phenomenon was also
explained in Guo et al. (2013), which states that maintenance work-order prioritizations are
often made based on the experience and knowledge of maintenance technicians. This clearly
indicates the problem of not adhering to fact-based decision making in companies for
making maintenance decisions. Therefore, the computerized maintenance management
systems (CMMS), which should support maintenance decisions, are unused. Ni and Jin
(2012) say that existing CMMS are outdated and do not adhere to the dynamic needs of
maintenance operations.

Maintenance activities can be broadly categorized as either preventive maintenance
(PM) or reactive maintenance (RM), both of which require planning and support. Machine
criticality assessment is a tool that supports maintenance decision making (Bengtsson,
2011; Stadnicka et al., 2014), which includes support for both PM and RM activities. The
roots of criticality assessment can be found in the reliability centered maintenance (RCM)
approach, where failure mode and effects analysis (FMEA) is used to assess failure modes
in machine components (Moubray, 1997). This type of tool has been expanded to operate
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at machine level as FMECA (where C ¼ criticality) (Bertolini and Bevilacqua, 2006).
Manufacturing companies generally employ some form of machine criticality analysis,
whether that be FMECA, ABC classification (Márquez et al., 2009; Bengtsson, 2011), risk
analysis (Moss andWoodhouse, 1999), fuzzy-based analysis (Ratnayake and Antosz, 2017;
Pelaez and Bowles, 1994), etc.

Despite the various methods available for assessing machine criticality, it was
previously found that it is hardly used in practice for maintenance prioritization
(Gopalakrishnan and Skoogh, 2018). This begs the questions: how can maintenance be
prioritized effectively? And if manufacturing companies have criticality assessment tools at
their disposal, why do not they use them? Therefore, there is a considerable need to find out
how manufacturing companies work with their machine criticality assessment and identify
the necessary steps to enable maintenance organization to focus on increasing productivity.
Especially, the main objectives for using criticality assessment, the factors considered for
criticality assessment and the type of data used for assessment will provide profound
knowledge on the assessment tool. This knowledge will help toward developing decision
support tools for achieving smart maintenance planning.

The purpose of this study is to increase productivity through smart maintenance
planning, with the aim of including productivity as an objective for the maintenance
organization. As a result, the study aimed at mapping the objectives, uses, methods and
data requirements for existing machine criticality assessment and identifying the
components of machine criticality assessment to support maintenance decisions that
increase productivity. This paper particularly focuses on the discrete manufacturing
industry. The results will provide a greater understanding of the existing gaps in criticality
assessment and can identify potential productivity improvement opportunities.

Machine criticality assessment studies are rare, especially empirical research. As greater
practical focus is needed in maintenance research, an empirical study was chosen
(Fraser et al. 2015). The rest of the paper contains the literature review, methodology,
results, discussion and conclusion. Additionally, the topics that were chosen for analysis in
the study emerged from the literature on machine criticality, as explained in Section 2.

2. Related literature
In this section, the literature related to machine criticality assessment and its relationship
with maintenance planning are presented. Based on the goals of the paper, the literature is
presented under the headings Objectives of machine criticality assessment, Factors and
methods, Data requirements and Maintenance planning. The design of the interviews and
focus groups in each of the cases in the multiple case studies was determined by the
outcome of the literature analysis. Finally, the codes for analysis were determined based on
the synthesis of literature under each heading.

2.1 Objectives of machine criticality assessment
The overall objective of any machine criticality assessment tool is to support maintenance
operations decisions. However, the specific objectives of an individual tool are dependent on
the intended usage. Márquez et al. (2015) describe the maintenance management process in
two parts: strategic and operational. The strategic part deals with determining objectives
and priorities when choosing maintenance strategies, whereas the operational part deals
with the implementation of the strategy, for example, maintenance planning, control,
supervision and continuous improvement. Additionally, Márquez et al. (2015) and Moss and
Woodhouse (1999) describe two types of criticality assessments: those performed during the
operational phase and those performed during the asset design phase. For assessments
carried out during the operational phase, the objective is to identify critical areas in the
production system in order to meet machine availability targets (Márquez et al., 2015).
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Generally, maintenance prioritization is the primary objective when assessing machine
criticality (Bengtsson, 2011; Márquez et al., 2009). However, priorities can also be
assigned with regard to reliability (Roy and Ghosh, 2010; Bevilacqua et al., 2009), PM
(de León Hijes and Cartagena, 2006), RM (Li and Ni, 2009; Wedel et al., 2016) and costs
(Moore and Starr, 2006). Additionally, the productivity as an objective (Moss and
Woodhouse, 1999; Stadnicka et al., 2014; Ni and Jin, 2012) and production scheduling quality
(Petrovic et al., 2008) are also presented in the literature. Even though productivity is
considered as an objective, it is only considered implicitly. Productivity is sought after on
individual machines by maximizing its availability, for example Moss and Woodhouse
(1999). Another major industrial application area in which criticality assessment tools are
used is spare part inventory planning (Stoll et al., 2015; Sun, 2013). The objective of the
criticality assessment tool determines its usage and focus in maintenance improvement.
Based on the aim of the study and the criticality objectives mentioned above, the topics of
the purpose of assessing criticality, productivity focus, PM and RM use and spare part
planning are chosen for analysis.

