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Abstract

Purpose – This paper proposes a progressive, multi-level framework for diagnosing maintenance
performance: rapid performance health checks of key performance for different equipment groups and end-
to-end process diagnostics to further locate potential performance issues. A question-based performance
evaluation approach is introduced to support the selection and derivation of case-specific indicators based on
diagnostic aspects.
Design/methodology/approach – The case research method is used to develop the proposed framework.
The generic parts of the framework are built on existing maintenance performance measurement theories
through a literature review. In the case study, empirical maintenance data of 196 emergency shutdown valves
(ESDVs) are collected over a two-year period to support the development and validation of the proposed
approach.
Findings – To improve processes, companies need a separate performance measurement structure. This
paper suggests a hierarchical model in four layers (objective, domain, aspect and performancemeasurement) to
facilitate the selection and derivation of indicators, which could potentially reduce management complexity
and help prioritize continuous performance improvement. Examples of new indicators are derived from a case
study that includes 196 ESDVs at an offshore oil and gas production plant.
Originality/value –Methodological approaches to deriving various performance indicators have rarely been
addressed in the maintenance field. The proposed diagnostic framework provides a structured way to identify
and locate process performance issues by creating indicators that can bridge generic evaluation aspects and
maintenance data. The framework is highly adaptive as data availability functions are used as inputs to
generate indicators instead of passively filtering out non-applicable existing indicators.
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1. Introduction
Productivity and profitability are key factors for companies to remain competitive in
today’s rapidly changing world. Concomitantly, maintenance is beginning to play a more
important role in many production-related industries as the impact of maintenance
performance on productivity and profitability has increased (Lado and Singh, 2019; Ismail
et al., 2022). Therefore, measuring the performance of maintenance activities has become a
crucial part of maintenance management. Evaluating maintenance performance supports
asset managers and system owners in gaining knowledge about how the outputs of
maintenance processes contribute to the business goal (Parida et al., 2015), which, in turn,
drives the continuous improvement of maintenance processes and strategies (Choubey
et al., 2021; M�arquez, 2007).

The immense importance of maintenance performance tracking has generated
increasing interest in the development of a maintenance performance measurement
(MPM) framework. According to Parida et al.’s (2015, p. 15) definition, MPM is “the
multidisciplinary process of measuring and justifying the value created by maintenance
investment, and taking care of the organization’s stockholders’ requirements viewed
strategically from the overall business perspective.” As an important and integrated part of
performance measurement, an MPM framework links organizational strategy to
performance measurements using a list of indicators to set criteria (Kumar et al., 2013).
Maintenance performance indicators (MPIs) are the building blocks of an MPM framework.
They quantify maintenance performance as a measurable value and provide direct
indications of whether the performance of maintenance activities meets the designated
objectives.Well-definedMPIs can pave the way to the desired maintenance performance by
supporting the identification of performance gaps (Muchiri et al., 2011). However, despite
the numerous resources and efforts spent on development, MPM systems often do not have
enough influence to trigger decision and process changes (Muchiri et al., 2010). On the one
hand, in the vast majority of cases, performance measures are overloaded with technical
indicators (Rybin et al., 2020). This increases the difficulty of performance management,
leaving maintenance databases and indicators undocumented or unregulated (Parida et al.,
2015). The implementation of maintenance performance management is seldom driven by
process and demand changes (Wakiru et al., 2022), making existing MPM systems deviate
from maintenance objectives and become less effective over time. Therefore, the
measurement of these indicators is distributed into individual technical aspects and fails
to contribute to an end-to-end view, which shows a complete performance evaluation of
major maintenance processes from beginning to end. On the other hand, overall indicators
are generally involved in multiple processes, aspects and roles, making it difficult to
identify a specific issue and take concrete actions, leading to a loss of focus on continuous
improvement (Barber�a Mart�ınez et al., 2017; van Horenbeek and Pintelon, 2014).
Maintenance data, especially those of poor quality, have a strong influence on the
capability of existing performance measures (Ge et al., 2023; Lukens et al., 2019). The
misalignment between data availability and data requirements for common performance
indicators can decrease the validity of existing MPM systems (Braz et al., 2011).
Performance-related analysis becomes inconclusive when input data are not available to
support the calculation, whereas potentially useful measures might be uncovered, although
the input data are ready for use (Agergaard et al., 2021; Villarejo et al., 2017).

Numerous examples of MPM systems that have adopted categorical and hierarchical
performance classification methods are found in the literature. In addition, recent studies
have explored approaches for selecting performance indicators. However, an MPM
framework that comprehensively assesses end-to-end processes and alignment between
data availability and performance measures is still missing.
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To address the research gaps mentioned above, the research question for this paper is
formulated as follows: “How can maintenance performance be measured in a holistic end-to-
end view by utilizing available data?”

To answer the research question, this study developed a conceptual framework for the
structured diagnostics of potential performance issues in an end-to-end maintenance setup.
The diagnostic aspect of the framework highlights a progressive performance measurement
approach, tracing the resulting performance issues down to specific maintenance processes
in the domains of effectiveness, efficiency and compliance. The case study shows that the
framework can guide the derivation of MPIs using available data on existing equipment. The
proposed framework contributes to the scholarly knowledge of maintenance performance
management and has the potential to support efficient performance diagnostics of existing
production systems.

The rest of the paper is organized as follows. Section 2 provides a brief overview of the
structure of existing MPM frameworks and MPI selection methods. Section 3 describes the
case research and data collectionmethods, and Section 4 introduces the development of a two-
step multi-level maintenance performance diagnostic framework. Section 5 demonstrates the
derivation of case-specific maintenance performance indicators through case study
examples, Section 6 discusses some of the observations from the case study, and Section 7
summarizes the research and provides academic and practical implications, limitations and
suggestions for future work.

