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Abstract
Purpose – This study aims to summarize the critical issues in medical federated learning and
applicable solutions. Also, detailed explanations of how federated learning techniques can be
applied to the medical field are presented. About 80 reference studies described in the field were
reviewed, and the federated learning framework currently being developed by the research team is
provided. This paper will help researchers to build an actual medical federated learning
environment.
Design/methodology/approach – Since machine learning techniques emerged, more efficient analysis
was possible with a large amount of data. However, data regulations have been tightened worldwide, and the
usage of centralized machine learning methods has become almost infeasible. Federated learning techniques
have been introduced as a solution. Even with its powerful structural advantages, there still exist unsolved
challenges in federated learning in a real medical data environment. This paper aims to summarize those by
category and presents possible solutions.
Findings – This paper provides four critical categorized issues to be aware of when applying the federated
learning technique to the actual medical data environment, then provides general guidelines for building a
federated learning environment as a solution.
Originality/value – Existing studies have dealt with issues such as heterogeneity problems in the
federated learning environment itself, but those were lacking on how these issues incur problems in actual
working tasks. Therefore, this paper helps researchers understand the federated learning issues through
examples of actual medical machine learning environments.
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1. Introduction
Machine learning has been widely studied in various research fields for its powerful
performance in data analysis. It was possible to derive better results through machine learning
methods by learning the hidden multi-dimensional characteristics of given data that were
difficult for humans to distinguish. This structure of machine learning in the medical imaging
field, where it is crucial to capture fine features in images, has been very helpful in
strengthening the existing diagnostic approaches. For example, support vector machines, deep
neural networks, convolutions and clustering techniques have been applied in the medical field
to effectively search those human-unidentifiable correlations frommedical data.

Through the active use of machine learning approaches, the medical field was able to expand
its scope to specific medical fields such as radiology, pathology, neuroscience, genetics and even
mental disorders. However, the biggest issue in the field of medical artificial intelligence (AI) is
not the accuracy of diagnosis, but the protection of patients’ personal information.

Federated learning, a machine learning algorithm based on the distributed data
environment, has emerged under stricter data regulations laws around the world. When the
concept of federated learning was first introduced, data privacy regulations such as the EU’s
General Data Protection Regulation, California’s (CA’s) Privacy Rights Act and China’s
Personal Information Protection were representative rules, but now more countries around the
world are implementing efficient regulations, such as Brazil’s Lei Geral de Prote,c~ao de Dados,
Canada’s Digital Charter Implementation and Singapore’s Personal Data Protection Act, to
protect their citizens’ personal information. Thus, centralized machine learning methods, that
collect and learn based on the proper amount of data, are no longer applicable under the
personal data protection regulations. In particular, for medical data, researchers and business
providers should follow the Health Insurance Portability and Accountability Act (HIPAA),
which comprehensively protects the medical records and independently identifiable health
information of patients and medical information providers. With numerous increasing data
regulations, researchers have applied various solutions to prevent invasion of privacy.

First, the most common solutions to adopt for data privacy issues are to process and
import variables that can identify individual users when collecting their data. Primary
information leakage can be prevented through the measures such as secure aggregation,
pseudonymization, data reduction, data suppression and data masking in normal data
environments. However, personal health information (PHI) is difficult to apply these security
methods, as it contains any format of information that can identify the data owner. PHI is a
wider concept of personal identifiable information (PII), which means sensitive information
such as health insurance records, medical numbers, health status, medical images and
mental health records are included on top of basic user variables. Therefore, data security
methods for PHI are difficult to completely protect the information and to use medical data
efficiently and safely, structural solutions are required to learn without violations.

Federated learning is a structural solution for the existing data privacy violation
problems of machine learning methods. It has a unique structure and characteristics
compared to centralized machine learning. Traditional machine learning approaches require
a large volume of training data collected from local data owners to the server for model
generation. Federated learning, a decentralized learning structure, generates and develops
deep neural network models without local data collection to the server. The core concepts
used in the neural network model learning process are as below.

Individual clients’ data stored in the local environment does not move, and the server
generates the initial training model and delivers it to each participating client. The transferred
initial training model goes through a model update process through learning within each
client’s data environment, and the server collects all of the corresponding results to create a
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better performance learning model. The most commonly used federated learning framework is
achieved with the iteration of the above step. The structure of the federated learning process
described above has considerable advantages in the application of machine learning in the
medical field. Even if researchers want to create a better performance prediction model for
patients visiting their hospitals, the work can be done without collecting or observing patients’
data, and there is no need to share or infringe on patient data when cooperating between
hospitals. Detailed explanations about basic federated learning algorithms and medical
federated learning structures will be described in detail in the next section of the paper.

The paper is organized as follows. In Section 1, we describe the concept of federated
learning and specific structures in medical environments. In Section 3, how federated
learning is applied to the medical fields is described. Section 4 contains open problems in
medical federated learning and existing solutions in the following order: data/system
heterogeneity, client management, traceability and responsibility and security issues.
Finally, the federated learning framework that our research team is currently working on is
introduced with the functional explanations in section five.

2. Federated learning
This section summarizes two main categorizations of federated learning: the type of data
and features and the overall structure of federated learning. First, we divided federated
learning into Horizontal Federated Learning (FL), Vertical FL and Transfer FL, depending
on the characteristics of the data and features. Second, we also categorized the overall
architecture of FL into hospital-patient, hospital-hospital and combined architecture.

