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Abstract

Purpose — This paper focuses on multi-objective order allocation with product substitution for the vaccine supply chain under uncertainty.
Design/methodology/approach — The weighted-sum minimization approach is used to find a compromised solution between three objectives of
minimizing inefficiently vaccinated people, postponed vaccinations, and purchasing costs. A mixed-integer formulation with substitution quantities
is proposed, subject to capacity and demand constraints. The substitution ratios between vaccines are assumed to be exogenous. Besides,
uncertainty in supplier reliability is formulated using optimistic, most likely, and pessimistic scenarios in the proposed optimization model.

Findings — Covid-19 vaccine supply chain process is studied for one government and three vaccine suppliers as an illustrative example. The results
provide essential insights for the governments to have proper vaccine allocation and support governments to manage the Covid-19 pandemic.
Originality/value — This paper considers the minimization of postponement in vaccination plans and inefficient vaccination and purchasing costs
for order allocation among different vaccine types. To the best of the authors’ knowledge, there is no study in the literature on order allocation of
vaccine types with substitution. The analytical hierarchy process structure of the Covid-19 pandemic also contributes to the literature.
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1. Introduction Supplier selection and order allocation problems are
considered jointly in the literature to achieve a cost-efficient
and reliable plan to determine the order quantities. A
traditional supplier selection for a commercial product involves
the criteria such as prices, delivery rates, lead times, and several
implied costs (Alejo-Reyes et al., 2021). However, order
allocation and supplier selection for a vaccine supply process,
particularly in a pandemic, should consider vaccine efficacy
and supplier reliability. Optimization models for the order
allocation of commercial products mainly aim to minimize
purchasing costs. However, there are other priorities to
consider successfully solving a vaccine order allocation
problem. This paper considers the minimization of
postponement in vaccination plans and inefficient vaccination
and purchasing costs for order allocation among different
vaccine types. To the best of our knowledge, there is no study in
the literature on the order allocation of vaccine types.

Order quantities assigned to vaccine suppliers are affected by
vaccine substitutions. Allowing substitution between vaccine
types is essential for minimizing postponing vaccinations,
especially when one or more vaccines frequently become

A good vaccination plan requires setting a proper vaccine mix
considering supplier reliability and vaccine efficacy to achieve
herd immunity promptly. Vaccination plans are successful if
supported by a reliable supply chain (Lemmens et al., 2016).
However, the preparation of vaccination plans is even more
challenging when society is threatened by a pandemic such as the
Covid-19 outbreak. Prompt and righteous decision-making
becomes essential due to the emergency of the situation. In these
uncertain environments, the central health authorities should
make their plans to create a public immunity for a large part of the
population as early as possible. The studies report that one person
may infect two to four people on average, and 50 to 75% of the
people would need to be resistant to reach herd immunity
(Anderson and May, 1985; Randolph and Barreiro, 2020).
Vaccination delivery performance and health center vaccination
capacities are essential determinants of successful vaccination
campaigns. However, the lockdowns, travel bans, and quarantine
restrictions on suppliers cause massive disruptions to global
supply chains, as in the case of the Covid-19 outbreak (Ivanov,
2020; Queiroz er al., 2020). Besides, the pandemic raises
uncertainty about the supply of medical equipment, consumables,
effective therapies, and vaccinations (Koffman ez al., 2020). © Ilkan Sarigol, Rifat Gurcan Ozdemir and Erkan Bayraktar. Published by
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unavailable due to unreliable supplier delivery. Therefore, this
study assumes that the other vaccines can substitute
unavailable vaccine types according to specific substitution
ratios. The problem of deciding which vaccine types should be
purchased by considering their substitution ratios is similar to
the product assortment problem in the literature. The product
assortment problem is how to decide the order and inventory
levels of a set of similar products by considering their market
expectations and customers’ preferences.

Governments prioritize the vaccination groups based on their
age, health conditions, and societal roles (World Health
Organization, 2021a). Though the community’s health has the
highest priority, governments should also consider their
decisions’ social and economic effects. Vaccine effectiveness,
storage conditions, supplier reliability, community preferences,
and many other factors substantially impact the speed of the
vaccination process and affect society’s health and economic
welfare. Therefore, a government should evaluate this allocation
problem from multiple perspectives to decide correct vaccine
types and order quantities. The order allocation and vaccine
substitution decisions are affected by the late and less than
expected deliveries from suppliers, vaccination inefficacy, and the
high cost of vaccine procurement. Therefore, the purchasing
price is not the only objective since postponed and inefficient
vaccinations significantly impact the success of an inoculation
plan. This study develops a multi-objective optimization model
for a vaccination plan that allows vaccine substitution to
minimize purchasing costs and postponed and inefficient
vaccinations. This paper proposes a weighted-sum approach to
find an optimal solution to the multi-objective vaccine order
allocation problem for different vaccine types. Analytical
hierarchy process (AHP) is used to determine the weights of the
objective functions by considering social, economic, and health-
related factors. The objective functions of the multi-objective
model are minimizing postponed and inefficient vaccination and
purchasing costs. Postponement of vaccination results in late
herd immunity, thus leading to more prolonged adverse effects
on society and the health system. Using vaccine types with lower
efficacy results in higher inefficient vaccination practices and
negatively impacts herd immunity.