2.2 Factors and methods
Generally, much of the literature on machine criticality suggests multiple factors for
assessment (Bengtsson, 2011; Ratnayake et al., 2014; Stadnicka et al., 2014). Two common
factors for maintenance organizations to focus are safety and environment (Pintelon and
Parodi-Herz, 2008). Certainly, other factors have been used for assessing machine criticality for
maintenance purposes. Therefore, it is important to know which factors have been included in
assessing criticality. When FMEA is used to assess failure modes, particularly attention is paid
to the probability and consequence of failure (Moss and Woodhouse, 1999), whereas when an
ABC-type criticality classification is used, factors such as redundancy, utilization, quality,
age and cost are assessed (Bengtsson, 2011; Ratnayake et al., 2014). FMECA methods
consider additional factors such as environmental aspects when assessing criticality
(Costantino et al., 2013). Moving on to methodology, FMEA uses the multiplication of factors to
calculate a risk priority number (RPN) for maintenance planning (Moss andWoodhouse, 1999;
Pelaez and Bowles, 1994). ABC-type criticality assessments use some form of a scoring system,
where the total criticality score for each machine is calculated on a scale of A, B or C in order to
determine the levels of criticality (Ratnayake et al., 2014; Stadnicka et al., 2014).

In additionally to the machine criticality assessment literature, there are several other
methods for maintenance decision making. Maintenance decision making is often viewed as
an optimization problem for planning and scheduling work orders. A large amount of
literature has been published in this area for finding optimal maintenance solutions
(Ding and Kamaruddin, 2014). Some of the main maintenance optimization models include
multi-criteria decision making (MCDM), analytic hierarchy process, fuzzy logic and
simulation (Garg and Deshmukh, 2006). Similar to criticality assessment, maintenance
optimization process also includes objectives, factors and methods, analytical approach for
analysis and function description (maintenance planning and scheduling activity) (Ding and
Kamaruddin, 2014). One of the main criticism toward optimization models is that they are
unable to fully cover the gap between research and industrial practice, as industrial
environment is highly complex, and the fluctuations with factors and variables are not fully
documented and analyzed (Ding and Kamaruddin, 2014). Because of the lack of extensive
usage in the industry for decision making, optimization models are not considered further in
this paper. Also, the central aim of the paper is about machine criticality assessment and not
the optimization of the maintenance policies. Therefore, the factors and methods used to
determine the ease of analysis and utility of machine criticality are considered for analysis.
Hence, the topics factors for assessing criticality and methods for assessing criticality are
chosen as for analysis within factors and methods of assessing criticality.
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2.3 Data requirement
The next step after analyzing objectives, factors and methods for assessing criticality is to
understand the data required to perform the assessment. Moss and Woodhouse (1999) state
that human psychology is important as statistical considerations when implementing
machine criticality assessments, meaning that all relevant members of the workforce should
be included in setting priorities. The model provided by Pelaez and Bowles (1994) combines
qualitative and quantitative factors to determine “riskiness.” Failure data are a specific
requirement in many criticality assessment methods (Stadnicka et al., 2014; Bengtsson,
2011), as these are main data that directly correspond to maintenance. In other situations,
purely qualitative data such as group discussion (cross-functional) with the relevant
participants are used for assessment (Bengtsson, 2011; Márquez et al., 2015). Cost-based
criticality (CBC) uses different cost calculations for assessing criticality, for example, CBC
(Moore and Starr, 2006) and cost deployment (CD) (Yamashina and Kubo, 2002) to assign
costs for machine downtime and loss of production from which criticality is then assessed.
A model developed by Antosz and Ratnayake (2016) uses real production data such as
machine failures, product quality deterioration and machine availability/downtime for
criticality assessment. Additionally, Gopalakrishnan and Skoogh (2018) demonstrate
“operator influence” as a factor in deciding criticality levels. Machine data from
manufacturing execution system are not commonly used for criticality analysis.
It is therefore important to consider the usability of the criticality assessment tool and
the frequency of updates. Hence, the topics of data usage and usability and updates are
chosen for analysis.

2.4 Maintenance planning
Machine criticality assessment is not the only tool that supports maintenance planning. Garg
and Deshmukh (2006) provide a detailed account of the various maintenance management
models that are used for maintenance planning and scheduling activities. However, if machine
criticality is insufficient, then achieving optimum maintenance planning is unlikely as it
shows where to prioritize maintenance efforts (Stadnicka et al., 2014). To support the need for
criticality assessment, Ni and Jin (2012) claim that maintenance prioritization is an effective
decision support tool for maintenance engineers. There are several examples demonstrating
the importance of setting priorities for maintenance staff in the execution of maintenance
planning and scheduling activities (Garg et al., 2010; Wedel et al., 2016; Li et al., 2009).
The above-mentioned literature seeks productivity improvement on a system level. To have
productivity as objective calls for cross-functional collaboration within the company.
Bengtsson (2011) and Zanazzi et al. (2014) also emphasize the importance of synergy
between production and cross-functionality across the organizations. The cross-functional
approach can be achieved by having a system perspective for solving maintenance
problems, which will lead to improve the system productivity (Ylipää et al., 2017). Therefore,
ownership synergy and production synergy are the topics chosen on the maintenance
planning level for the analysis in this study. In addition to this, problems in machine criticality
were also chosen as an additional topic for analysis in order to identify the perceived problems
with criticality assessment.

3. Methodology
The aim of the paper requires that the study to be conducted in the natural setting
(empirical) through observing actual practice and capturing the complexity of criticality
assessment, which is why case research methodology was chosen (Voss et al., 2002).
This approach provides a deepened knowledge of machine criticality practices in
manufacturing companies. An embedded multiple case study approach was adopted for a
more detailed level of inquiry (Yin, 2013). A multiple case study was chosen to increase the
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generalizability of the theory-building process (Flynn et al., 1990). Six cases were studied
from three multi-national automobile manufacturers. The design of the study was tested in a
pilot case with an industrial partner, where the data collection and analysis procedure were
tested. The research design is illustrated schematically in Figure 1.