2.1 Federated learning structures
The federated learning can be divided into three structures, horizontal, vertical and transfer, by
data and feature partitions. Horizontal FL uses the data set with a shared feature space but with
different sample spaces across the participating clients. Figure 1 visualizes the structure of the
horizontal FL. Assuming that the clients are multiple hospitals, the feature space of the dataset
might be similar to each other in terms of medical data. In this case, the global model can be
trained collaboratively taking advantage of the data sets sharing the same feature space. Vertical
FL, on the other hand, uses the data set with a shared sample space but with different feature
spaces. Figure 2 visualizes the structure of the vertical FL. Bank statement data set and health
information data set of the same group of people could be an example. This case might be
beneficial in collaboratively training a global model by referring to the different or diverse
categories of data of the same sample space. Transfer FL uses the data set with neither unshared
sample and feature spaces, having a little overlap with both spaces. Assume that different
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department of two physically distant hospitals participate in FL. In this case, the user spaces are
different, as different patients from different hospitals, and the feature spaces are also minimally
overlapped as distinct departments using differentmechanism during the training phase.

2.2 Medical federated learning structures
Federated learning is widely applied in health-care area, as it allows the application of
various machine learning techniques without data collection from local agents. A server
transmits its initial model to each client; hospital or patient. Each local client trains the
received model, and then sends back the trained model parameters. Then, the server
aggregates all the received parameters to update the global model; consequently, this
collaborative and distributed learning can have the same effect as centralized learning. Most
importantly, the global model is updated via aggregating multiple local models, so the local
data privacy is isolated. Figure 3 describes three representative architectures of medical
federated learning.

The figure on the upper left shows the most typical medical federated learning
architecture, when patients are the local clients and the hospital works as a central server.

Figure 2.
Vertical federated
learning
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The upper right figure is when individual hospitals or medical centers are participating as
local clients, and a reliable server controls the whole architecture. Owkin connect, one of the
most famous medical federated learning platforms also adopts this type of structure.
Finally, the figure at the bottom shows the integrated design. While a reliable server
controls the entire architecture, each hospital separately applies federated learning to its
patient data. This structure has the advantage of training both global and local features to
generate a higher performance model.

3. Federated learning in medical applications
When practitioners predict critical tasks using medical data, many data sets are required,
and it is vital to use them to increase the accuracy of diagnosis or treatment without data
privacy invasion. Using the structure of distributed machine learning (DML) allows the
researchers to use data from various hospitals to build massive data sets. Then AI algorithm
is applied to medical fields, resulting in performance improvement. However, transferring
raw data caused sensitivity problems, and federated learning solved these challenges. Cases
of improving performance have also increased by taking advantage of not providing all
original data to the centralized server. This section describes papers using federated
learning to utilize medical data. We summarize the articles using federated learning on the
following categorizations; federated learning for Imaging, Signal and COVID-19.

Figure 3.
Federated learning
architecture in the
field of medicine
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3.1 Federated learning for imaging
As the model’s performance for image classification improves exponentially, machine learning
plays a crucial role in predicting diseases or analyzing patients’ conditions as a clinical decision
support system. Using patients’ computer tomography (CT) and magnetic resonance imaging
images as data,machine learningmodels predict fatal diseases connected to the patient’s life.

Linardos, for example, preprocessed M&M and ACDC Dataset as N4 via field correction
showed higher accuracy than in the DML environment (Linardos et al., 2022). They used federated
learning with the ResNet model for hypertrophic cardiomyopathy diagnosis. Themachine learning
model became more robust when combined with federated learning. Furthermore, Kaissis used a
pediatric pneumonia data set with ResNet to classify pediatric chest radiographs as viral
pneumonia, bacterial pneumonia and normal (Kaissis et al., 2021). They proved that federated
learning performancewas comparable to DML and even safer from inference attacks. In addition to
simple applications, cases of proposing various methods for solving privacy problems are
increasing asmentioned above. Thiswill be further announced in Section 4.

As the model performances with unsupervised learning approaches are great, researchers
tried the generative model for medical database generation. Li applied the generative adversarial
network (GAN) algorithm on the Cardiac data set T. Li et al., 2020b. When cardiac CT volumes
imitating original real-world data were used to train the UNet-3D binary segmentation model,
they found that the performance of federated learning was further improved. Also, in specific
environments, the use of GANhas helped improve performance better for disease diagnosis.

In addition to improving the accuracy of federated learning, there are efforts to reduce
communication costs and research when there is a distance between customers by using the
network structure. Tedeschini focused on brain tumor segmentation using MQ telemetry
transport for real-time networking in a federated learning environment (Tedeschini et al., 2022).
Experimental results showed that the federated learning model has a similar dice similarity
coefficient value with distributedmachine learning environment even in real-time conditions. The
value of the dice similarity coefficient was calculated as the predicted andmeasured values.

3.2 Federated learning for signal
Several hospitals diagnose patients’ diseases using signal data and image data. Raza et al.
(2022) uses the MIT beth israel hospital (MIT BIH) Arrhythmia database to learn a model by
applying convolutional neural network architecture. They trained a model for classifying
arrhythmias using electrocardiography data and showed that it has a higher performance
than distributed machine learning settings. They also demonstrated remarkable results by
modifying themodel to apply explainable AI (XAI) to time-series data such as signal data.

Brophy used the generative adversarial network to explore the relationship between
arterial blood pressure (ABP) and photoplethysmogram (PPG), then learned the time series
to time series generative adversarial network model that generates ABP with PPG (Brophy
et al., 2021). As measuring ABP is expensive, they have produced significant results and
seemingly similar results to DML.

Various researchers have used federated learning not just for medical applications but
also for diagnosing diseases. Nandi and Xhafa (2022) proposed federated learning for real-
time emotion state classification from multimodal data streaming, a real-time emotion
classifier, using the dataset for emotion analysis using physiological and audiovisual
recordings data set containing the physiological signals data. They conducted feature
extraction and fusion with wavelet decomposition and trained the classifier using a three-
layer feed-forward natural network. In addition, they compared the classification accuracy
by increasing the number of clients used in federated learning and stated that FedREMCS
could be adopted in various health-care fields based on these results. Moreover, Yoo
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generated a major depressive disorder severity classifier with heart rate variability data
collected at Seoul Samsung Medical Center (Yoo et al., 2021). They used the clustering-based
federated learning method, Personalized Federated Cluster Model, to mitigate the
nonidentically distributed (IID) problem and demonstrated higher accuracy compared to
Federated Averaging.