2. Literature review
2.1 Maintenance performance measurement frameworks
MPM methods and techniques have been investigated extensively in various industries.
Previous studies onMPM frameworks categorized performance measures and indicators in
different ways to associate them with their corresponding maintenance objectives.
Campbell (1995) classifies commonly used maintenance performance measures into three
categories: equipment performance, cost performance, and process performance. Tsang
et al. (1999) introduce a holistic approach to establish maintenance performance measures
using the well-known balanced scorecard, which translates a business unit’s strategy
around four perspectives: financial, customer, internal process, and learning and growth
(Kaplan and Norton, 1996). In recent studies, various versions of the modified balanced
scorecard have been developed formaintenance performance-related applications, focusing
mainly on the inclusion of non-financial perspectives (Campos et al., 2017; Maci�an et al.,
2019; Sirin et al., 2020; Tanoto et al., 2022), and alignment with objectives and information
systems (Campos et al., 2017). The European standard for maintenance key performance
indicators provides an organizational model of maintenance function, which is composed of
six sub-functions: health-safety-environment, management, people competence,
engineering, organization and support, and administration and supply (EN:15341, 2019).
For each sub-function, a list of key performance indicators is given. Recent studies have
suggested incorporating sustainability measures for performance measurement (Olugu
et al., 2022). More categorization methods can be found in the review paper by Parida
et al. (2015).

MPIs can also be categorized as leading and lagging indicators in a broader sense.
According to Weber and Thomas (2006), leading indicators monitor whether maintenance
processes are performed in a way that leads to expected results, whereas lagging indicators
monitor the results achieved with maintenance activities. The authors further classify
lagging indicators as cost, failure, and downtime measuring, whereas leading indicators are
classified as six types of measures, each corresponding to one maintenance process. Muchiri
et al. (2010) proposed a similar yet different classification methodology for leading and
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lagging indicators. In this proposal, work identification, work planning and scheduling, and
work execution are the three sub-categories under leading indicators, whereas lagging
indicators are further categorized as equipment effectiveness, maintenance cost-
effectiveness, and safety-environment indicators.

To better align indicators with specific purposes and/or users of performance
measurements, it is also common to formulate indicators at different levels (Kumar et al.,
2013; Wireman, 2005). Such multi-criteria hierarchical MPM frameworks have two types of
structures. Some studies suggest that the same measuring criteria or perspective can be
applied to all hierarchies. Parida and Chattopadhyay (2007) propose a multi-criteria
hierarchical MPM framework with three vertical levels: strategic, tactical, and functional.
MPIs at lower levels aggregate at the strategic level for each measuring criterion. Galar et al.
(2011) present a five-level hierarchical model of an integrated maintenance balanced
scorecard, linking the four perspectives to each organizational level and their corresponding
objectives. Lai and Man (2018) introduce a phase-hierarchy model for performance indicator
classification, integrating the two performance measurement dimensions into a three-by-
three matrix. Indicators are classified by hierarchical level and service delivery phase.
Meanwhile, proposals for different measuring criteria for each hierarchy have been observed
in recent studies. Naji et al. (2019) develop amulti-level, multi-criteria decomposition approach
to classify MPIs in terms of six strategic aspects, each of which can be broken down into its
own hierarchy. Lundgren et al. (2020) introduce a multi-criteria hierarchical framework to
measure the performance of smart maintenance. Based on the anticipated impacts of smart
maintenance, the authors adopted three classified sets of performance criteria in relation to
firm, plant, and individual levels (Bokrantz et al., 2020). A brief review of how performance
indicators are chosen in the maintenance field and industrial sectors is provided in the
following section.

2.2 Choice of performance indicators
The issue in performance indicator selection is essentially a multiple criteria decision-
making (MCDM) problem. The majority of the identified literature applies quantitative
ranking or prioritization methods to select indicators. The analytical hierarchy process
(AHP) method, one of the most used MCDM methods in performance indicator selection,
is designed to solve complex multiple criteria problems by providing prioritization and
incorporation for assumingly independent criteria (Saaty and Sodenkamp, 2010). Elhuni
and Ahmad (2017) propose an AHP-based approach to prioritize sustainable production
performance indicators in the oil and gas industry, while Nam et al. (2019) utilize AHP to
prioritize and select a set of performance indicators for evaluating sanitary sewer
systems. As an extension of AHP, the analytic network process (ANP) does not assume
the independence of criteria (Saaty, 2004). Van Horenbeek and Pintelon (2014) select MPIs
by using the ANP to prioritize maintenance objectives at all organizational levels and
deriveMPIs that are linked to business-specific maintenance objectives. Another method,
the decision-making trial and evaluation laboratory (DEMATEL), is also used to examine
the interdependency of criteria in MCDM problems (Alinezhad and Khalili, 2019).
Aiello et al. (2021) investigate the degree of internal relations among MPIs and select
a representative set to monitor preventive maintenance efficiency using the
DEMATEL method. Furthermore, Maduekwe and Oke (2021) compare three
DEMATEL-based methods in an MPI prioritization and association case in the food
processing industry.