The main contributions of the study are threefold. First, the
order allocation with vaccine substitution is introduced to the
literature on the vaccine supply chain. Second, a vaccine order
planning model with multiple objectives is developed and
shown on an illustrative example for the Covid-19 pandemic.
Third, the paper allows the buyer (government) to investigate
the impacts of the suppliers’ reliability on the vaccination plans
and vaccine substitution rates on the postponed vaccinations.

The rest of the paper is structured as follows. Section 2 briefly
reviews the literature. Section 3 and 4 present the problem
definition, model development, and solution methodology. Section
5 provides an illustrative example and its results. Finally, Section 6
concludes the paper and discusses the future research directions.

2. Literature review

The COVID-19 outbreak has affected the global supply chains,
where many global manufacturing companies experienced
shortages due to the disruptions in their supply networks
(Mchopa et al., 2020). In their study on vaccine supply chains,
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Duijzer er al. (2018) classified the literature from the product,
production, allocation, prioritization, and distribution
perspective. Malmir and Zobel (2021) recently summarized the
relief distribution and network optimization literature. They
suggested a new sustainable humanitarian supply chain model
involving transportation, delivery, equity, and deprivation costs.
Rather than logistic costs, Malmir and Zobel (2021) emphasized
the importance of proper calculation of the deprivation costs to
reduce the suffering of affected people from Covid-19. Shirazi
et al. (2021) and Zokaee ez al. (2016) also developed optimization
models for plasma supply for the pandemic of Covid-19 and
relief chains, respectively. Borriello ez al. (2021) investigated the
Covid-19 vaccine characteristics that influence the preference of
Australian citizens. Their study showed that the vaccine priorities
changed according to the severity of the side effects of vaccines.
Thompson and Anderson (2021) mainly evaluated the responses
to the Covid-19 pandemic in the US and provided future
research perspectives for the resilience of humanitarian supply
chain and logistics management.

The vaccine order allocation decisions are also crucial for
humanitarian supply chains. Various studies address the
optimal order allocation strategy with a single objective using
mathematical programming (Kaur and Singh, 2021; Esmaeili-
Najafabadi ez al., 2019; Yang er al., 2010). Developing a mixed
integer program (MIP), Kaur and Singh (2021) proposed a
multi-stage supplier selection and order allocation model under
disruption risks. Two or more conflicting goals have also been
studied in the order allocation problems using multi-objective
optimization models (Jia ez al., 2020; Moheb-Alizadeh and
Handfield, 2019; Mafakheri ez al., 2011; Songhori ez al., 2011).
In their study to decide the location of disaster logistics hubs,
Maharjan and Hanaoka (2018) suggested a fuzzy factor rating
system to identify the objectives’ weights in a multi-objective
optimization problem. Gutjahr and Nolz (2016) summarized
the studies on multi-criteria optimization in humanitarian aid
and pointed out the rising usage of multi-criteria optimization
in humanitarian decision-making problems.

Stochastic programming models have been proposed to deal
with uncertainty and disruption risks in humanitarian supply
chains (Vahidi ez al., 2018; Hosseini ez al., 2019). In a plasma
supply chain designed to collect plasma from the newly
recovered Covid-19 patients, Shirazi ez al. (2021) developed a
stochastic optimization modeling approach to locate blood
collection sites and allocate plasma processing facilities.
Similarly, Kenan and Diabat (2022) modeled the blood supply
chain for the Covid-19 pandemic wusing stochastic
programming under both demand and supply uncertainty.
Under uncertain demand and supply processes, Zokaee ez al.
(2016) considered a humanitarian logistic relief chain
consisting of suppliers, distribution centers, and affected areas.
For optimum vaccine allocation, Yin and Buytiktahtakin
(2022) developed a multi-stage stochastic programming model
considering the uncertainty of the vaccine supply and the
disease transmission rates. Their findings suggest that isolation
is the most efficient way to slow down disease transmission, and
vaccine acceptance rates only affect optimal vaccine allocation
at the early stages under a tight vaccine supply.

