To read this content please select one of the options below:

SLAM-RAMU: 3D LiDAR-IMU lifelong SLAM with relocalization and autonomous map updating for accurate and reliable navigation

Bushi Chen (School of Aerospace Engineering, Xiamen University, Xiamen, China)
Xunyu Zhong (School of Aerospace Engineering, Xiamen University, Xiamen, China)
Han Xie (School of Aerospace Engineering, Xiamen University, Xiamen, China)
Pengfei Peng (School of Aerospace Engineering, Xiamen University, Xiamen, China)
Huosheng Hu (Department of Computer Science and Electronic Engineering, University of Essex, Colchester, UK)
Xungao Zhong (Xiamen Key Laboratory of Frontier Electric Power Equipment and Intelligent Control, Xiamen, China)
Qiang Liu (Department of Engineering Mathematics, University of Bristol, Bristol, UK)

Industrial Robot

ISSN: 0143-991x

Article publication date: 2 February 2024

Issue publication date: 23 February 2024

293

Abstract

Purpose

Autonomous mobile robots (AMRs) play a crucial role in industrial and service fields. The paper aims to build a LiDAR-based simultaneous localization and mapping (SLAM) system used by AMRs to overcome challenges in dynamic and changing environments.

Design/methodology/approach

This research introduces SLAM-RAMU, a lifelong SLAM system that addresses these challenges by providing precise and consistent relocalization and autonomous map updating (RAMU). During the mapping process, local odometry is obtained using iterative error state Kalman filtering, while back-end loop detection and global pose graph optimization are used for accurate trajectory correction. In addition, a fast point cloud segmentation module is incorporated to robustly distinguish between floor, walls and roof in the environment. The segmented point clouds are then used to generate a 2.5D grid map, with particular emphasis on floor detection to filter the prior map and eliminate dynamic artifacts. In the positioning process, an initial pose alignment method is designed, which combines 2D branch-and-bound search with 3D iterative closest point registration. This method ensures high accuracy even in scenes with similar characteristics. Subsequently, scan-to-map registration is performed using the segmented point cloud on the prior map. The system also includes a map updating module that takes into account historical point cloud segmentation results. It selectively incorporates or excludes new point cloud data to ensure consistent reflection of the real environment in the map.

Findings

The performance of the SLAM-RAMU system was evaluated in real-world environments and compared against state-of-the-art (SOTA) methods. The results demonstrate that SLAM-RAMU achieves higher mapping quality and relocalization accuracy and exhibits robustness against dynamic obstacles and environmental changes.

Originality/value

Compared to other SOTA methods in simulation and real environments, SLAM-RAMU showed higher mapping quality, faster initial aligning speed and higher repeated localization accuracy.

Keywords

Acknowledgements

The authors gratefully acknowledge the financial support for this work from the 1912 project, and the open foundation of the Xiamen Key Laboratory of Frontier Electric Power Equipment and Intelligent Control (No. XKLFEIC-201301), and the advice of Xungao Zhong for revision.

Citation

Chen, B., Zhong, X., Xie, H., Peng, P., Hu, H., Zhong, X. and Liu, Q. (2024), "SLAM-RAMU: 3D LiDAR-IMU lifelong SLAM with relocalization and autonomous map updating for accurate and reliable navigation", Industrial Robot, Vol. 51 No. 2, pp. 219-235. https://doi.org/10.1108/IR-09-2023-0223

Publisher

:

Emerald Publishing Limited

Copyright © 2024, Emerald Publishing Limited

Related articles