Expert opinions were collected through pairwise comparison questionnaires and used as
input for the studies listed above. However, the vagueness and uncertainty of human
judgment can introduce inconsistencies between judgment and ranking criteria in real-life
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problems (Nam et al., 2019). Some researchers have introduced fuzzy logic to overcome these
issues. Stefanovic et al. (2017) present a ranking and assessment approach for maintenance
process, cost, and equipment indicators. The authors applied fuzzy sets to calculate the
weight values for a group of indicators at a Serbian metal processing plant, followed by a
genetic algorithm that ranked the indicators. Naji et al. (2019) quantify elementary
maintenance performance measurement with fuzzy logic before introducing the AHP for
prioritizing and aggregating elementary indicators. In another case involving an oil refinery
plant, Maria and Manuela (2017) prioritize MPIs by combining fuzzy logic with the AHP and
the technique for order of preference by similarity to ideal solution (TOPSIS) methods.
Furthermore, Gonçalves et al. (2015) suggest selecting MPIs by applying the elimination and
choice expressing reality (ELECTRE) method, which enables the handling of heterogeneous
scales among criteria, thus allowing the candidates to maintain their original concrete verbal
meaning.

Based on the reviewed studies, the authors of this paper summarize the process of
choosing a set of MPIs for an MPM framework in three sequential steps: identifying
potentially relevant indicators, screening indicators according to the organizational
context, and prioritizing indicators with high impacts. The number of MPIs listed in the
literature is substantial, yet a widely agreed-upon methodology for deriving the
indicators is still unavailable (Kumar et al., 2013, 2018; Maria and Manuela, 2017), leaving
a key knowledge gap in MPI formulation. Although the reviewed literature focuses
strongly on the ranking methodologies of performance indicators based on aspects of
performance evaluation, the reasoning for why one indicator is more relevant than
another in the context remains implicit. Moreover, it has been observed that the data
collected for performance measurement are not adequately used in decision support
(Muchiri et al., 2010). On the one hand, the large number of data collected becomes a
problem, as they require more sophisticated methods and algorithms to elicit useful
information (Villarejo et al., 2017; Wakiru et al., 2022). On the other hand, the reviewed
indicator selection methods take a one-way path from identifying to screeningMPIs. Data
availability is considered a filter for eliminating non-applicable indicator candidates
rather than an input to derive potential indicators. Potential indicator candidates are
mostly gathered through literature searches and industrial practices, leaving some of the
available and potentially useful data behind. Consequently, the links between selected
MPIs and the focus on future performance improvement weaken. Despite the various
methods for selecting and prioritizing indicators identified in the literature, there is a lack
of research on developing comprehensive measures for evaluating maintenance
processes that consider the entire cycle and are less sensitive to data availability. To
address these issues, a performance diagnostic framework that creates a mutual
connection between performance aspects and maintenance data is proposed.

3. Research method
3.1 Research aim
The literature review above shows research gaps in the systematic derivation ofMPIs and the
development of generic MPM frameworks to cover the complete maintenance process flow of
existing equipment. Furthermore, it is not clear how existingmaintenance data can be used to
facilitate the formulation of MPIs. To tackle these issues, this study presents the concept of a
generic and adaptive maintenance diagnostic framework through case research, thus
contributing to the literature on the performance measurement of maintenance activities.
Such considerations form the basis of the research question of this paper: How can
maintenance performance be measured in a holistic end-to-end view by utilizing available data?
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The research presented in this paper is based on a literature study and a case study, following
a prescriptive research approach. The proposed maintenance diagnostic framework extends
the knowledge in the current MPM-related literature.

3.2 The case study method
In accordance with the concept development presented in the following section, a case study
was conducted to validate the proposed approach. This case study was designed following
the five-stage research process model (Stuart et al., 2002). This research uses a single case
study setup because it enables in-depth observation of phenomena in exploratory
investigations and provides an opportunity to access multiple contexts within the case
(Barratt et al., 2011; Meredith, 1998). The in-depth single case study allows the authors to
develop a comprehensive and adaptive performance diagnostic framework for maintenance
work at an existing offshore oil and gas plant. The limitations of a single case study include
the risk of misjudging the representativeness of a single event and reduced generalizability
(Voss et al., 2002). Introducing other case companies in a study is a common approach to
improve generalizability (Eisenhardt, 1991).

3.3 Data collection and analysis
The case study was conducted on 196 emergency shutdown valves (ESDVs) at an offshore
production plant of a multi-national company in the oil and gas exploration and production
industry. This research primarily uses objective data from the company’s database to
support concept development and validation. The objective data include quantitative and
qualitative historical maintenance data collected over a period of two years, from April 2017
to March 2019. Inputs from maintenance experts were gathered through meetings, semi-
structured interviews, and workshops.

This study applies several techniques to ensure validity and reliability in data collection
and analysis, so that the research outcomes are rigorous and relevant. Reliability is ensured
by applying multiple data collection methods, documenting how the case study was
conducted, and developing and maintaining a database for the case study (Ellram et al.,
2020). The data collection methods applied in this study are listed in Table 1. Specifically,
the maintenance records used in this paper are secondary data from a structured
maintenance data model. The records were directly extracted through the case company’s
secured computerized maintenance management system (CMMS) and contextualized in the
data model to allow scoping in selected equipment categories. The records were inspected
in the data model on an aggregated level to eliminate possible errors during extraction.
Incomplete records were found from the original extractions and kept in order to examine
the adaptability of the framework. Outliers, such as empty or rejected work orders, were
removed before the analysis. Maintenance work principles and guidelines were gathered
from the case company’s internal documentation. Other qualitative data collected for this
study was stored as tables and documents in digital formats. To ensure construct validity,
data triangulation was applied using archival data, workshop inputs and interview data.
The analysis of maintenance records was primarily carried out on business intelligence
software QlikView. Key calculations were repeated to confirm that the results are
replicable. Maintenance experts in various roles at the case company were invited to review
the drafts of the framework through several iterations. To ensure internal validity, the
diagnostic framework was developed based on the literature (Birolini, 1994; Campbell,
1995; Muchiri et al., 2011; Nielsen, 1997; Sigsgaard et al., 2020; Weber and Thomas, 2006).
Pattern matching and explanation building were performed throughout the concept
development following Karlsson (2016). In this research, the case study was conducted at
one company due to resource limitations, which have a negative impact on external
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validity. The external validity issue is mitigated by inviting maintenance experts to review
the proposed framework. System owners, as well as maintenance operations and process
improvement personnel, were invited throughout the case study to validate the results.