3.3 Federated learning for COVID-19
Since the outbreak of COVID-19, a worldwide pandemic disease in 2020, it has attracted
attention as a new research topic in the medical AI field. Common symptoms in COVID-19
patients are lung tissue damage, which leads to cell destruction and pulmonary fibrosis.
Chest X-rays or CT scan results are commonly examined to identify the phase of illness, and
various research trials are being made to classify the collected medical images through
machine learning algorithms. Through chest image analysis, COVID-19 symptoms are
efficiently distinguished from pneumonia that are difficult to classify, and at the same time,
personal information protection with federated learning techniques is also satisfied.

Zhang introduced a dynamic fusion-based federated learning algorithm to diagnose
COVID-19 infections, using a set of medical image data sets collected from Kaggle and
GitHub (W. Zhang et al., 2021). An experiment was conducted with a structure in which
three clients participated in learning, and test accuracy and convergence time were
evaluated using three different training methods: GhostNet, ResNet50 and RestNet101. Liu
et al. (2020b) newly applied a federated learning-based Covidnet algorithm to distinguish
chest X-ray images of pneumonia patients and COVID-19 patients. Although it is lower than
the ResNet models, it shows similar classification performance to MobileNet, a lightweight
model and shows the possibility of medical imaging analysis through federated learning.

Unlike the previous two studies, Dayan’s research team demonstrated the advantages of
federated learning through the participation of multiple medical institutions for COVID-19
patient data analysis (Dayan et al., 2021). A total of 20 institutions are participating in the
creation of a federated learning medical data classification model, which is the same
architecture as the concept shown on the right side of Figure 1. Compared to the case when
generating a classifier with one local institution, using 20 institutions showed an average
performance improvement of 13.9%. Kumar et al. (2021) also developed a framework that
fused capsule networks and blockchain-based federated learning for diagnosis through lung
CT imaging of patients collected in various hospitals. The datasets were collected from three
hospitals, and the sensitivity and specificity performances improved by more than 7% than
the existing benchmark machine learningmodels.

From the above experimental results, the performance degradation is not significant
compared to centralized machine learning when federated learning algorithms consider PHI
protection for COVID-19 diagnosis. Since centralized machine learning performed better
when using the same amount of data for training, federated learning can employ more data
to achieve higher performance with the advantage of training through distributed client
data. Various mutant types of COVID viruses are emerging in countries around the world,
and it will be important to form a federated learning-based diagnostic structure on data
collected by each institution. While many studies in the medical field emphasize the benefits
of applying federated learning, there are still research issues to be solved for better use.

4. Research issues
4.1 Heterogeneity issues
An independent and independent and identically distributed (IID) data environment is the
most commonly adopted assumption in machine learning. IID refers to an environment in
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which the data points for the system are independent and collected in an identical
distribution rather than a skewed form. However, data distribution does not follow IID
assumptions in most real data analysis environments, including the medical field. We
classified these nonIID situations in medical federated learning as data heterogeneity and
system heterogeneity.

4.1.1 Data heterogeneity. Data heterogeneity refers to the environment when data held
by participating clients in federated learning has a heterogeneous data distribution or
characteristics, which is also called nonIID data distribution. We can classify nonIID ness of
data distribution into nonidentical and not independent distributions. Nonidentical data
distribution is generally separated into five specific cases. Feature distribution skew, label
distribution skew, same label but different features, same features but different labels and
quantity skew are the five possible nonIID cases (Kairouz et al., 2019).

Researchers should identify where their data environment belongs among the five cases and
apply the heterogeneity issue solutions based on this. We provide specific examples and
descriptions of the abovefive nonIID cases in amedical federated learning architecture inTable 1.

Besides nonidentical data distribution cases, not-independent distribution is a violation
of the consistency of data depending on the other factors. Such violations are introduced
when the data changes over time or geolocation ibid.

4.1.2 System heterogeneity. The heterogeneity of the data environment of federated learning
participants should be considered first, and problems that may arise from their participating
equipment should also be identified. Devices may cause system heterogeneity issues depending
on their hardware setting, computer power, communication cost and network connectivity.

The federated learning with multiple medical centers participating in the training can
cause differences in database or infrastructure between each hospital. A few hospitals, for
example, are trying to generate a global machine learning prediction model for COVID-19
lung lesions. Samsung Medical Center has established a system infrastructure that can
efficiently manage patient data by operating its database and digital therapeutics
laboratory, and based on this, they intend to participate in the federated learning system.

Table 1.
Explanations and
examples for five
non-IID data
distribution

Non-IID case Description and examples

Feature distribution
skew

Marginal distributions of data features differ
ex) Even if two individuals wear the same smartwatch model and exercise for the
same time duration, the features of measured values are unique due to the personal
characteristics difference, such as their gait

Label
distribution skew

Marginal distributions of data labels differ
ex) Frostbite is a disease that frequently occurs in cold areas because it is caused
by exposure to severe cold resulting in tissue damage to body parts. Therefore, it
is rare in places with relatively warm temperatures

Same label but
different features

Conditional distributions of data features differ
ex) Medical devices are used to measure healthcare data such as neuroimages and
biomarkers of patients. However, hospitals do not use the identical medical device
brands

Same feature but
different labels

Conditional distributions of data labels differ
ex) Lung imaged by the recent pandemic COVID-19 virus are difficult to
distinguish from the pneumonia because they have similar features in many
lesions

Quantity skew Amount of each patients/hospital data differs
ex) Suppose five times more patients have visited hospital A than hospital B. The
quantity of data each hospital has will also significantly differ
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However, it is unlikely that all other hospitals participating in the same system have
established such infrastructure and equipment. These differences raise system
heterogeneity issues in federated learning processes.