Both multi-objective and stochastic programming models
were also used together in the extant literature. Proposing a
stochastic bi-objective mixed-integer programming model,
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Hosseini er al. (2019) developed a decision-making support
tool to determine how to utilize proactive and reactive strategies
in order allocation problems. Yenice and Samanlioglu (2020)
developed a stochastic multi-objective mathematical model to
identify the aid storage locations and distribution channels for
the shelters in an earthquake relief network. Three earthquake
scenario-specific objectives were solved simultaneously using
the normalized weighted sum method in the model. Both
Fathollahi-Fard er al. (2018) and Ramezani er al. (2013)
designed a supply chain network using a multi-objective
stochastic programming model. Fathollahi-Fard ez al. (2018)
considered both economic and social dimensions of a closed-
loop supply chain network with four conflicting goals. For
forward/reverse supply chain networks with some uncertain
parameters, Ramezani ez al. (2013) generated a set of Pareto-
optimal solutions for three supply chain-related objective
functions. Similarly, Jamali ez al. (2021) employed a stochastic
multi-objective mathematical model to configure a relief
logistics network with three pillars of sustainability under the
different injury severities. Aggarwal and Singh (2015) modeled
multi-objective supplier selection problem under a stochastic
environment and solved it using non-preemptive goal
programming and the weighted aggregate function technique.

Metaheuristics were also utilized in the literature to solve the
order allocation problem. Alejo-Reyes ez al. (2021) developed a
new heuristic for supplier selection and order allocation and
compared it with two well-known meta-heuristics: particle
swarm optimization and differential evolution. The
sustainability in supplier selection and order allocation has also
been addressed. For instance, Moheb-Alizadeh and Handfield
(2019) developed a multi-objective mixed-integer linear
programming model to allocate order quantities considering
supplier selection and sustainability. Jia ez al. (2020) included
CO, emissions in the sustainability of the supplier selection and
order allocation decisions.

Consumers usually consider buying another brand within a
product category if their favorite one is unavailable. This
customer-driven demand substitution affects the optimal order
allocation decisions (Ycel ez al., 2009). Demand substitution
is an essential parameter for product assortment optimization
and inventory management (Kok and Fisher, 2007; Kok ez al.,
2008; Pentico, 2008; Yiicel er al., 2009; Singh and Kapoor,
2013). For the customer-driven demand substitution
behaviors, demand models are classified as multinomial logit,
locational choice, and exogenous demand models (Kok ez al.,
2008). The multinomial logit and locational choice models are
utility-based models commonly used in economics marketing
literature. Exogenous demand models directly specify the
demand for each product and provide preferences of
individuals when their favorite product is not available.

Vaccine availability, efficacy, and citizens’ preferences are
primary factors limiting the number of inoculations. Harapan
et al. (2020) stated that the baseline effectiveness of a Covid-19
vaccine highly influenced its acceptance by the public. If the
preferred vaccine is not available, citizens may make a
substitution. However, the desire to substitute from high to low
effective vaccines may be small. Borriello er al. (2021) studied
the vaccine preferences and realized that immediacy,
effectiveness, and side effects were the significant determinants
of choice. They used an exogenous model to consider the
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aggregate behavior of citizens. Under the exogenous models,
the deterministic proportion assumption denotes the
cumulative substitution rates and is widely utilized in stockout-
based substitution models (Netessine and Rudi, 2003).

Supplier reliability under uncertainty becomes an important
issue because of late deliveries and quality problems (Smeltzer
and Siferd, 1998). A supplier is perceived as reliable when
deliveries are made according to contract and relevant
information is provided timely and accurately (Selnes and
Gonhaug, 2000). Uncertainty and risks impact both supply
chain design and supply chain planning decisions. Recurrent or
operational risks and disruptive risks (Tang, 2006; Chopra
et al., 2007; Tsai, 2016; Ivanov, 2017; Rezapour ez al., 2017)
are typically involved in those considerations. Demand and
lead-time uncertainty risks are frequently considered
operational risks (Kleindorfer and Saad, 2005; Chopra er al.,
2007; Acar er al., 2010; Georgiadis et al., 2011; Hora and
Klassen, 2013; Meisel and Bierwirth, 2014).

In this study, multi-objective optimization is used to optimize a
collection of objectives simultaneously. One of the most common
approaches to multi-objective optimization is the weighted sum
method (Marler and Arora, 2004). AHP and the weighted-sum
methods are integrated into the framework evaluation by
Radulescu and Rahoveanu (2011). Our study introduces a
vaccine order allocation model with product substitution and a
weighted-sum method to consider three objectives: total
inefficient and postponed vaccinations and cost. AHP is used to
determine the weights of the objectives. In this respect, our study
is one of the first studies directly targeting the social objectives
such as total inefficient and postponed vaccinations to reduce as
separate entities in the primary objective function. Along with
weights allocated to the objectives, the substitution decisions
among the different vaccine types are integrated into the
allocation decisions. The study also presents an illustrative
example compiled for the Covid-19 pandemic, in which data are
gathered from readily available public resources with
unpredictable capacity information of the vaccine suppliers.