3.1 Case selection
The case selection is an important process that needs to be in order with the purpose of the
study. A total of six case studies were chosen from six different production sites across three
multi-national manufacturing companies located in Sweden. All the selected cases were
from discrete manufacturing companies but the cases were ensured that they were varied
from each other. Six empirical data sets (ED1–ED6) were collected in each of the six
manufacturing sites separately, and this forms the basis for building theory within machine
criticality and maintenance prioritization. The criteria for choosing the cases include: the
case company should use or have machine criticality assessment tool, willingness to
improve maintenance practices, different products being produced and type of production
set-ups and geographically separated from each other and employed different work
procedures, i.e. no two cases were from the same manufacturing site. The cases were
distributed among the three companies: four data sets (referred as ED1–ED4) were collected
from four chosen manufacturing sites in case company A, while one manufacturing site was
selected for each of case companies B and C (referred as ED5 and ED6, respectively).

3.2 Empirical data collection
Data collection was carried out through interviews, focus groups and archival records.
However, data were predominantly collected in each of the cases through interviews and
focus groups. A total of eight interviews and five focus groups were conducted across all
cases. See Table I for the distribution of data collection in each case. The interviews and
focus groups were developed from the theory of machine criticality assessment.
The interview and focus group questionnaires were revised with the help of both
industrial partners and senior researchers from the university. Archival records include
documents on the criticality assessment tools at the various sites, which were gathered from
the CMMS system of the company.

ED1 ED2 ED3 ED4 ED5 ED6

Company A Company B Company C

Within-case analysis:
Goal1: Map the objectives, uses, methods and data requirement for existing machine

criticality assessment
Goal2: Identify the components of machine criticality assessment to support maintenance

decisions that increase productivity

Cross-case analysis:
Goal1: Map the objectives, uses, methods and data requirement for existing criticality

assessment
Goal2: Identify the components of machine criticality assessment to support maintenance

decisions that increase productivity

Figure 1.
Multiple case
study design
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All the interviews and focus groups were performed face to face, except in ED1
(case company A). Data were collected from a single telephone interview because the
production site is located outside of Sweden. However, in the other case sites (ED2–ED6)
at least two interviews or focus groups were conducted. The empirical data collected
focused on machine criticality assessment and maintenance prioritization practices.
The face-to-face interviews lasted between 45 and 60 min, whereas the focus group
interviews lasted about 120 min on average. All the interviews and focus groups were audio
recorded with the consent of the participants and further transcribed for data analysis.

3.3 Data analysis
The six sets of empirical data were triangulated leading toward a strong theory-building
process (Creswell, 2013). As the first step, a within-case analysis was conducted. The
within-case analysis was conducted with guidance from theory, which allowed analysis to
focus on the significant parts of the study (Yin, 2013). First, theory on machine criticality
assessment objective (Section 2.1) was used to code the empirical data for the purpose, PM
and RM use, productivity focus and spare part planning. Second, the theory on factors and
methods of the criticality assessment (Section 2.2) was used to code the empirical data to
identify the factors and methods involved. Third, the theory on data requirement for
assessment (Section 2.3) was used to code the data on understanding the quantitative and/
or qualitative nature and usability of the criticality assessment. Finally, additional coding
was performed using theory on maintenance planning (Section 2.4) for connecting the
assessment tool with maintenance decision-making practices. These form the predefined
topics for within-case analysis.

The predefined topics from theory were used to code the six data sets. The coding
process was performed with the help of NVIVO qualitative data analysis software.
The transcripts of the interviews and focus groups, which form the six data sets, were coded
in the software. The software enables maintaining of the links between the predefined topics
and the first-order codes from the data. A total of 284 first-order codes were coded from the
six empirical data sets. These codes were used to present as results in each ED.

In addition to the within-case analysis, a cross-case analysis was also performed.
With the cross-case analysis, the aim was to identify the similarities and differences
between the cases (Yin, 2013). The cross-case analysis further increases the
generalizability of the results achieved.

3.4 Generalizability
One of the common misunderstandings about case study research is that generalization
cannot be achieved (Flyvbjerg, 2006). Even though generalizability is possible from a
single case study, the use of multiple case study design in this paper increases
generalizability to a large extent in comparison to a single case study (Yin, 2013).
The empirical data sets were first analyzed individually within each case, thereby
allowing the emergence of a unique pattern in each. A cross-case analysis was then

Data Interviews Focus groups Archival records Type of production layout

ED1 1 Yes Assembly
ED2 3 Yes Machining
ED3 3 Yes Assembly, foundry and machining
ED4 2 Yes Assembly and machining
ED5 2 Machining
ED6 2 Machining

Table I.
Cases and
data sources
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conducted to assist in seeking generalization (Voss et al., 2002). Additionally, in each of the
cases, the data were gathered from more than one data source, with each data source
including different types of production set-ups. Triangulation through the use of different
methods and data sources also increases the generalizability and validity of the research
(Voss et al., 2002; McCutcheon and Meredith, 1993).

4. Results
The multiple case study was conducted in the form of interviews and focus groups at each
of the case sites, along with archival records from some sites where available. The first
six sections consist of the within-case results of the EDs, and the last section contains the
cross-case analysis results.

4.1 Within-case analysis – ED1
The results of the first case (ED1) are presented in Table II. ED1 data are gathered
from a single interview with the maintenance manager of an assembly line. It can be
observed that the machine criticality classification is being used in this assembly line
for maintenance planning purposes. A clear productivity focus is also observed in the
classification by working closely with production organizations. However, a central
problem in ED1 was that more machines were classified as high critical machines.