4.1.3 Approaches for heterogeneity issues. Data and system heterogeneity issues incur
misleading results in a federated learning environment. When the local data distribution
varies, the global model weights hardly converge to an optimal point; as clients have
different capabilities, the global model may be biased into specific dimensions. In a
federated learning environment that requires convergence to the optimal gradient, the
unstable convergence issue due to nonIID data is defined as client drift (Karimireddy et al.,
2020). Studies have been conducted to solve the problem, and our team classifies the works
into three main categories: clustering, optimization andmodel fusion.

4.1.3.1 Clustering methods. Clustering-based machine learning algorithms are the
representative unsupervised learning methods for finding similarities with peripheral data
for unlabeled data sets. It is used as a form of grouping unlabeled data and grasping its core
characteristics and is also adopted as a method to pre-process and use the remaining data
when the number of data with labels is relatively small. Many researchers leveraged
clustering methods to solve data heterogeneity issues because gathering data points with
similar patterns from unlabeled data is analogous to grouping clients with similar weight
distribution to which the server is inaccessible in federated learning.

The main concept of the clustering-based approach is to identify a group of clients with
similar distributions and to compromise the heterogeneity of datasets that each client has.
Sattler proposed Clustered Federated Learning that adopts a clustering method by
measuring the cosine similarity of each local model (Sattler et al., 2021). They swapped the
labels to fit the data set for the nonIID environment. Experimental results demonstrated that
the proposed work achieved a reasonable performance even in extreme nonIID situations.

Briggs applied a hierarchical clustering-based method to improve the performance when
the clients have nonIID data (Briggs et al., 2020). They introduced a method to generate
optimized clusters by comparing L1, L2 and cosine similarity distance metrics between
clusters, demonstrating that the proposed method can reach the desired performance faster
and more accurately than traditional federated learning methods. Based on (ibid.), Yoo et al.
(2021) used heart rate variability data of patients to diagnose depression severity. They
applied a clustering-based federated learning algorithm called personalized federated
learning with clustering for new incoming participants to improve prediction accuracy and
solve nonIID issues.

Various clustering-based techniques were tried to deal with the performance degradation
caused by data heterogeneity, and there are also research studies to solve the issues of model
aggregation time delay caused by heterogeneous data.

Chen et al. (2020a) introduced the FedCluster to address the problem of slow convergence
that occurs when the federated averaging on heterogeneous local data. Each participating
local client is not included in the model update at a time but clustered according to certain
criteria, in which the cluster participates in the federated learning process for each round.
Depending on the target federated learning environment, it applies the best clustering
scenario of random uniform clustering, timezone-based clustering and availability-based
clustering. Experiments with MNIST and CIFAR-10 benchmark data sets demonstrated
that the cyclic federated learning structure through FedCluster showed a faster convergence
time than the conventional FedAvg algorithm.

As the server has no information about the participants’ data distribution, researchers
tried to handle the issue with unsupervised learning algorithms. Clustering-based method,
one of the most widely spread unsupervised learning, is applied to federated learning to
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solve the heterogeneity issues by gathering clients. However, as there is concern that this
approach rather induces biased results for certain clusters, researchers should be careful not
to bias the distribution in model generation.

4.1.3.2 Optimization methods. A different approach for solving the heterogeneity issue is
using optimization algorithms. The only use of FedAvg limits the models from converging
as a single global model cannot properly represent nonIID data. This is because the data
derived from different distributions diverge in various directions to represent the features of
the distributions to which they belong.

Xie et al. (2020) proposed federated Stochastic Expectation-Maximization (SEM), a
multicenter federated learning framework, which allows optimization function to find
multiple local optima points. The SEM makes it possible to find local optima points in a
variety of distributions of clients in each clustered multi-center, which solves the problems
that do not converge to a single global model. Reddi et al. (2020) applied various adaptive
optimizers called FEDADAGRAD, FEDYOGI and FEDADAM, which are advantageous in
hyperparameter coordination and improving the convergence rate of the federated learning
model over the vanilla FedAvgmethod.

SCAFFOLD also addresses client-drifting issues in federated learning. By introducing a
client control variable, Karimireddy et al. (2020) adjusts each local update in the direction of
the optimal global model. FedProx from Li et al. (2018) modifies the conventional FedAvg
method in two directions; tolerating partial work and adding proximal terms. Each
participating device will have a systematic difference, such as computing power, and
accordingly, the research solves the issue by giving each device an iteration that can be
performed on its device. Li added a proximal term to the algorithm, to prevent the
heterogeneity problems arising from excessive local update iterations.

4.1.3.3 Mixture model of global and local. In addition to the optimization method and the
clustering method on clients with similar parameters, techniques have also emerged to
create an optimized model form by engaging in the structure of the training model layer.
Hanzely and Richt¨arik (2020) and Arivazhagan et al. (2019) solved heterogeneity issues by
mixing global and local models generated by federated learning. The global model is too
general for all clients’ data and the local model is too specific to generalize, they combine
representative learning layers from both global and local to generate a fusion model. In this
way, it is possible to adopt general features from other participating clients, while adding
their personalized features from their local data.

4.2 Client management issues
Unlike the centralized machine learning model that collects and analyzes user data in one
server, federated learning requires each client to join a system using their local data.
Therefore, the system to manage clients must be adopted for efficient training. The server
has to determine the list of participating clients based on limited information and confirm
their exact contribution, to avoid any free-riding clients who are looking for the benefits
without any contribution to the model training.

In line with this, the concept of an incentive mechanism that encourages more active
participation based on user contribution has recently been introduced to solve client
management aspects of federated learning. The incentive mechanism was first
introduced by system architects aiming for improved performance of repetitive loops of
manufacturers by rewarding the participants. Although many studies have been
conducted so far, they have not used a proper incentive mechanism in the federated
learning system. Standards must be set to evaluate the user contribution. In the following
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section, we describe the evaluation criteria from two different perspectives: data quality
and resource usage (Figure 4).