3. Problem definition and model formulation

The problem addressed in this study considers a supply chain
with a single buyer (government) and multiple suppliers, each
producing different types of vaccines with varying efficacy and
storage conditions. The study formulates the problem as a
multi-objective vaccine order allocation model. The objectives
are set as purchasing costs, postponed vaccinations, and
ineffectively vaccinated people. The government decides the
number of vaccines to be ordered from every supplier according
to citizens’ preferences by assuming exogenous substitution
ratios among different vaccines in the model. Supplier delivery
capacity is uncertain and varies according to the supplier’s
reliability. The uncertainty in this study is tackled by the
scenario analysis under optimistic (O), most likely (ML), and
pessimistic () conditions. The storage capacity of vaccine
centers varies depending on the types of vaccines.

In this study, the multi-period vaccine order allocation
problem using an exogenous substitution matrix is formulated as
a mixed-integer linear programming model. This model
calculates the vaccines to be ordered from various suppliers while
minimizing cost, postponing vaccinations, and ineffectively
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vaccinating people for optimistic, most likely, and pessimistic
scenarios. If the vaccine is not available, it is assumed that the
people may either accept an alternative vaccine or postpone the
vaccination to a future period. Additionally, suppliers are
considered to have different reliability levels. Spoil rate of each
vaccine changes based on the type of vaccine and scenario.
Parameters, decision variables, objective function, and
constraints of the model introduced here are given below:

Sets

S Scenarios set

T Periods set

I Vaccines set

Parameters

pi Unit price of a vaccine /

h; Holding cost of vaccine i for one period

F; Freezer installation cost for vaccine i

e Effectiveness of vaccine-type i

€max Maximum vaccine effectiveness (max;e;)

spk;, Spoil rate of vaccine-type i at period t under scenario s

Ojt Order quota offered by the supplier for the vaccine type i at
timet

Orcalizedit’  Delivery quantity by the supplier for the vaccine type i at time

t under scenario s
v; Inventory capacity of the freezer for the vaccine type i

pr(s) Probability of scenario s

uj Time between subsequent orders for vaccine-type i

vc Vaccination capacity of the government for one period

Oyi Substitution ratio of vaccine-type k by the vaccine type /

D; Planned vaccination quantity of type / at period ¢ under scenario s

Decision variables

Q; Number of inoculated people with vaccine-type i at period t
under scenario s

Xit The number of vaccine-type i received at period t. The vaccine
is ordered by considering the duration of lead time

Xoverit® The excessive number of vaccine-type i ordered more than the
realized order quota at period t under scenario s

xf3, The number of fulfilled demands by the vaccine type i at
period t under scenario s

XSty The number of vaccine-type k substituted by vaccine type i at

period t under scenario s
xb}, The number of vaccinations of type / postponed at period t
under scenario s
1 if vaccine type i ordered at period t, 0 otherwise
The number of freezers purchased for vaccine-type i
E Inventory level of vaccine-type i at period t under scenario s

74 Expected value of total inefficient vaccination
Z, Expected value of total postponed vaccination
73 Expected value of total cost

3.1 Objective functions

MIP model has three objectives to minimize the deviations
from the inefficient and postponed vaccination targets and
costs. The model provides a unique solution considering three
scenarios (O, ML, P), each of which happens with a certain
probability.
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The objective functions in Equations (1) and (2) present the
expected values of total inefficient and postponed vaccinations.
The number of inefficient vaccinations is calculated by the
discrepancy between possible maximum effective vaccinations
planned (emaxDj,) and the effectively inoculated people with
vaccine-type i. The objective function in Equation (3) shows
the expected value of cost components as a summation of
vaccines’ purchasing and storage expenses and the investment
cost of freezers. The purchasing cost is the price times the
number of vaccines received (x;). The government should
as many people as possible without any
postponements with the least possible cost by providing an
effective vaccine plan.

immunize

3.2 Constraints
The model for the constraints is then formulated considering
vaccine substitutions and scenarios as follows:

Q= (1= ) (% — Xovers ) T Lyy_py — I, Vi 1, s (&)

=0 =0, Vs 5)
Constraint set (4) calculates the number of inoculated people
based on the number of vaccines received, spoiled, and stored
from the previous period and unused vaccines carried to the
next period. Constraint (5) guarantees no vaccine to keep at the

beginning.