4. Development of maintenance performance diagnostic framework
4.1 Structure of maintenance performance diagnostic framework
Measuring maintenance performance requires time and effort. A detailed investigation of
maintenance performance usually requires data from multiple sources. In some cases, data
collection, data processing, and text analysis require manual work to update performance
results. The lack of automated data for the knowledge process gives rise to the need to
conduct an analysis that takes days to months (Parida et al., 2015). To reduce the time and
labor costs of regular performance tracking, the proposed maintenance performance
diagnostic framework is designed in two parts, as illustrated in Figure 1.

The first part of the framework focuses on the action “detect,” namely, detecting the
existence of potential performance issues by measuring maintenance outcomes. For
equipment types or maintenance strategies with satisfactory maintenance outcomes,
additional diagnostics are not necessary; otherwise, an end-to-end investigation at the
process level is carried out in the second part. The second part focuses on the action “locate,”
namely, locating potential maintenance performance issues down to the process level. The
proposed multi-criteria framework has a hierarchical structure at the first three levels
(diagnostic objectives, diagnostic domains, and diagnostic aspects). A top-down approach is
used to properly formulate the performance measurement structure at these levels. Level 1
determines the top-level objective for the performance diagnostics for each part. Level 2
defines the major performance diagnostic viewpoints under level 1 objectives as domains.
Level 3 further expands the domains into categorical diagnostic aspects. The performance
result for each thematic category from levels 1–3 is represented by a qualitative indicator,
which aggregates the corresponding indicators at the lower level. Level 4 (performance
measurement) links MPIs to relevant diagnostic aspects at level 3, depending on the data

Data Data type Data collection method Data collection aim

Maintenance
notification
records

Quantitative
and qualitative

Extractions from case company’s
CMMS database

Establish casualties between
maintenance data and MPIs;
develop and validate the
diagnostic frameworkMaintenance

work order
records
Maintenance
operation records
Work principles
and guidelines

Qualitative Searches of case company’s
internal document hub

List of existing
MPIs

Qualitative Searches of case company’s
internal document hub and
meetings with performance
management stakeholders

Maintenance
expert inputs

Qualitative Semi-structured interviews,
meetings, and workshops

Gather expert opinions and
feedbacks to support the
development and validation of
the diagnostic framework

Source(s): Authors’ own creation/work

Table 1.
Data collection in the
case study
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availability of a specific case. The rest of this section explains levels 1–3 for both parts. Case
study examples of level 4 are presented in the next section.

4.1.1 Part 1: rapid check of performance health status. As mentioned in the previous
section, the purpose of designing the diagnostic framework as having two parts is to reduce
the time and effort spent on regular performance tracking. The first part of the framework
functions as a rapid health check of the recent maintenance outcomes as a whole, which
indicates whether detailed diagnostics at the maintenance process level are required.
Therefore, the objective of this part is to perform overall performance diagnostics using as
few maintenance result (lagging) indicators as possible. Based on Campbell’s (1995) and
Muchiri et al.’s (2011) classification methods, the proposed framework performs overall
performance diagnostics in two domains: overall equipment performance and overall
maintenance performance.

Overall equipment performance shows the functionality of equipment procured by
maintenance actions. Overall equipment performance can be measured by reliability,
availability, maintainability, and safety (RAMS), which consists of a widely used set of
lagging indicators (Warsokusumo et al., 2021). Summarizing the definitions of RAMS by
Birolini (1994), Gulati (2013), andWarsokusumo et al. (2021), reliability is the probability of
an item being able to perform its intended functions in specified periods and conditions,
usually measured with the mean time between failures (MTBF) for repairable items and the
mean time to failure (MTTF) for non-repairable systems. Maintainability is the ability of an
item to be restored or retained in a certain condition, usually measured with the mean time
to repair (MTTR). Availability is a function of reliability and maintainability, measured
with the degree to which an item can realize its intended function at an unspecified time. In
this study, reliability, availability, and maintainability are categorized as diagnostic
aspects at level 3. Safety is not within the scope of this study, but can be included if
necessary.

Overall performance diagnostics measure the cost and proactivity of maintenance at
the aspect level. Maintenance costs can be measured in direct and indirect ways. Direct
maintenance cost indicators are measured in monetary values, such as the total
maintenance cost and the cost per unit of product (maintenance intensity). Indirect

Figure 1.
Overview of the

maintenance
performance

diagnostic framework

Diagnostic
framework of
maintenance
performance

739



maintenance cost indicators are measured in other units, typically as fractions of greater
cost in percentages. Maintenance workload, in terms of work hours, can also give an
indirect indication of maintenance costs. Examples of indirect maintenance cost
indicators include breakdown severity (breakdown cost over direct maintenance cost),
percentage cost of personnel, and percentage cost of subcontractors (Muchiri et al., 2011).
Maintenance proactivity indicates the ability of preventive maintenance work to reduce
the need for corrective maintenance. The amount of corrective maintenance should be
kept at a reasonable level to avoid disturbance of scheduled maintenance work.
Overloaded corrective maintenance work compresses the work capacity for preventive
maintenance, which consequently creates backlogs and leads to a higher risk of new
equipment failures. The International Organization for Standardization (2016) provides
three examples of key performance indicators that are relevant to maintenance
proactivity in the petroleum, petrochemical, and natural gas industries: the preventive
maintenance work-hours ratio, the corrective maintenance work-hours ratio, and the
corrective maintenance workload.