4.2.1 Client management based on data quality. With the advent of the big data era, the
value of client data is increasing regardless of the research field. Unlike when awareness of
privacy was weak, high-quality data became an incomparable asset under strengthened
data protection regulations. Therefore, to generate a better performance model in a federated
learning environment, clients who participate in the system hope to receive appropriate
rewards for their data quality. Depending on the data quantity and quality of the local
clients, the server should accurately calculate their contribution to keep them participating
in the training system. However, in federated learning, the application of incentive
mechanism-based methods has been mentioned as an alternative because the server does
not have the authority to verify user data.

It is important to evaluate the quality and quantity of data held by companies or
institutions as well as data held by individual users. Unlike when training with patient data
in one hospital as shown on the left side of Figure 3, the server should evaluate the data of
each institution when several hospitals aim to jointly create a better performance model as
shown in other structures in Figure 3. Chen et al. (2020b) deals with the client management
issue that occurs in multi-parties federated learning. From a business perspective, the
research team pointed out that if other companies can grow further through the high-quality
data of one good institution, they will no longer participate in federated learning because it
will threaten their profits in the future.

In addition to the necessity of considering the incentive mechanism approach for
calculating contributions, the number of participating clients and the amount of data held by
them affect the model performances. Zhao et al. (2021) presents a new stochastic gradient
method called FedPAGE, comparing the number of clients and the amount of datasets each
client has with the results how the difference occurs in reaching the optimal performance. It
was found that when the number of data held by one client was large, the convergence time
is relatively faster, but when the total number of clients participating in the learning process
is large, it was not easily converge.

Generally in federated learning, participants are randomly selected and participate in the
training round. In the FedCS paper, a temporal threshold was set in each training round of
federated learning, and an experiment was conducted in the form of removing all clients that
were not reflected in learning due to reasons such as computational limitation or data
limitation (Nishio and Yonetani, 2019). As a result, in both nonIID and IID data

Figure 4.
Client management in
the field of medicine
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environments, it efficiently selects clients and converges faster to the desired model
performance.

4.2.2 Client management based on resource usage. In addition to the importance of client
data, it is critical to identify the computational capabilities or systems they use to participate
in federated learning. As mentioned in the system heterogeneity section, the computational
environment of each user may be different in federated learning, resulting in differences in
model training outcomes. Zeng described possible multi-dimensional resource differences in
Mobile Edge Computing (MEC) (Zeng et al., 2020). Central servers have to recognize
dedicated resources and provide suited incentives to encourage good clients. In addition, the
aforementioned FedCS research also introduces the process of determining the federated
client to participate in learning based on the resource ability held by each client. Most
federated learning systems, on the other hand, assumed that each client participating in
model training has the same dedication.

4.2.3 Approaches for client management issues. Generating a better performance
federated learning model requires contributions from multiple data providers with proper
quality of data and resources, though not all clients equally contribute to federated learning.
Therefore, an algorithm that can identify each contribution needs to be applied. The two
most widely studied approaches leveraged Shapley value and Stackelberg’s game theory
which we will discuss in the following.

4.2.3.1 Shapley value. IA suggested how to perform data valuations through Shapley
Value (Jia et al., 2019), which has been widely used in game theory. They listed how Shapley
Value enables data evaluation in multiple machine learning analytics environments and
demonstrates their approach’s scalability. Similar to the approaches of game theory with
Shapley Value, Lim used contract theory to identify the data quality and quantity of each
data owner and applied a hierarchical incentive mechanism in the federated crowd-sourcing
network (Lim et al., 2020).

4.2.3.2 Stackelberg game theory. The Stackelberg game theory is widely used to assess
each participant’s contribution and construct a reward system. Sarikaya and Ercetin (2019)
solved the problem caused by heterogeneous worker performance through the Stackelberg
game-based method. This measures the time it takes each participant to complete a given
task for an updated gradient transfer and assigns a proper reward for each computing
power based on the Stackelberg game theory. Khan also adopted a Stackelberg game-based
approach in L. U. Khan et al. (2020). Each edge node delivers its own computation energy
and latency to the model aggregator, which is in charge of incentives. The goal of the model
aggregator is to minimize learning time while maximizing model performance, so it adjusts
client learning level based on the clients’ Stackelberg results.

Pandey et al. (2020) proposed a two-stage of Stackelberg game by developing an optimal
learning model through maximizing the utility of participating devices and MEC servers.
When the MEC server announces the objectives of the optimized global model it wants to
create and rewards accordingly, each device participates in the federated learning by
optimizing the global learning model and maximizing the yield through the local data it
possesses.

Similarly to studies that deal with data values by Stackelberg game theory, auction
systems were also applied to solve clients’ heterogeneous resource issues. To address the
problem of client management, Le et al. (2021) used a primary-dual greedy auction
mechanism. When the server is assigned the task of federated learning training, each client
submits a bid based on their own computation resource and transmission power.
Subsequently, the server selects clients who can develop optimal models based on the bid
list and provides customized rewards after completing the learning task. Zeng et al. (2020)
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also applied auction-based techniques on various scoring functions to allow devices with
high-quality data to participate at a relatively low cost.

Giving no or the same level of incentive to all local clients will result in some participants
earning rewards for providing their low-quality data and resource. Others, on the other
hand, will suffer from losses while contributing high-quality data. Hence, designing
federated learning without explicit incentive mechanisms may violate the purpose of
federated learning, which is to collaboratively develop a high-performance learning model.
Researchers must develop a more sophisticated incentive mechanism to manage local clients
in a real-world federated learning environment systematically.

4.3 Traceability and responsibility issues
In federated learning, the server cannot directly investigate the local clients’ data. However,
these structural advantages cause considerable difficulties in that the server cannot track
the results or hold them accountable for learning outcomes. The inability to check the
learning process of machine learning is a problem that has arisen as the application of deep
neural network techniques has expanded. This problem is due to the black-box nature of the
neural network, and federated learning should consider taking another step such as in
Figure 3. Machine learning has a black box issue that makes it difficult to accurately
determine the process of the algorithm that produced the result for provided data. However,
in addition to this traceability issue, there is a double black box problem that federated
learning cannot even investigate the data each client has, as shown on the right side of
Figure 5.