4.2 Within-case analysis – ED2
The second case (ED2) consisted of three interviews, and the chosen production line had a
machining layout. The results of the analysis are presented in Table III. It can be observed
that there was no clear answer regarding the productivity objectives of machine criticality.
Analysis of ED2 also showed that the use of the classification tool was limited and the usage
of data for the analysis was limited. Additionally, several machines ended up being
classified as highly critical. The reasoning was highlighted by the lack of knowledge
regarding the type of criticality each machine was classified under.

Objectives
Purpose of assessing
criticality

Critical from customers’ point of view (i.e. production)

Productivity focus Clear connection with production. Working with production organization
PM and RM use Used to prioritize PM and deferred work orders, plus RM
Spare parts planning Separate classification for spare parts planning

Factors and methods
Factors for assessing
criticality

Safety and environment, quality, back-up solution, production, MTBF, MTTR
and repair costs were the factors

Methods for assessing
criticality

Levels of criticality are AA, A, B, C. A decision tree is used to make decisions for
above factors

Data requirement
Data usage MTBF and MTTR were used
Usability and updates Very useful and updated annually

Maintenance planning
Ownership and production
synergy

Maintenance owns the classification and there is good consensus with
production

Problems in criticality
assessment

Over half the machines are classified AA; data quality becomes an issue Table II.
Results – ED1
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4.3 Within-case analysis – ED3
The results for ED3 analysis, where data were collected from a production site that
comprised of assembly, foundry and machining lines, are presented in Table IV. Three focus
group interviews formed the data set. The results show that in addition to a lack of focus on
productivity as an objective for machine criticality assessment, there was also a failure to
use data from production. The criticality classification used in ED3 was used to identify
critical machines across the entire factory. Furthermore, the criticality assessment was
helpful in providing a good understanding with the production organization.

4.4 Within-case analysis – ED4
The fourth case (ED4) comprised of assembly and machining lines, and the results of the
analysis are presented in Table V. Similar to ED3 results, productivity as an objective was
considered for criticality assessment. In addition, spare parts planning was also excluded
from machine criticality classification in ED4. Bottleneck machines not being captured in
their existing classification tool came across as a specific problem. There was also a problem
with multiple machines being classified as highly critical.

4.5 Within-case analysis – ED5
The results from the analysis of ED5 are presented in Table VI. ED5 comprised of two
interviews conducted at the production site, where a production line chosen for the study had
machining layout. The results showed that at this site, machine criticality is used mostly for
securing spare parts and not much in maintenance planning. The main problems in the
classification tool are the lack of trust and poor standardization of the analysis process.
As with the other case results, many machines end up with a classification of highly critical.

Objective
Purpose of assessing
criticality

Developing autonomous maintenance for critical machines, prioritizing
condition-based maintenance, long-term spare parts planning, mapping repair
crew competences for the factory

Productivity focus Productivity not linked to criticality assessment
PM and RM use Used to plan PM. RM is prioritized but not based on the classification. Critical

areas are set for prioritization usually set during morning meetings. However,
RM work is prioritized over other types of maintenance

Spare parts planning Used for long-term spare parts planning

Factors and methods
Factors for assessing
criticality

Safety, environment, redundancy, utilization, quality and age were the factors

Methods for assessing
criticality

AA, A, B, C classification were used as the levels. A flowchart with a scale
ranging from 1 to 9 is used to evaluate quality, safety, delivery and human
factors. Scale rating based on probability and consequences of machine failures.
Conducted with other organization members (i.e. production)

Data requirement
Data usage Some OEE data were used. Generally, subjective data collected by talking to people
Usability and updates Not used to any great extent. Classification updated annually

Maintenance planning
Ownership and production
synergy

Owned by maintenance, but machines classification is carried out in conjunction
with operators, production managers and production engineers

Problems in criticality
assessment

Too manymachines were classified with high criticality. Factors only show critical
or not, but not the type of criticality the machine has. AA machines can stop
production, but B or C machines can sometimes bring the system to a halt too

Table III.
Results – ED2
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4.6 Within-case analysis – ED6
Finally, the results of the ED6 analysis are presented in Table VII. These were obtained
from two interviews and the chosen production line had a machining layout.
The results showed that there was a clear focus on productivity as an objective for

Objective
Purpose of assessing
criticality

Purpose is to increase quality and availability. Also, to start autonomous
maintenance and preventive maintenance projects

Productivity focus Productivity not linked to criticality assessment
PM and RM use Not used for PM; PM plan was the same for all machines. Prioritized RM work

orders but priorities not based on criticality classification; usually it comes from
production

Spare parts planning Spare parts plan was same for all machines and not determined by classification

Factors and methods
Factors for assessing
criticality

Environment, safety and complexity of machine, difficulty for operator; single flow
or parallel flow; MTTR; safety and environment; bottleneck were the factors

Methods for assessing
criticality

Used cost deployment to allocate AA, A, B and C classes. Discuss with manager to
identify critical machine. Choosing between single and parallel machines. Analysis
includes root cause, monthly follow-up MTTR, MTBF, MWT and maintenance cost

Data requirement
Data usage Mostly use maintenance technician’s experience for decisions. MTBF and MTTR

from CMMS
Usability and updates Shows critical machine for the whole factory. Updated quarterly or annually

Maintenance planning
Ownership and
production synergy

Maintenance owns the classification. Good understanding of production as the two
departments work as a team

Problems in criticality
assessment

Assembly tends to be more advanced; classification process such that same
machine is classified as critical every time