Part 1 of the proposed framework provides a rapid, high-level check of performance health
on a regular basis. Therefore, it is important to ensure that all data used for performance
measurements are easy to retrieve and able to support automated updates.

4.1.2 Part 2: locating performance issues.Well-performed maintenance processes lead to
the desired production results. On the flip side, poor maintenance results can indicate a
loss of quality in one or more maintenance processes. Process performance diagnostics,
as the second part of the diagnostic framework, are applied when unsatisfactory
maintenance outcomes are detected in a rapid performance health check. The main
objective of this part is to find out which processes are causing the issues and in
what way.

The three domains of process performance diagnostics are defined as follows:

(1) Process effectiveness: The effectiveness domain measures the degree to which the
maintenance objectives of the corresponding maintenance process are achieved.

(2) Process efficiency: The efficiency domain measures the degree to which maintenance
processes are carried out in a highly productive manner.

(3) Process compliance: The compliance domain measures the degree to which actual
maintenance processes comply with designated routines, procedures, or guidelines.

Note that effectiveness, efficiency, and compliance are three independent diagnostic domains.
The results for one domain do not necessarily lead to certain results in another domain. For
instance, a maintenance process performed with poor compliance can still be effective and
efficient, which highlights a potential best practice not yet identified in the current guidelines.
On the other hand, a maintenance process carried out with good compliance and efficiency is
not guaranteed to be effective if the maintenance strategy is not optimal or up to date.
Together, the three independent diagnostic domains provide comprehensive coverage of
process performance measures.

The process diagnostic aspects are represented by the maintenance management process,
which is also referred to as the maintenance work process, maintenance process, or
maintenance effort. Nielsen (1997) introduces six basic maintenance work processes for the
strategic management of commercial nuclear power stations, and their use has been
expanded into various industries, includingmaintenance for oil and gas production. Based on
a cluster of literature, the definitions of the six maintenance management process steps in
end-to-endmaintenance are as follows (Muchiri et al., 2010; Sigsgaard, Agergaard, Mortensen
et al., 2020; Weber and Thomas, 2006):
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(1) Identification: Preventive maintenance (PM) and corrective maintenance (CM) jobs
start with the identification process. In this step, the need for maintenance actions is
identified, and notice is made. For corrective maintenance, the process is triggered by
a failure that affects or will affect the intended function of the equipment.
Comprehensive information about the failure is gathered and reported for decision
support in the following processes. For preventive maintenance, this step identifies
the need for proactive maintenance tasks according to the system and equipment.

(2) Prioritization: Maintenance jobs are assessed based on their importance and assigned
a priority. Prioritization ensures that highly critical work is planned, scheduled, and
executed in a timely manner so that the risk of severe failure consequences can be
reduced.

(3) Planning: The planning step determines concrete maintenance tasks according to
equipment and failure information. According to these maintenance tasks, resources
are estimated and allocated to the jobs in terms of material, personnel competency,
and time consumption. The planning step ensures that all necessary resources for
execution are considered.

(4) Scheduling: Technically and financially approved jobs are then sent to the scheduling
step. This step evaluates the availability of the required resources and schedules jobs
for execution according to resource availability and job priority.

(5) Execution: Maintenance tasks required in the jobs are carried out by trained
maintenance technicians.

(6) Close-out: The close-out step collects technical and business information from the
execution process. The gathered information is documented and used for continuous
improvement.

By integrating the maintenance management processes and diagnostic domains as two-
process evaluation dimensions, a domain-process model is developed, as shown in Figure 2.
Each cell in this model corresponds to a process diagnostic aspect at level 3. These diagnostic
aspects are the basis for creating key diagnostic questions and deriving MPIs, which are
introduced in the next section.

4.2 Deriving maintenance performance indicators
The first three levels of the proposed diagnostic framework are generic and can be utilized for
maintenancemanagement in various industries. The fourth level, performancemeasurement,
is case-specific, depending on the context, including data availability, depth of diagnostics,
and other considerations. To integrate the context into the derivation process of MPIs, this

Figure 2.
The domain-process

model for formulating
key diagnostic

questions about
diagnostic aspects

(level 3)
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section introduces a question-based performance measurement approach to support the
derivation of MPIs for specific cases. An overview of how the question-based performance
measurement approach supports the bridging of diagnostic aspects and maintenance data is
shown in Figure 3. The MPIs are derived through three steps.

4.2.1 Step 1: interpret diagnostic aspects by proposing key diagnostic questions. Each
performance diagnostic aspect, as shown in Figure 2, is first interpreted with a few case-
specific key performance diagnostic questions that determine the degree of completion of the
aspect. These questions are proposed in a way that points out the most relevant performance
information that is of interest from this aspect. Only themost representative questions should
be proposed, and preferably no more than three for each aspect. The questions should be
phrased in plain and easy-to-understand language. An important note is that a proposed
question should target the performance of only one aspect when possible. If a proposed
question involves multiple aspects, the question should be decomposed to match each aspect
or substituted with another measurement method. At the end of this step, a full list of
performance diagnostic questions is obtained.