In addition to protecting patient data through federated learning applications, another
crucial factor to be considered in the medical machine learning field is explainability. That is
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why precision and recall are adopted more for performance evaluation than accuracy in the
medical field. It is crucial to understand the exact results of each prediction class, not just
how accurate the model is. As the medical field is directly related to human life, it should be
possible to explain on what basis they make decisions. However, neither the existing
machine learning methods nor the federated learning methods show flawless predictive
performance, and explanation power for predictive values is insufficient for actual usage.

It would be ideal if the predictive or diagnostic model obtained by the federated learning
consistently demonstrates professional-level performance with proper descriptions, but this
is not the case. Researchers should consider the process when it produces false-positive
results. If the false-positive rate is high in the federated learning task, the server must
determine which participant or training round is responsible for the problem. It may be
necessary to redesign the entire architecture of the medical federated learning model when
the specific client who caused the error or the training process is not defined. Rieke also
described issues of determining the subject of responsibility for the unexpectedly faulty
results of the medical analysis, caused by the federated learning in health care (Rieke et al.,
2020).

Medical experts can provide sufficient information and advice during centralized
machine learning data preprocessing, such as noise filtering, segmentation and even data
labeling (J. Xu et al., 2021). Federated learning cannot perform the mentioned preprocessing
step, so it can be a trade-off structure in the field of medicine. Protecting PHI from arbitrary
intrusion is significant, but the advantages of data protection are fatal disadvantages for
medical applications. In line with this, XAI was applied to solve the issue (Lundberg and
Lee, 2017), allowing researchers to figure out which parts of the neural networks are
responsible for the performance degradation. Characteristics of XAI must also be applied
when federated learning is adopted in the field of medicine to prevent medical errors caused
by false-positive rates.

Few studies applied XAI to medical federated learning, but they have attempted to
increase accountability while maintaining the advantages of data privacy by combining
XAI and federated learning. Raza et al. (2022) combined XAI with Federated Transfer
learning to design an electrocardiography monitoring healthcare system, by adding
Gradient-weighted Class Activation Mapping (Grad-CAM) module on federated learning
architecture to provide signal classification. However, more extensive researches on XAI
and federated learning remain an open problem (Selvaraju et al., 2017).

4.4 Privacy and security issues
Although deep neural network models brought huge advancement in the medical field, and
federated learning prevents a model from private information leakage, various privacy and
security attacks remain unsolved problems. For instance, a medical image deep neural
networks are especially susceptible to adversarial attacks due to ambiguous ground truth,
highly standardized format and many other reasons (Finlayson et al., 2018). At the same
time, however, the attacks can be easily detected because of the biological characteristic of
the images (i.e. manipulation occurring outside the pathological region) (Ma et al., 2021).
This section will introduce various attack and defense approaches, especially those studied
in federated learning environments (Table 2).

4.4.1 Attacks. Federated learning is especially vulnerable to adversarial attacks due to
the absence of raw data inspection and collaborative training using private local data. As
generally known, machine learning can be divided into two phases: the training phase and
the inference phase. Nevertheless, due to the zero knowledge distributed nature of federated
learning, the training phase attacks are more severe than those of the inference phase; as
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neither centralized property (i.e. server) nor the other participating clients are allowed to
investigate each other’s private data.

4.4.1.1 Poisoning attacks. As the central aggregator is inaccessible to each distributed
training data, an attacker on the client-side can intentionally send the poisonous model
update. For example, an attacker may poison the data or model updates to simply degrade
the model performance or to bias, the model against certain demographics to cause a scandal
or toward a direction to over-recommend certain treatments.

Poisoning attacks can be categorized into data poisoning and model poisoning attacks.
The two types of poisoning attacks are different in that the former aim to compromise the
integrity of the training data, while the latter aim to compromise the integrity of the model.

Data poisoning attacks include label flipping or data backdoor attacks. Label flipping
attacks are one of the client-side data poisoning attacks that flip the labels of the attacker-
chosen data classes to attacker-chosen labels to misclassify the specific data classes.
Tolpegin et al. (2020) simulate and analyzes label flipping attacks. In their experiment, the
class label of airplane images is flipped to bird, so the global model misclassifies airplane
images to bird at inference time. Hayes introduces a contamination attack that is essentially
manipulating a small set of training data (Hayes and Ohrimenko, 2019), compromising the
integrity of the data. The author suggested adversarial training as a defense, which will be
discussed in Section 4.4.2 in detail.

Themodel poisoning attacks involve model backdoors and gradient and/or training rules
manipulation. Although poisoning attacks can be differently categorized into two, model
poisoning attacks generally include data poisoning attacks as the poisoned data ultimately
leads the model to be poisoned. Therefore, we here introduce numerous previous works that
are not limited to data poisoning but the hybrid approach of data and model poisoning
attacks as well.

Bagdasaryan et al. (2020) proposed model replacement to introduce a backdoor into the
global model. Their proposed attack kept high accuracy for both main and backdoor tasks
to improve its persistence by evading anomaly detection. Fang et al. (2020) manipulated the
local model parameters before sending them to the global server. As a result of the
manipulation, the local models deviate toward the inverse direction of the global model
before the attack. Bhagoji et al. (2019) introduced a targeted model poisoning attack that

Table 2.
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poisons the model updates by explicit boosting and remains stealthy by alternating
minimization. Xie et al. (2019) proposed a distributed backdoor attack that breaks down a
global trigger pattern into distinct local patterns and embeds them in the training sets of
several adversarial parties. Their work showed that the distributed attack is more effective
than the centralized backdoor attacks. Fung pointed out the vulnerabilities of federated
learning, especially against the Sybil-based poisoning attacks (Fung et al., 2018). The
authors mentioned that the distributed nature increases attack effectiveness, especially
when multiple malicious parties participate.