X < Oy Vi, ¢ (6)
Xig — xover;! <z Orealizedfl v i: L, s (7)
Xip — xover:t > 0 Vlv L, s (8)

Equations (6)—(8) represent the order quotation constraints.
Actual delivery quantities oscillate in scenarios based on
supplier reliability. Despite the agreed order quota, suppliers
may not deliver all orders but only a certain proportion of this
quantity. Constraint (6) shows that government cannot order
and receive more than the order quota. Constraint (7)
guarantees that the difference between the planned order
quantity and Xover!, should be less than or equal to realized
delivery quantity. This constraint set is required since the
planned order quantity is fixed for all scenarios; however, the
delivery quantity of suppliers changes in every scenario.
Constraint (8) ensures that the amount of vaccine received
should be higher than the excessive quantity of vaccine ordered.
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Xfy+ Y wsy, =Dy — xby, +xby, Vi, t )
&
X zi + szfm = sz Vz} t (10)
ki
xSy, < (Dj —ofy Hxby, 1)) 0k Vi, 1 RFD (11)
xb, =0 t=0, Vi,s (12)

Equations (9)—(12) provide information about the relationship
among vaccine substitutions and the number of vaccinations
planned and postponed. Equation (9) shows the balance between
planned vaccinations with postponement consideration and the
summation of directly fulfilled and substituted vaccine supplies.
Equation (10) indicates that the number of people vaccinated
with a specific type of vaccine is the sum of the people who
request this type of vaccine firsthand and those who get a
substitution for other vaccines. Equation (11) expresses that
substitution quantity between two vaccines is limited to a specific
ratio of the total planned vaccination, including postponed
portions from previous periods after subtracting direct
fulfillments from this total. Constraint (12) shows no postponed
vaccination at the beginning of the planning horizon.

>0, <VC Vs (13)

i

t+u;

da <1 Vit (14)

t
0<wy—I, Vi s t (15)
Xie,  Xfi, XSpy,  xbY, S I, i ez* YV i,t, s (16)
z, €{0,1} Vit a7

As given in equation (13), one of the significant limitations is
the government vaccination capacity in each period. Constraint
(14) assures that the government can order once in every
ordering period. The maximum number of vaccines carried in
the freezer should be less than the freezer capacity.
Equation (15) guarantees that government should purchase
enough freezer capacity to store vaccines. Constraint (16)
shows nonnegative discrete variables, whereas constraint (17)
states binary variables.

4. Solution methodologies

The following subsections present the multi-objective order
allocation solution approach and the AHP structure to
determine the objectives’ weights.

4.1 Multi-objective weighted sum function
The weighted sum method to solve the multi-objective
optimization model is proposed in this study to minimize the
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weighted sum of scalarized objective functions as given in
Equation (18).

¥
Min Z =) oN(Z)

j=1

18)

where,
w; Weight of the objective function j such that ij =1

j
N(Z;) Normalized value of the objective function j such
that 0 < N(Z;) <1

Equation (18) shows the combined objective function of the
model as a weighted and normalized sum of three objectives.
The calculation of weights for the objectives is explained in the
following subsection.

This study adopts the upper-lower bound normalization
approach producing a value between zero and one (Marler and
Arora, 2005). The normalization function is defined in
Equation (19) as follows:

N(Z]): <Z]_Z]mm>/(2]max_zjmm) ]: 172’3 (19)
where,
Z; Actual value of the objective function j.

Z]?“i“ Lower bound of the objective function j.
Z* Upper bound of the objective function .

The performance of the normalization approach depends on
the accuracy and the method to determine lower and upper
bounds; however, this approach is still relatively robust
compared to the other approaches in the literature (Marler and
Arora, 2005).

The lower bounds are determined as the minimum value of
the objective functions by solving the model given in Section 3
for minimizing each objective function separately. The upper
bounds are set as Z}“ax = m]giXZ]‘(f]:), where f; is the solution

point that minimizes the kth objective function. The approach
to determining lower and upper bounds used in this study has
also been found more conducive to multi-objective
optimization by (Marler and Arora, 2005).

4.2 AHP for the weight assignment

In the MIP model above, the weights of the objectives are
identified by AHP. AHP is a multicriteria decision-making
method that breaks down the decision-making into layers of a
hierarchy in which relationships among objectives, criteria and
decision alternatives are defined separately (Saaty, 2004; Wang
etal.,2012).