Table IV.
Results – ED3

Objective
Purpose of assessing
criticality

Improve the quality of PM and allocate more maintenance to critical machines,
bottlenecks and minimize maintenance costs

Productivity focus Productivity not linked to criticality assessment
PM and RM use No PM related use. RM priorities line-based rather than on criticality

classifications. This is usually set by production
Spare parts planning Spare parts not planned using criticality assessment

Factors and methods
Factors for assessing
criticality

Single or parallel machine, spare parts in-house and technician resource
availability

Methods for assessing
criticality

Cost deployment for classifying machines. Inventory showing type of
manufacture, type of software/hardware, status of machine, quality, spare parts
availability and knowledge availability

Data requirement
Data usage OEE and CD were used
Usability and updates Rarely used and only shows critical machine location. Updated quarterly

Maintenance planning
Ownership and
production synergy

Maintenance own classification. Usually obtain consensus but production has
final say in case of mismatch

Problems in criticality
assessment

Need to limit number of machines classified as highly critical. Procedure in CD
problematic as method fails to adequately capture bottlenecks. Cost calculations
in CD provide wrong results

Table V.
Results – ED4
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machine criticality assessment, even if availability remains the main purpose for assessing
criticality. Bottlenecks are also used for providing a productivity focus, but data were not
used in the assessment. The main problem in ED6 is that the participants felt that the
criticality assessment tool does not correctly identify the correct critical machines.

4.7 Cross-case analysis
The cross-case analysis results are presented below:

(1) Similarities:

• Generally, many machines end up being classified as highly critical, i.e. the
machines are not differentiated.

Objective
Purpose of assessing criticality Preparing spare parts to solve production issues and improve standards
Productivity focus Productivity not linked to criticality assessment
PM and RM use PM not planned using classification. RM is executed on a first-come-first-

served basis. Technicians sometimes using their experience to prioritize.
Allocation of resources carried out from a command center

Spare parts planning Secure spare parts for critical machines

Factors and methods
Factors for assessing criticality Environment, spare parts for maintenance, knowledge of technicians and

machine status (wear and tear) were the factors
Methods for assessing
criticality

A, B, C, D classes. Flowchart guides classification, which is conducted by a
group

Data requirement
Data usage No data used
Usability and updates Not understood so hardly used. Updated when new equipment is procured

Maintenance planning
Ownership and production
synergy

Conducted by staff with a variety of competences, so creates
understanding. Clear view and consensus on critical equipment

Problems in criticality
assessment

Classification not well standardized. Lack of trust in current classification.
Too many machines with high classification

Table VI.
Results – ED5

Objective
Purpose of assessing criticality Purpose is to ensure availability of machines
Productivity focus Bottleneck machine gets maintenance allocation
PM and RM use PM not planned using criticality assessment
Spare parts planning Spare parts not planned using criticality assessment

Factors and methods
Factors for assessing criticality Bottlenecks, single or parallel machines and consequence of PM

activities
Methods for assessing criticality Scale used for classification (5 – low, 10 – medium and 15 – high).

Conducted with technicians involved in maintenance organization

Data requirement
Data usage Not much data used
Usability and updates Maintenance uses it; updated quarterly

Maintenance planning
Ownership and production synergy Maintenance owns classification. Consensus with other factories

globally is the aim, to achieve standardized procedures
Problems in criticality assessment The model does not correctly identify critical machine

Table VII.
Results - ED6
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• Some sorts of classifications (ABC type) are used.

• The objective of classification tends to focus on increasing machine availability.

• Productivity is not considered an objective in the criticality assessments.

• Data usage ranges from “nothing” to the use of “mean time between failure
(MTBF)” and “mean time to repair (MTTR).”

• Subjective group-discussion-type analysis for setting criticality (qualitative
approach) even when data are used.

• Maintenance organization responsible for classification.

• Hardly used for maintenance planning activities. PM activities are not based on
criticality, whereas RM activities are conducted by random prioritization or on a
first-come-first-served basis.

• Technicians (and their experience) seem to make routine maintenance decisions
on the shop-floor.

• Criticality classifications rarely updated (quarterly to annually).

• Maintenance organizations use classification tool to achieve consensus with the
production organization on critical machines.

• Current classification tools do not identify the correct machines as critical.

(2) Differences:

• Classification tends to work well for assembly and foundry production set-ups,
but poorly for machining lines. CD works particularly well on assembly and
foundry lines.

• Despite using ABC-type classification, the approach for assessing criticality
differs, ranging from scale questions, to flowcharts and CD matrices.

• Same machine classification tools used for spare parts planning.
However, some sites use a separate classification tool solely to identify
critical spare parts.

• Despite achieving consensus with the production organization on critical
machines using the classification tool, decisions or priorities from the production
organization override the classification tool, and the maintenance organization
must adhere to these.

The results show that the cases have more similarities than differences between them.
In particular, current assessment methods that classify large numbers of machines as
highly critical creates an issue of trust that militates against their use in maintenance
decision making. As multiple unweighted factors are taken into consideration, machines
tend to be assessed as critical under one or other of the chosen factors. The lack of
focus on productivity can also be attributed to the generic objective of increased
availability to which maintenance organizations strive. Subjective assessment methods
and decision making based on operator experience are prevalent across the cases as they
do not use data from production systems in assessing criticality. However, with regard to
the differences between cases, the criticality classification tool works better on certain
production flows than others. Production lines with assembly and foundry layout
where the production flows are tightly coupled, the criticality assessment tool appears to
be used for maintenance decision making and had fewer problems identifying critical
machines. Since there are more similarities than differences, it is likely that the problems
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with machine criticality assessment prevail across the cases companies. This situation
implies that the problems involved in the machine criticality assessment are
highly complex.