4.2.2 Step 2: link key diagnostic questions and available data.The second step is to establish
links between the key diagnostic questions and available data. In this step, all the data that
can potentially be utilized to answer the questions are identified and tagged. The term data
refers to all the accessible information related to maintenance performance measurement,
which includes, but is not limited to, historical maintenance work records, equipment
information, and maintenance strategy documentation. The key diagnostic questions and
data usually complywith one-to-many relationships; that is, one question is linked tomultiple
data fields. The questions can be rated in three categories in terms of the effort required to
obtain the answers, formulation, and type of associated data, as follows:

(1) Type A questions: Questions that can be answered in a quantitative and automated
way. Only simple calculations are required for the corresponding performance
measurements, which can be realized with business intelligence software. The results
can be easily updated by importing new input data.

(2) Type B questions: Questions that can be answered in an automated way, but the
corresponding performance measurement is complex and needs further definition.

Figure 3.
Bridging performance
diagnostic aspects and
maintenance data
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Dedicated algorithms are most likely required for the calculation, which demands a
one-time effort for its design and realization. The results can be updated by importing
new input data once the algorithm is applied.

(3) Type C questions: Questions that can be answered only in a qualitative way. The
corresponding performance evaluation criteria are not quantifiable. Instead, they
must be determined manually. The data input involves non-standardized text fields
that cannot be processed with numerical calculations.

It is evident that Type A questions are the most preferable, whereas Type C questions are the
least preferable in terms of the time and effort required to conduct performancemeasurement.
Therefore, the balance between comprehensiveness and complexity for each performance
measurement should be carefully considered in this step. Some of the questions can be
reformulated at this step, depending on their type, the purpose of the performance diagnostic,
and the resources available.

4.2.3 Step 3: specify maintenance performance indicators. Maintenance performance
indicators are specified in this step based on the key diagnostic questions and their associated
maintenance data. A list of existing MPIs from the case organization should be summarized
before this step, when applicable. This list should first be checked to see if measurement with
an existing indicator can provide the answer to a proposed key diagnostic question. Such
indicators, if found, should be directly adopted in the diagnostic framework as a case-specific
MPI at level 4 to avoid unnecessary work in deriving new indicators. If none of the existing
performance indicators can be used as a response to a key diagnostic question, a new
performance measure should be formulated using the data fields tagged for this question in
the previous step. When deriving a new performance measure, it is important to use only the
most relevant data fields as input and keep the calculation of performance indicators as
simple as possible. In some cases, a performance measure cannot be formulated for various
reasons, such as a lack of data or overly complex calculations. In such situations, the key
diagnostic question should be revised to ease the issue but without compromising the
representativeness of its corresponding diagnostic aspect. For diagnostic aspects that cannot
yield any performancemeasures due to data availability, the aspects should be omittedwith a
note about the most critical data required for calculation.

5. Case study
The maintenance performance diagnostic framework proposed in the previous section is
partially applied in a case study. Specifically, the overall performance diagnostics part of the
proposed framework is not illustrated in the case study because it shares a hierarchical
structure similar to the other part presented in this section. In addition, as introduced in
Section 4.1.1, the majority of the MPIs for the overall performance diagnostics have been well
defined and applied based on consensus in the literature andmany industries. Therefore, this
section focuses on the process performance diagnostics and the derivation of MPIs based on
the domain-process model (Figure 2).

The case study is conducted on the maintenance activities of ESDVs at an offshore oil and
gas extraction and production plant. The maintenance data gathered for this study include
historical maintenance records, maintenance work principles, and guidelines. Maintenance
records from PM and CM are collected from April 2017 to March 2019 based on the actual
start date of the maintenance work. Up to 165 maintenance records are obtained within the
two-year period, covering 196 valves in total.

The case studies presented in this section explain how case-specific MPIs on level 4 are
derived. Following the question-based performance measurement approach proposed in
Section 4.2, the first step is to interpret the level 3 diagnostic aspects by proposing key
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performance diagnostic questions. One to three questions are proposed for each aspect of the
domain-process model. These questions are reviewed by a group of maintenance experts
from the case company and revised in several rounds based on their feedback. Figure 4 shows
the final list of 23 key performance diagnostic questions sorted by the process diagnostic
domain (level 2) and aspect (level 3). These questions are then linked to the relevant data that
are available and categorized as Type A, B, or C (listed in Figure 4) based on the estimated
effort to accomplish performance measurement. Considering the extensiveness of the
performance measures involved, the rest of this section will demonstrate the derivation of
case-specific MPIs through two examples with numeric and text inputs.

Example 1. Deriving MPIs for compliance with the execution time window

Question 3.6, “How many maintenance jobs are not performed within the scheduled time
window?”, is linked to five data fields that are potentially relevant to the performance
measurement, as shown in Table 2. All five data fields—scheduled earliest start date (SESD),
execution start date (ESD), scheduled latest finish date (SLFD), execution finish date (EFD),
and close-out date (COD)—are retrieved from historical maintenance records in date format,
which can be represented numerically. As no manual work is required to read or analyze the
data, question 3.6 is classified as Type A. As none of the existing MPIs can be utilized as a
performance measure to answer this question, a new performance measure, the time window
compliance rate, is formulated. For each historical maintenance record, the time window
compliance status is defined as follows:

Figure 4.
Full list of key
performance
diagnostic questions
and their
corresponding process
diagnostic aspects
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Timewindowcompliance status¼
�
Compliant; if SESD≤ESD≤ ðEFDorCODÞ≤SLFD

Not compliant; if otherwise

The close-out date is used when the execution finish date data is missing. The time window
compliance rate for all records is defined as:

Timewindow compliance rate ¼ number of time window compliance records

number of total records
3 100%

The time window compliance rate is the derived MPI for the execution compliance aspect.