The objectives selected for the MIP model are to minimize
postponed vaccination, inefficient vaccination, and purchasing
cost; each has a different impact on the solution of the MIP
model. The late deliveries of suppliers result in the
postponement of vaccinations and cause a delay in providing
herd immunity in society. Thus, the delay destroys social affairs
while extending COVID-19 related precautions and societal
restrictions. Inefficient vaccination is due to the type of vaccine
selected. Each vaccine type has a specific efficacy, and if the
government buys a vaccine type with less efficacy, this strategy
results in lower immunization rates in society.
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To evaluate the objectives, social, health-related, and
economic factors are considered as primary criteria. Each
criterion also breaks down into three sub-criteria, as shown in
Table 1, where each of them directly affects the primary
objective at different levels. Weights (w;, w,, and w3) for these
objectives are obtained from AHP. Table 1 presents the criteria
for determining the weights of the objectives for the vaccine
order allocation model.

Clinical attack rates (CARs) are key epidemiological factors
used as clinical outcomes to predict the impacts of health costs
on government budgets and consumption (Keogh-Brown ez al.,
2020). The other unavoidable factors observed in the
healthcare sector are morale falloffs (MFOs) and healthcare
personnel shortages (HPSs). Many factors can be used to
estimate the direct and indirect effects of a pandemic on the
economy, such as income losses (ILs) due to business closures,
budget constraints (BCs) due to high costs, and unemployment

Table 1 AHP criteria and sub-criteria to determine the weights of the
objectives

Criteria Sub-criteria

Social School Closures (SCs)
Travel Restrictions (TRs)
Social Distancing (SD)

Economical Income Losses (ILs)

Budget Constraints (BCs)
Unemployment Surges (USs)

Clinical Attack Rates (CARs)

Morale Falloffs (MFOs)

Healthcare Personnel Shortages (HPSs)

Health-related

Volume 13 - Number 2 - 2023 - 125-139

surges (USs) due to job losses in many sectors. Preventive
measures to mitigate or suppress the effects of pandemics on
public health result in school closures (SCs), travel restrictions
(TRs), and social distancing (SD). The factors given in Table 1
represent the criteria for evaluating a vaccination plan by the
governments. In Figure 1, the AHP model hierarchy reveals
how to determine the weights of the objectives in the
mathematical model above by considering social, economic,
and health-related criteria.

Essential steps in the decision-making process of AHP are
constructing the hierarchy, pairwise comparison among criteria
and pairwise comparison of alternatives for each measure,
consistency checking, and determining the weights. The
government needs to determine specialists from different
sectors to evaluate the options and metrics. These specialists
provide the expert opinions for pairwise comparisons
represented in a judgment matrix. Pairwise comparisons
produce the weight of each criterion and alternative based on
the eigenvector method. These weights are validated only if the
degree of consistency is satisfactory. Otherwise, comparison
matrices need to be revised (Saaty, 2004; Wang ez al., 2012).

5. lllustrative example and experimental study

In this section, a numerical example illustrates the proposed
model for a hypothetical Covid-19 supply chain. We also
conduct experimental studies on uncertain parameters to show
the effect of the variability on solutions. The MIP using the
exogenous substitution probabilities model is developed and
solved for alternative scenarios. The following subsections
present an illustrative example and experimental studies.

Figure 1 AHP hierarchy to determine the weights of the objectives used in the mathematical model

Objective Criteria

1 |

Sub-criteria Alternatives

School
Closures

Social

Travel
Restrictions

Determining weights
of the objectives

Economical —]

Social S
Distancing Minimizing
total cost
= of vaccination plan
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Constraints : —
of vaccination plan
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Health related
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Clinical Attack of vaccination plan
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Healthcare

Personnel Shortages
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5.1 Illustrative example and results

This section presents a hypothetical example to illustrate the
proposed model. The vaccine data but the substitution ratios in
the example problem are gathered from the readily available
public information for the Covid-19 vaccine. The example
illustrates a supply chain structure with a single buyer
(government) and three suppliers producing one type of
vaccine. The exemplary supply process is presented in the
following figure.

For the COVID-19 pandemic, several vaccine candidates are
being developed, and numerous vaccines are currently in
clinical trial phases. Different vaccine design approaches exist
(World Health Organization, 2021b). We consider only
mRNA, inactivated, and viral vector vaccines among many
types, as seen in Figure 2. The mRNA vaccine should be stored
in an ultra-low temperature freezer and transported frozen via a
cold supply chain. The government needs to invest extra to
keep a vaccine ultra-cold, between —60 °C and —80 °C.
Inactivated and viral vector vaccines are stable in a regular
freezer. Current conditions in most health centers do not
require any additional investment for storing vaccines except
mRNA vaccines. A freezer to keep the mRNA vaccine is
approximately $25,000, with a capacity of 70,000 units.