4.4.1.2 Inference attacks. Unlike poisoning attacks, inference attacks typically hamper
the privacy of private information. Even though federated learning alleviates the privacy
leakage issues, there still exist some privacy threats. For example, exploiting the fact that
the communicating model parameters necessarily include the encrypted information about
the private training data, an attacker may approximate or even reconstruct the data samples
by extracting and decoding the model parameters. Inference attacks include membership
inference and GAN-based reconstruction attacks that lead the system to leak information
about the training data unintentionally. The recent trend of inference attacks is moving
toward the GAN-basedmethod due to its stealth and detection evasion ability.

Wang et al. (2019) achieves user-level privacy leakage by incorporating GAN with a
multitask discriminator. Their proposed method discriminates category, reality and client
identity of input data samples and recovers the user-specific private data. In GAN poisoning
attack research (J. Zhang et al., 2019), an attacker first acts as a benign participant and
stealthy trains a GAN to mimic the other participants’ training samples. With the generated
samples, the attacker manipulates the model update with a scaled poisoning model update
to compromise the global model ultimately.

4.4.2 Defense methods. The defense mechanism against the attacks in federated learning
includes minimizing the influence of malicious clients and preventing the malicious clients’
model parameters from incorporating into the global model. Also, for privacy, the defense
includes preventing private information from being leaked.

4.4.2.1 Information leak prevention. Several techniques, such as Multi-Party Computation
(MPC), Homomorphic Encryption and Differential Privacy (DP), are adopted to the FL to
protect the models and data. MPC is a type of cryptographic method that which the final
output is computed across multiple participants by exchanging secret shares. Any specific
local model is then impossible to be reconstructed, therefore, the local models are kept
private. HE permits arithmetic operations on encrypted parameters without decryption, to
protect the exchanging model parameters. Using this technique, the global server can
aggregate the encrypted model parameters sent from the local clients without decoding.
This method may prevent various attacks from both the honest-but curious server and
malicious clients. DP is adopted in federated learning not only for the local data protection
but the local or global model protection. This technique adds perturbation or random noise
(e.g. Gaussian noise) to the training data and the model parameters to prevent the
adversaries from inferring the data or models.

Privacy-enhanced Federated Learning(PEFL) research solved the vulnerability by
leveraging MPC(Hao et al., 2019a). Their proposed method has strength in the situation that
multiple clients collude to prevent private data from being leaked.

The following previous works leverage a combination of those mentioned above three
popular techniques. Augenstein demonstrated generative models that are trained using
federated methods with DP. They applied their model to both text and image, using
differentially private federated GANs (Augenstein et al., 2019). Ghazi et al. (2019) also
exploits DP for secure aggregation via shuffled model. Their proposed methods preserve
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privacy and relax computational complexity, which is one of the necessities for better
scalability. (Hao et al. (2019b) combined DP and additive homomorphic encryption to obtain
both performance and security. Their proposed method is especially robust when not only
the clients but the server is honest but curious. Truex et al. (2019) approached similarly,
combined DP with multiparty computation balances the trade-off between the performance
and availability.

4.4.2.2 Model protection. In the perspective of security, various works have been done to
prevent model from corruption. There are broadly two approaches: robust aggregation and
anomaly detection. Typically, robust aggregation aims to train the global model robustly,
even if malicious clients participate in the federated learning process. Anomaly detection
aims to detect malicious or anomalous clients so that their model updates are not aggregated
in the server and/or block them from further participation.

Fu et al. (2019) offered a robust aggregation technique with residual-based reweighting.
Their reweighting strategy used iteratively reweighted least squares to integrate repeated
median regression. On the other hand, there are various defense attempts to prepare for
possible attacks in the form of classifying anomalies (Li et al., 2020a; Shen et al., 2016; Fang
et al., 2020; Tolpegin et al., 2020; Jeong et al., 2021). Li proposed spectral anomaly detection
mechanism based on models’ low-dimensional embeddings (Li et al., 2020a). The central server
learns to detect and remove the malicious model updates by removing noisy features and
retaining essential features, leading to targeted defense. A notable point of their proposed
approach is that it worked in both semi-supervised and unsupervised learning and designed
the protocol for encryption. FoolsGold mitigated poisoning attacks (Wu et al., 2020). Their
approach comes from the idea that the malicious clients’ updates are different from those of the
benign ones; thereby, the Sybils are distinguishable bymeasuring the contribution similarity.

The aforementioned work’s objective, anomaly detection, remains the same, but several
approaches leveraged clustering-based and thresholding-based approaches (Shen et al.,
2016; Fang et al., 2020; Tolpegin et al., 2020; Jeong et al., 2021; Cao et al., 2020; Sun et al.,
2019). Auror dealt with targeted poisoning attacks leveraging clustering and thresholding
techniques. Shen created clusters of clients and measured the pairwise distance between
them, which will be used to distinguish two distinctive clusters. Within each cluster, if more
than half of the clients are determined to be malicious by the predefined threshold, all the
clients belonging to that cluster are then classified as malicious (Shen et al., 2016). Fang et al.
(2020) proposed a defense mechanism, a combination of error rate-based rejection and loss
function-based rejection. The idea comes from that as the malicious clients tamper with the
models’ performance, the error rate and the loss impact are greater than those of benign
clients. Therefore, if a client greatly impacts the higher error and loss rate, the clients are
identified as malicious so as to aggregate only benign clients’ weights. Along with the data
poisoning attack, Tolpegin et al. (2020) used principal component analysis to visualize the
spatially separable malicious clients’model updates and those of benign ones.