5. Discussion
This paper presents the problems in machine criticality assessment practice in manufacturing
companies and identifies criticality assessment components based on a multiple case study.
Six empirical cases were studied, and the results were analyzed within-case and cross-case
analyses results. This section synthesizes the results in terms of criticism of existing practices,
arguments for achieving smart maintenance planning, and scientific and industrial
contributions. Subsequently, discussion on the methodology is presented.

5.1 Existing practices and criticism
On examination of the machine criticality assessment in manufacturing companies, deeper
understanding of the existing practices and the problems in its usage were identified.
One of the main findings from this multiple case study is the identification of reasons for
the manufacturing companies not using their machine criticality assessment tool
for planning maintenance. The results strongly indicate improvement opportunities for
increasing not only machine efficiency but also the productivity of the system. It was
identified that manufacturing companies do not use their classification tools for planning
any type of maintenance. A similar phenomenon was observed previously by
Gopalakrishnan and Skoogh (2018). The criticality assessment tools were rather simply
used only for obtaining consensus with the production organization. Guo et al. (2013) state
that maintenance work-order prioritizations are often made using the experience and
knowledge of maintenance technicians. Reasons such as lack of trust in the existing
classification tool and the assumption that maintenance technicians have a better
understanding of the current situation within the production system than the criticality
assessment tool can provide were identified for not using the tool for maintenance
planning. Especially, the untrustworthy attitude comes from the fact that the method for
assessment has not been mastered, and multiple machines end up being highly critical.
From the findings, it was further narrowed down to the criticisms in existing classification
tools: static, conjectural, complex, biased toward the opinions of those assessing criticality
and basing the assessment on multiple factors. As demonstrated in many of the cases, this
results in a failure on the part of the criticality assessment tool to identify the correct
critical machines. Even in the literature qualitative, multiple factor and static approaches
are used for assessing criticality (Márquez et al., 2015; Moss and Woodhouse, 1999;
Bengtsson, 2011).

Using multiple factors for assessing criticality is common practice. The case companies
use multiple factors in an ABC-type assessment to classify machines. More options are
provided in the literature: RPN (Márquez et al., 2015), fuzzy logic (Moss and Woodhouse,
1999), a decision-making scale (Antosz and Ratnayake, 2016), logical algorithm (Moore and
Starr, 2006), among others. In addition, there are MCDM models for achieving maintenance
optimization. However, when it comes to assessing criticality, using multiple factors hides
the critical machine’s primary criticality criterion. Even though this problem was only
observed in ED2, the authors argue that the problem may persist in all cases. The very
nature of classification means grouping machines in one class or another. However, when
multiple factors are used to arrive at that conclusion, the primary criterion or the
combination of factors by which a machine was classified as highly critical can be lost.
This situation is the main reason, multiple machines within a system end up being classified
as highly critical. The results also show that the main objective of the classification is to
increase the availability of critical machines. Therefore, maintenance is planned for
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improving machine availability. Since multiple factors are used for assessment, the critical
machines will not be solely availability critical. For example, a safety-critical machine will
need safety-related maintenance activities to improve availability. Additionally, the
availability objective of the criticality assessment implicitly indicates the productivity of
individual machines. On the other hand, system productivity cannot be ensured by
increasing the availability of individual machines because of the rippling effects. Prioritized
maintenance efforts for the critical machines will ensure that the availability is maximized
for the critical machines. Therefore, the current maintenance decisions may generate non-
value adding maintenance activities, resulting in financial losses and also reducing machine
availability with concomitant productivity losses. Resolving this situation is not simply a
matter of knowing which machines are critical to a production system, it is also necessary to
know their type of criticality.

Furthermore, the results show that when different people conduct criticality
assessments, different machines might emerge as critical. In most of the cases, achieving
increased machine availability was the main purpose. It can be argued that if increasing
machine availability was indeed the main purpose, then the factors chosen should be based
on increasing availability. Since this was not the case, it can be argued that the current
classification tool lacks a clear purpose. The results repeatedly showed from many cases
that data of any kind other than MTBF and MTTR were used for assessment. This
indicated that the criticality classification tools are not created based on the actual state of
machines production system, i.e. the tool is not fact-based. A criticality assessment which
lacks a clear purpose and is not fact-based cannot identify the critical machines. Hence,
data-driven tools for maintenance decision support are needed for assessing machine
criticality (Ni and Jin, 2012). Another result showed that existing criticality classifications
tend to work better in cases where the production site in question had an assembly or a
foundry production layout. These cases, in particular, used CD for assessing criticality.
Classification then tends to work better because assembly and foundry lines are tightly
coupled, meaning that the effects of the failure of a single-machine/station on the rest of the
system are easily captured. The participants felt that the tool identified the critical machines
at all time. However in the same cases (ED3 and ED4), when machining lines were analyzed
criticality classification proved to be less useful, as it was unable to correctly identify the
critical machines. Even though the tool is perceived to work well in tightly coupled systems,
it is less useful as it is intuitive that a single-machine failure will stop the entire system. In
such scenarios, criticality needs to be assessed using machine-level factors to reduce failure
on the least reliable machines.

Maintenance planning activity is performed to mitigate the variabilities in production
systems so that productivity can be maximized, i.e. a swift and even flow of production is
desirable to maintain flexibility and increase productivity (Schmenner and Swink, 1998).
This swift and even flow can be achieved by taking a systems perspective to maintenance
planning ( factory focus). Based on the current practices and criticisms mentioned above, it
can be concluded that a standardized procedure with a clear purpose, data-driven decisions
and systems perspective is required to assess machine criticality. From the results obtained
in this paper, the current state of machine criticality assessment is modeled and presented
in Figure 2. The model shows the generalized state-of-the-art practices in machine criticality
assessment, and the problems obtained from the six cases. The bullet point list in-between
each of the arrows of the figure describes the attributes of the industrial criticality
assessment at each stage. The attributes comprise of the current state as well as the
criticism against the criticality assessment.