This illustrative example assumes three supplier variants with
different reliability levels. Supplier reliability is defined as the
discrepancy between planned and realized delivery. The highly
reliable supplier should deliver 95 to 100% of the order quota
provided to the government. The supplier with medium
reliability may provide 70 to 85% of the order quota requested
by the government. The supplier with low reliability may
deliver only 45 to 60% of the order quota. Table 2 presents the

Figure 2 Vaccine supply process of the illustrative example
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distributions of percentage realized capacities of suppliers for
optimistic, most likely, and pessimistic scenarios. As seen in
Table 2, the supplier’s reliability is given as the percentage of
actual delivery. For instance, the highly reliable supplier
delivers according to U[95%, 100%] in the optimistic scenario,
which shows that the delivery realization of this supplier is
somewhere between 95 and 100% of the order quota given to
the government.

The weekly order quotas for high, medium, and low reliable
suppliers are assumed to be 1, 3, and 5M, respectively. The
government prepares procurement plans according to the order
quotas given by the suppliers. However, realized delivery
quantities would be different from the order quotas declared
because of the variability in the supply process. On the other
hand, all suppliers are assumed to deliver the order quantities
within the same week of the order received from the
government. Thus, the lead time of the suppliers for the
example problem is assumed to be negligible. The weekly
inoculation capacity of the government is considered 4M, and
this capacity is allocated to three suppliers according to the
preference of the citizens. The weekly planned inoculation
quantities for mRNA, inactivated, and viral vectoral vaccines
are 1, 2, and 1M, respectively. We assume that if a vaccine is
unavailable because of not provided or stocked out, it is
substituted with an alternative vaccine or postponed to a later
period. Product substitution decisions affect the order
allocation and inventory held each week. Thus, our model
includes specific substitution ratios among vaccine types, as
shown in Figure 2. The substitution ratios among vaccine types
are assumed to be exogenous. For instance, if there is no
availability for mRNA vaccines, 40% of the citizens registered
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Supplier 1 Supplier 2 Supplier 3
Reliability High Reliability Medium Reliability Low
Order quota 1M Order quota 3M Order quota M
Vaccine type mRNA Vaccine type Inactivated Vaccine type Viral
Price $15 Price $10 Price $3
Efficacy 95% Efficacy 90% Efficacy 75%

Government
Criteria Weights
Ineffectiveness 0.296
Postponement 0.536
Cost 0.157
Citizen 1 Citizen 2 Citizen 3
Preference mMRNA Preference Inactivated Preference Viral
Regi.ster.ed for M Regi.ster.ed for ™M Regi.ster.ed for M
vaccination vaccination vaccination
Vaccine Substitution Vaccine Substitution Vaccine Substitution
type ratio type ratio type ratio
Inactivated 0.4 mRNA 0.3 mRNA 0.3
Viral 0.4 Viral 0.4 Inactivated 0.6
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Table 2 Reliability distributions for the on-time delivery performance of
suppliers under each scenario

Supplier 1 Supplier 2 Supplier 3
Scenario (high reliability) (medium reliability) (low reliability)
0 U[95%, 100%] U[70%, 85%] U[45%, 60%]
ML U[90%, 100%] U[60%, 80%] U[30%, 50%]
P U[85%, 95%] U[50%, 75%] U[15%, 40%]

for mRNA place their preferences for inactivated vaccines,
whereas another 40% prefer viral ones. The remaining 20%
chooses to wait until mRNA is available.

Domestic and cross-border freights are not fully
operational under the pandemic. Thus, many vaccine
suppliers face severe supply shortages, where the health
supply chain is adversely affected by the variability in the
actualization of supply capacities. This study generates
optimistic (O), most likely (ML), and pessimistic (P)
scenarios for the variability in the actualization of supply
capacities. The probability of each scenario is also given in
Table 3.

The proposed model also considers spoilage of vaccines due
to misusage or improper storage conditions. Therefore, we
assume that a proportion of vaccines are spoiled based on the
vaccine type and scenario, as shown in Table 4.

The mathematical model is solved for each objective
function, and the other objectives are also calculated in each
solution. For each objective function, minimum and maximum
values are calculated by solving the MIP model only for this
objective under different scenarios and assigned as upper and
lower bounds in normalization equations given in equation (5).
The upper and lower bounds of each objective are shown in
Table 5.