Sun defended against backdoor attacks by leveraging norm bounding and weak DP (Sun
et al., 2019). They noted that the norm values of malicious clients are relatively greater than
those of benign ones, so they detected malicious clients by thresholding based on the
calculated norm value of each clients’ weight updates. FLTrust protected the global model
against byzantine attacks by making use of a ReLU-clipped cosine similarity-based trust
score(Cao et al., 2020). In their works, however, the global server had been trained on an
innocent dataset called root data set; in other words, the server did have the knowledge of
benignity and malice of the client data set, which is a breach of the no-raw-data-sharing
assumption. Based on Cao et al. (2020) and Sun et al. (2019), Jeong et al. (2021) proposed
anomalous and benign client classification in federated learning that leverages feature
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dimension reduction, dynamic clustering and cosine-similarity-based clipping to detect and
classify anomalous and benign clients where the benign ones have nonIID data and IID data.
Similar to the aforementioned approaches, only the benign clients’ model weights are
aggregated in the global server.

5. Framework under development
Like many different cases introduced in the study, federated learning is in the stage of building
and applying an actual data environment beyond theoretical research not only in the medical
field but also in various other fields. As a specific task-optimized federated learning system
design is not simple, several open-source frameworks are available for researchers. Depending
on the data environment and analysis objectives, frameworks such as federated learning AI
technology enabler (FATE) (Q. Yang et al., 2019), TensorFlow Federated, NVIDIA Clara and
IBMFederated Learning can help to expand the research scope.

Our medical federated learning research team is also developing a customized lightweight
federated learning framework. The core goal of the framework under development is to allow
users to participate in federated learning systems and receive predicted results based on their
data set in any environment, including mobile devices and computers. There have been quite a
few studies that apply federated learning based on data measured through smartphones or
wearable devices and conduct learning under data protection, but not many open-source
frameworks support the mobile training environment. FATE focuses on industrial usage,
NVIDIA Clara focuses on health-care institutes usage, and even IBM Federated Learning also
focuses on enterprise usage. Therefore, our framework focuses primarily on the customized use of
modular structures and provides practical implementation and support for lightweight devices.

The core component of a federated learning system mainly controls the process between
a cloud and participating clients. It consists of seven detailed management modules about
the database, model, weight, participant, cluster, state and aggregate as shown in Figure 6.
Model and weight management modules are in charge of initializing a global model and
distributing it to each client based on the participant management module. When
participating devices update received model gradients with their local data, the aggregate
management module collects and updates the previous model gradients for better
performance. The entire process and functionality of the configured module follow the basic
federated learning algorithm explained in section two. However, the main distinction of our
framework is that it adopts efficient APIs designed for training mobile devices. The
framework contains six different management APIs; log and configure, HTTP server,
database, model, weight and cluster, which helps system clouds effectively communicate
with participating devices. With designed APIs, the cloud controls communication
protocols, balances shared resources, authorizes the clients and authenticates the clients.

In line with the growing wearable device market, our research team looks forward to the
development of the medical field that analyzes user data widely and conducts daily
diagnosis and evaluation in the medical field through a modular framework that can also be
applied to mobile devices. When the development of the framework of our research team is
completed, a comparison of model performance with other federated learning frameworks
such as FATE and TensorFlow Federated will be conducted based on benchmark data sets.
MedMNIST data (J. Yang et al., 2021), which are medical benchmark data, will be mainly
used to test the issue environment such as data heterogeneity, system heterogeneity and
client management described in this study. We will also present how much the proposed
framework can solve each federated learning issue through the system of modularized
architecture. The explained framework will be open to the public after the development
completes.
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6. Conclusion and future works
Google introduced federated learning that enables AI learning without collecting local data
in 2017. It has been actively studied, especially in the medical field. Training methods
without client data collection is an attractive advantage under data privacy perspectives.
Federated learning techniques, however, still have a variety of unresolved open problems
due to their characteristics, such as different data distributions, client participating
structures and even vulnerable training environments.

In this research, current unsolved issues of federated learning and emerging solutions are
discussed with specific cases in medical machine learning approaches. Open problems of
medical federated learning are related to data/system heterogeneity, client management,
traceability, accountability and security perspectives. Existing federated learning studies
have dealt with issues of the federated learning environment itself, but there was a lack of
content on how these points were applied in the real-world working environment to cause
problems. Therefore, we categorize the critical issues of the field and help researchers easily
understand through examples of actual medical machine learning environments. Various
attempts have been applied to address different issues that occur in the medical field, but
there remain some other open questions besides the issues mentioned above.

6.1 Explainable artificial intelligence in federated learning
The explainability of the deep neural network models has been an important issue in
machine learning due to its black-box nature. After the input data is entered into the model,
the result is output through a complex neural network structure, but it is not possible to
accurately grasp the decision that occurs in the neural network process. Medical federated
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learning, where the patients’ health information data cannot be investigated or collected,
proving the explainability of the output result is even more difficult as mentioned in the
accountability and traceability section.

The XAI field is peeling off the existing black-box characteristics by identifying which
part of the input data affects the deep neural network output values. Similar to the Grad-
CAM-based XAI study conducted by Raza in ECG data classification, there are studies
using XAI, but only a few exist. XAI techniques such as Grad-CAM (Selvaraju et al., 2017),
DeepLIFT (J. Li et al., 2021) and SmoothGrad (Smilkov et al., 2017) use a salience mapping-
based method that finds and displays the parts that have affected network output. However,
this approach also requires data access for validation, which does not match the basic
concept of federated learning. Therefore, to strengthen the explainability of diagnostic
results, XAI research designed for the federated learning environment will be needed.

6.2 Data heterogeneity, attack and federated learning
Studies on attack and defense mechanisms have been published from data security
perspectives, and attacks using heterogeneous data distribution have not yet been fully
studied by researchers. However, as explained in the heterogeneity issues section, the data
environment faced by researchers is not the identical and independently distributed
environment. To deal with the actual implementation of medical federated learning, careful
defense methods against heterogeneous data environment attacks must be further
considered.
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