To sum up the results achieved, maintenance organizations in manufacturing companies
lack decision-making support that is needed for the planning of maintenance activities to
increase productivity. As shown throughout all cases, the productivity of the system as an
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objective is overlooked. However, maintenance planning should not only aim to improve
individual machine performance (maximizing availability) but also the productivity of the
entire system. Therefore, maintenance organizations require new technologies in the form of
data-driven, dynamic decision support, e.g. digitalized tools for smart maintenance planning
such as IoT. Moreover, organizational changes are also called for to facilitate approaching
maintenance issues from a systems perspective (Ylipää et al., 2017).

5.2 Machine criticality assessment for smart maintenance planning
Digitalized manufacturing has increased expectations on the role of maintenance
management in delivering high-performing production systems. There is, however, a
wide gap between the expectations on digitalized manufacturing and the future role of
maintenance. Bokrantz et al. (2017) point out that seven dominant themes will influence the
internal environment of maintenance organization in the future. Two among them are
fact-based maintenance planning and planning with a systems perspective. This study has
particularly addressed these challenges by studying maintenance decision support for
smart maintenance planning. This paper has mapped state-of-the-art practices for assessing
machine criticality and mapped the gaps in current assessment techniques that hinder the
development of high-performance production systems. The results obtained suggest that
the focus of maintenance tends to be on solving single-machine problems. The objectives of
criticality assessment are therefore related to machine availability and reliability. A large
amount of research has focused on single-machine problems, and there is a need to refocus
on planning maintenance for multiple machines (Helu and Weiss, 2016; Roy et al., 2016).
Because machine downtime can cause rippling effects which lead to idling losses and the
machines downstream and upstream. These rippling effects reduce the productivity of the
whole system (Skoogh et al., 2011).

On the technical aspect of maintenance organizations, i.e. decision support tools,
CMMS have been argued to be obsolete and can no longer support maintenance decision
making given the dynamic needs of production systems (Ni and Jin, 2012). The results of
this study have exemplified this argument by showing that existing machine criticality
assessment techniques are inadequate in terms of identifying critical machines
for planning maintenance activities and support effective maintenance decisions.

Objective of assessment
Availability and reliability

Factors
Environment, safety, single or
parallel machine, spare parts,

quality, age of machine

Production data
Methods

ABC-type classification, cost
deployment, decision tree, and

guiding flowchart

Data requirement: e.g.
MTTR, MTBF

Maintenance data

Production
databases:

e.g. MES, CMMS

Maintenance engineers Production engineers

Production system

• Lack of use of other data. e.g.
   machine data

• Qualitative approach. Group task between different actors
• Synergy between maintenance and production

Machine criticality assessment

Criticality classification

• Productivity objective missing
• Multiple assessment factors cause several machines to show high 
  criticality

• Does not correctly identify critical machines
• Static and qualitative classification

• Classification does not show the “right”
   critical machine
• Lack of trust

Maintenance technicians

• “Operator-influenced” decisions
• Experience based decisions

Figure 2.
The generalized
model of machine
criticality assessment
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Production systems are dynamic in nature; naturally, the criticality of the machine in the
system as well will tend to change from time to time. Digitalized manufacturing provides
opportunities in terms of machine data availability and quality, connectivity through
IoT and digital tools. Real-time data analysis of data sets from machines can enable a more
accurate and dynamical approach to identify critical machines. Additionally, such an
approach can also provide insights into not only which machines are critical but also why
they are critical. This kind of decision support can assist maintenance planners/engineers
to plan maintenance with greater accuracy based on the needs of the machines. Therefore,
a data-driven approach is necessary for assessing machine criticality in order to make
fact-based decisions.

Regarding the organizational aspect, industrial practices on and approaches to
maintenance issues lack a systems perspective, something that is reflected in this study by
the types of goals (e.g. machine availability) and KPIs (e.g. MTTR and MTBF) that are used
within maintenance organizations. These are focused on individual machine performance.
Even though these measures and goals are important, they alone cannot improve system
performance. Therefore, future machine criticality assessment should focus on prioritizing
PM and RM maintenance activities on the critical machine for the sake of the whole system
(e.g. bottlenecks) at any given point in time. Maintenance organizations tend not to work
with bottleneck machines, preferring to consider all machines as on the same level with
regard to the throughput of the system. To think in terms of and apply bottleneck-critical
based maintenance prioritization is the desired organizational change. Even though the
results have shown that classification tools provide synergy between the maintenance and
production organizations, incorporating productivity as an objective in the overall
maintenance goals will truly enable reaching production synergy. This organizational
change (systems perspective) together with the technical advancements (data-driven and
dynamic approach) can bring us closer to the smart maintenance planning that is necessary
for digitalized manufacturing.