Example 2. Deriving MPIs for PM identification compliance

Question 3.1, “Is PM work identified following maintenance strategies?”, is complicated and
classified as Type C, as it requires manual extraction and comparison of non-standardized
text fields from different data sources. For each maintenance interval, the PM activities
described in the strategies should be reflected in the identified PM task lists from historical
maintenance records. The data fields that are potentially related to this question are listed in
Tables 3 and 4. The data in Table 3 are manually summarized from maintenance strategy
documents. Equipment type and maintenance interval are used to match strategies to
corresponding maintenance records. Reference is not critical for evaluating strategy
compliance; thus, it is not used in formulating the performancemeasure. Manual text analysis
is conducted on the identified PM task lists extracted from the maintenance records to
determine whether the activities defined in the strategies have been listed, as shown in
Table 4. For a given individual record, the conclusion is either “compliant” or “unknown.”
Therefore, the PM strategy compliance rate for all records is defined as follows:

PM strategy compliance rate ¼ Number of PM strategy compliance records

Total number of records
3 100%:

The PM strategy compliance rate is the derived MPI and is used to answer question 3.1.
In summary, the case study demonstrates the derivation of case-specific MPIs from the

generic aspects in the maintenance diagnostic framework using the question-based
performance measurement approach. The generic process diagnostic aspects at level 3 are

Record
number

Equipment
type

Scheduled
earliest
start date
(SESD)

Execution
start date
(ESD)

Scheduled
latest finish
date (SLFD)

Execution
finish date
(EFD)

Close-
out
date
(COD)

Time
window
compliance
status

001 ESDV 18/10/2017 25/10/2017 26/10/2017 25/10/2017 25/10/
2017

Compliant

002 ESDV 26/05/2017 07/06/2017 16/06/2017 (Missing) 07/06/
2017

Compliant

003 ESDV 13/05/2018 25/05/2018 07/06/2018 25/05/2018 02/06/
2018

Compliant

004 ESDV 18/07/2018 22/07/2018 26/07/2018 27/07/2018 08/09/
2018

Not
compliant

. . . . . . . . . . . . . . . . . . . . . . . .
165 ESDV 26/01/2019 07/02/2019 19/02/2019 13/02/2019 13/02/

2019
Compliant

Source(s): Authors’ own creation/work

Table 2.
Examples of

maintenance records
for scheduling

compliance
performance
measurement

Diagnostic
framework of
maintenance
performance

745



interpreted with a list of key performance diagnostic questions according to the use case and
data availability. Two case study examples are presented to show how process diagnostic
MPIs can be created under the guidance of diagnostic questions in real-life cases.

6. Discussion
The case study illustrates the derivation process of case-specific MPIs from the proposed
maintenance performance diagnostic framework. In relation to the research question, “How
can maintenance performance be measured in a holistic end-to-end view by utilizing available
data?”, the proposed framework provides a systematic approach to decompose complex
maintenance performance structures while allowing the use of imperfect data. In particular,
the framework shows how existing maintenance data, often imperfect and misaligned with
common performance measures, can be restructured to formulate new MPIs in the
framework. Data availability no longer acts as a passive filter that simply screens out MPIs
that do not fit; instead, it joins the conversation of MPI derivation and unlocks new
possibilities for measuring performance that were overlooked. In addition, maintenance
experts fromdifferent disciplines can be guided by the framework to collaborate on creating a
complete performancemeasurement structure, which could benefit the overall understanding
of performance status and reduce the complexity of maintenance management.

To identify maintenance processes with performance issues from the entire process flow,
the performance measures should ideally be decoupled so that each measure matches only
one diagnostic aspect. Although the vastmajority of the questions in the case study examples
correspond to a single diagnostic aspect, several questions are related to two diagnostic
aspects (questions 1.7, 2.1, and 2.2 in Figure 4). A common reason for this coupling is the
process design of the industry. For instance, the identification and prioritization processes of
CM work are carried out without a clear boundary in the case company. The priority of a
failure is determined by the reporting of failure information, making the two processes
inseparable in terms of efficiency performance measurement. The undesirable coupling of
diagnostic aspects is also evident in the execution process, as the effectiveness of a
maintenance job is not solely dependent on its execution but is also strongly related to the
planning of the work order, such as the choice of material, personnel, and tasks.

A noticeable observation from the case study is that the performance of the execution
process, by its nature, is difficult to measure. The actual actions performed offshore during
the execution process are not recorded when operators believe they are carried out correctly,
making it difficult to evaluate whether a task is performed as described in guidelines. In such
circumstances, the diagnostic aspect can be measured only in indirect and less

Equipment
type

Maintenance
interval Activity Reference

ESDV X days General inspection Company’s best
practice

ESDV X days Lubrication Company’s best
practice

ESDV X days Registration of opening and closing
time

Company’s best
practice

ESDV Y days Functional test Company’s best
practice

. . . . . . . . . . . .
ESDV Z days Leak rate test External regulation

Source(s): Authors’ own creation/work

Table 3.
Examples of
maintenance strategies
for PM identification
compliance
performance
measurement
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comprehensive ways, causing an inevitable loss of measurement integrity. This issue raises
the dilemma of deriving a measure that compromises its original intention or not having the
measure for now and starting to collect the necessary data to support the measure in the
future. Raising awareness of such a dilemma is, in fact, a purpose of the proposed framework:
What can we afford not to measure, given that not everything can be measured? While there
is no simple answer to this question, choices should be carefully made based on the scope,
objective, and expected outcome of the performance diagnostics. Justifications should be
presented for the performance diagnostic aspects to be omitted completely or partially to
increase transparency.