5.3 Scientific contribution
The scientific contribution of the paper is the identification of components for data-driven
machine criticality assessment. Traditionally, machine criticality assessment has not been
widely studied in research communities. Even though RCM-based approaches such as
FMEA are prevalent, these only assess component-level criticality using failure modes
(Moubray, 1997). System-level criticality assessments are rare and tend to adopt a static,
qualitative, multiple-factor approach (see examples in Márquez et al., 2015; Bengtsson, 2011;
Moss and Woodhouse, 1999). However, the results of this study have shed light on the
problems faced in companies due to poor criticality assessments. Arguably, the biggest
problem is that, despite the efforts expended in creating criticality classifications, these are
not used for maintenance planning purposes because they are deemed to be untrustworthy
and unable to identify the correct critical machines. Therefore, future criticality assessment
needs to be developed in such a way as to resolve these issues. In particular, more empirical
research is needed within maintenance (Fraser et al., 2015). With this in mind, the following
are identified as the major components of machine criticality assessment that should
support maintenance decision making:

• to have productivity as the main objective (systems perspective);

• continuous monitoring of machine states (producing, downtime, idling losses, etc.) to
identify criticality;

• data analytics on machine-state data to facilitate real-time decisions;

• define the type of criticality in addition to assessing criticality;
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• selecting factors and assessment windows based on needs (e.g. PM needs a larger
time window with several factors, whereas RM needs a shorter time window with
throughput criticality as the sole factor); and

• machine failure pattern and root cause analysis (predictive and prescriptive
maintenance) to decide on type and frequency of maintenance allocation.

Automated decision support that continuously predicts and prescribes critical machines for
maintenance decision making is desirable. This decision support will make maintenance
efforts selective, fact based and enable faster decisions. Most importantly, it clearly brings
the productivity objective into the maintenance organization. It should be noted that
achieving automated decision support is not the first step. Problems such as data analytics,
data availability, data quality, data security and IT competencies within maintenance
organizations need to be addressed before a robust machine criticality assessment tool can
be obtained. However, the opportunities provided through digitalized manufacturing, such
as IoT tools, fast internet connectivity, etc., will enable this to be rapidly achieved.
In particular, the authors intend to develop a framework for machine criticality assessment
in the future.

5.4 Industrial contribution
The results of the study, i.e. a deeper understanding of machine criticality assessment
practices and struggles in maintenance planning, are of great importance to the
maintenance organizations in manufacturing companies. Additionally, as an empirical
study, the results achieved are highly relevant to the companies concerned. The results
also provide opportunities and methods to improve maintenance planning and seek
productivity increase. The main contribution of the research work is the inclusion of
productivity as an objective in overall maintenance goals. The components of machine
criticality assessment identified in the previous headings suggest that smart maintenance
planning offers productivity improvement opportunities without major financial
investment to the machines. However, the greatest challenge will be the technical and
organizational changes discussed, as these will require the combined efforts of those on
both the managerial side and the shop-floor level. Competition and the need for aggressive
growth are pushing manufacturing companies toward rapid change, making the results
that can be achieved by improving maintenance organizations highly relevant to the
current and future marketplace.

5.5 Methodology discussion
The goals of the paper dictated for in-depth understanding of the industrial practices on
machine criticality assessment and maintenance decisions supported by the tool. The multiple
case study methodology helped in achieving the goals of the paper by enabling in-depth
studies at six different production sites from three different companies. Additionally, the six
cases had variety in terms of work culture and procedure, different production set-ups and
different products being produced. This case study approach provided the advantage of deep
learning from six different production sites than compared to that of a large scale
questionnaire survey which will not enable in-depth study. Even though case study approach
was employed, careful considerations have been made to increase generalizability and
validity. Triangulation of different data sources (ED1–ED6) and different data collection
methods (interviews and focus groups) ensured that the results obtained were generalizable
for discrete manufacturing (Voss et al., 2002; McCutcheon and Meredith, 1993). Furthermore,
cross-case analysis was also performed seeking generalization. As a result, a generic model of
existing machine criticality assessment and components of machine criticality assessment for
increasing productivity were obtained.
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6. Conclusion
The advancements in digitalized manufacturing require traditional maintenance
practices to transform into smart maintenance which supports the dynamic
maintenance needs and increase productivity. This study focuses on the maintenance
decision making by studying the machine criticality assessment tool to achieve smart
maintenance. Previously, it was found that manufacturing companies work with
assessing machine criticality, but it was rendered ineffective for making maintenance
decisions. Therefore, the goals of the paper are to map the objectives, uses, methods and
data requirements for machine criticality assessment and to identify its components to
increase productivity, with the aim of including productivity as an objective for the
maintenance organization.

The results were achieved through a multiple case study was conducted with six cases in
three multi-national companies. An in-depth understanding of the industrial practices on
setting machine criticality, the purpose and problems with it for planning maintenance was
identified. Specifically, the study identified that the companies perceive the existing
criticality assessment tools to be untrustworthy. The tools did not identify the right critical
machines which are crucial for decision making. It was identified that qualitative approach,
lack of data usage from machines, static procedure, multiple assessment factors and lack of
clear objectives were the main reasons behind this. Furthermore, the results obtained also
provide additional reasoning behind operator-influenced and experience-driven decision
making instead of fact-based decision making. On analysis of the results, technological
(dynamic and data-driven decision making) and organizational (systems perspective)
changes that are needed within the maintenance organization were prescribed. Data-driven
machine criticality can enable maintenance decisions to be based on facts, whereas
approaching maintenance with a systems perspective enables maintenance to focus on
maximizing system productivity instead of maximizing availability. By the results
achieved, this study describes the components of future machine criticality assessment: to
have productivity as the main objective, continuous monitoring of machine states, data
analytics, defining the type of criticality for the machine and selection of factors for
assessment based on machine needs and including failure pattern and root cause.
In conclusion, this study points toward a data-driven machine criticality assessment for
making factual maintenance decisions. Such a decision support will be essential for
achieving smart maintenance planning, thereby enabling also to fulfill the demands of
digitalized manufacturing.
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