7. Practical and theoretical implications
7.1 Practical implications
The implications of the proposed framework are valuable for practitioners involved in the
implementation of maintenance performance management, particularly for managers of
complex production systems in maintenance, operation, data and performance functions.

The framework provides a holistic performance evaluation structure across maintenance
processes and evaluation domains, which highlights processes that have potential
performance issues. The overall performance diagnostics allow maintenance managers to
conduct rapid initial performance screenings of various types of equipment. Key performance
results confine the scope of in-depth evaluations that require more effort, resulting in
enhanced management efficiency in maintenance performance evaluation. Performance
managers can use this framework to identify performance bottlenecks, prioritize
improvement efforts, and allocate resources more effectively.

From a decision support perspective, the decoupling of diagnostic domains and
maintenance processes aligns performance indicators with specific performance objectives.
Undesirable performance can be traced back to concrete diagnostic aspects, providing
opportunities for decision-makers to revisit the current maintenance flows and set up plans
for implementation. More importantly, the domain-process performance structure also
reveals missing elements in the existing performance measurement system. As an old
management adage says, “You can’t improve what you don’t measure”. The awareness of
unmeasured performance, together with undesirable measured performance, can assist
maintenance managers in taking targeted actions towards continuous improvement of
maintenance methods.

Other implications of the presented framework lie in adaptability and complexity
reduction. MPIs are derived as outcomes of the interplay between key performance
diagnostic questions and available data. Data availability is not only considered a filter, but
also plays an active role in the derivation process. Therefore, the framework can be applied
with lower requirements for data availability and has the potential to be adopted by other
production industries using a similar maintenance principle. The non-value-adding
maintenance data is also revealed through the derivation, allowing practitioners to focus
on collecting relevant data and avoid information overload.

7.2 Theoretical implications
This paper produced two main contributions to the literature: (1) an adaptable maintenance
diagnostic framework that enables a holistic view of overall and process maintenance
performance and (2) an approach for deriving case-specific performance indicators by
aligning maintenance objectives and available data.

For the first contribution, the proposed framework was built based on theories of
maintenance performance measurement and process management (Birolini, 1994; Campbell,
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1995; Muchiri et al., 2011; Nielsen, 1997; Sigsgaard et al., 2020; Weber and Thomas, 2006).
Specifically, the proposed framework introduces a twofold hierarchical structure that utilizes
overall performance as a rapid screening tool to identify the needs for detailed performance
diagnostics, and locates specific performance issues through a comprehensive domain-
process performance diagnostic model. The twofold, end-to-end maintenance performance
diagnostic framework, to the best of our knowledge, has not been discussed in the existing
literature.

For the second contribution, the paper explores an MPI derivation approach through
guided formulation of new performance indicators and relocation of existing indicators. The
creation of MPIs is bipartite, driven by both targeted maintenance performance diagnostic
aspects and maintenance data. The mutual connection between the inputs and outputs of
maintenance performance measurement mitigates data availability issues for existing
equipment and systems. More importantly, the MPI derivation procedures reveal rationales
behind the choices of existing and new maintenance performance measures. The adaptable
end-to-end performance measurement structure and the bipartite MPI derivation approach
enhances the understanding of maintenance performance measurement and contributes to
the theoretical knowledge base in the field.

8. Conclusion
Many existing MPM systems in the oil and gas industry lack totality in end-to-end
maintenance assessments. The misalignment between data availability and data demand for
existingMPM systems leads to the loss of validity of current measures, and potentially useful
measures are disregarded. To address these issues, this paper introduces a multi-level
maintenance performance diagnostic framework that consists of two parts. The first part
functions as a rapid check of the overall maintenance performance health status, allowing
fast and continuousmonitoring of the key performance results acrossmaintenance strategies
and equipment groups. Upon detection of an undesirable overall performance, the second
part provides comprehensive and in-depth performance diagnostics of the end-to-end
maintenance process flow.A question-based performance evaluation approach is proposed to
derive case-specific maintenance performance indicators from diagnostic aspects.

This research has several limitations. Regarding practical implementation, the proposed
framework has not been fully implemented in the case company, so it is not yet possible to
quantify its resource requirement and impact on the empirical application. The
implementation might require additional time, expertise and resources. The successful
adoption of the framework requires interdepartmental collaboration, where change
management needs to be carefully planned. In terms of generalizability, the overall
performance diagnostics requiresmore validation as this part of the concept proposal was not
covered in the case study due to resource constraints. Only one company was included in the
case study, whichmay limit the generalizability of the findings to other industries or contexts.
Considering the complexity ofmaintenance processes, themaintenance processes are defined
as six generic steps in the current study, while the actual maintenance workflows involve
many smaller tasks. Regarding scalability, the performance measurement of text data is
carried out manually in this study, which limits the application potential on a larger scale.

Based on these limitations, more research is needed to evaluate the benefits of the
maintenance diagnostic framework in an empirical setting and test its generalization
potential in other companies and industries. In particular, the impact of running progressive
performance diagnostics on overall and process level could be investigated through a
longitudinal study. The proposed framework should be tested in other industries to validate
generalizability. Future studies could investigate MPIs on subprocess level in accordance
with maintenance workflows so that non-value-adding tasks and variants can be spotted.
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Future studies could also investigate the implementation of automated methods in
performance measurement, especially in process mining and artificial intelligence
technologies, such as natural language processing (NLP) and unsupervised clustering
techniques.
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