The objective function in equation (1) is presented with
normalized values as follows:

Table 3 Scenario probabilities

Scenario Probability
Optimistic (0) 0.25
Most likely (ML) 0.5
Pessimistic (P) 0.25

Table 4 Vaccine spoil rates

Vaccine type

Scenario mRNA Inactivated Viral vectoral
0 0.05 0.01 0.01
ML 0.07 0.02 0.02
P 0.10 0.03 0.03

Table 5 Zi, and Za values for each objective function

Z1 Z; 73
Min 6,914 1,080 0
Max 68,400 84,000 230,190
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7, — 6,914 Z,— 1
Min Z = o 21— 6914) £z~ 1,080)
(68,400 — 6,914) (84,000 — 1,080)
Z3
t o2 20
33,0190 (20)

The summary of AHP results is presented in Figure 3 and
Table 6. The government wants to determine the order
quantity for each vaccine type to increase herd immunity in the
society rapidly, so minimizing ineffective vaccination and
postponed vaccinations are more crucial than reducing costs.
The weights of the objectives are determined as 0.296, 0.567,
and 0.137 for N(Z;), N(Z,), and, respectively. These weights
are used in the solution of the model to determine order
quantities. The proposed MIP models with 162 decision
variables were implemented in General Algebraic Modeling
(GAMs) 23.5 and solved with ILOG CPLEX on a computer
with Intel(R) Core (TM) i75 CPU, a 1.80 GHz processor, and
16 GB R3 memory using Windows 10 (64 bit). Solutions were
obtained within 50 iterations and 5 min of elapsed time. The
model results are given in Table 7, which shows objective
function values and percentage deviation from lower bounds.

The lower values of percentage deviation indicate the
successful actualization of an objective. Tables 6 and 10 show
that 174 people have ineffective vaccination, 4,922
vaccinations are postponed, and the total purchasing cost is
205,818 USD for a six-week plan.

For each vaccine type, vaccination plans may be prepared
from the results. For the sake of simplicity here, a vaccination
plan for only mRNA vaccines is given in Tables 8—10, under the
delivery capacity of optimistic, most likely, and pessimistic
scenarios. The second and third columns in the tables are
planned order quantities and realized order quantities, which
are essential decision variables for the model to show outcomes
of order allocation. Planned order quantities are equal;
however, realized order quantities vary depending on delivery
realizations and substitution quantities.

The fourth column in Tables 8-10 shows the number of
people vaccinated with their requested type of vaccine, mRNA.
The fifth and sixth columns show the number of substituted
vaccines by the inactivated and viral vectoral ones due to the
unavailability of mRNA. Therefore, the total number of people
initially preferring mRNA vaccines is the sum of these three
columns. If the number of vaccines is not enough to meet the
planned quantities by the government, they are postponed to
the next period. The number of postponed vaccinations is
cumulative values depending on the actualization of supplier
capacities. Therefore, there is a significant difference between
optimistic and pessimistic scenarios. The last three columns in
the tables show the total number of mRNA vaccines
administered and substituted by inactivated and viral vectors
ones.

Table 11 shows the percentage order allocations of suppliers
and the percentage of postponed vaccinations of each type. The
table shows that 15.4, 40.2, and 44.5% of planned vaccination
are met with mRNA, inactivated, and viral vectoral vaccines,
respectively. When a specific vaccine is unavailable, it is either
substituted by another vaccine or postponed for the next
period. 60.8, 22.3, and 16.9% of postponed vaccinations are
viral vectoral, inactivated, and mRNA vaccines, respectively.
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Figure 3 Results of criteria weights according to expertise pairwise comparison
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Table 6 AHP weights calculations for the MIP model objectives

Weights
of the

Objectives SCs (0.21) TRs(0.05) SD (0.04) ILs (0.09) BCs (0.06) USs (0.13) CARs (0.21) MFOs (0.08) HPSs (0.13) objectives
Minimizing Inefficacy (Z,) 0.33 0.29 0.25 0.30 0.17 0.29 0.30 0.26 0.33 0.296
Minimizing Postponement (Z;)  0.55 0.57 0.66 0.54 0.44 0.57 0.61 0.63 0.52 0.567
Minimizing cost (Z5) 0.12 0.14 0.09 0.16 0.39 0.14 0.09 0.11 0.14 0.137
Table 7 MIP model results for each objective 5.2 Experimental study

— - - — The experimental study is conducted to analyze the sensitivity
Objective function ~ Weights  Percentage deviation Value of the proposed model to some of its essential parameters, such
V4 - - 0.164 as the time between recurring orders and the substitution ratios
74 0.296 0.048 10,174 among vaccine types.
Z; 0.567 0.046 4,922
73 0.137 0.894 205,818

Table 12 shows the results related to overall substitution
and postponed vaccinations in all scenarios. As seen in the
table, postponed vaccination quantities significantly
increase from optimistic to pessimistic scenarios, which
shows that capacity realization has a tremendous impact on
the overall performance of vaccine planning. Only 1.4% of
the planned order vaccines are postponed in the optimistic
scenario, while this quantity increases to 43.1% under the
pessimistic scenario.

Table 13 shows the expected number of substitutions among
vaccine types considering all scenarios. The results reveal that
mRNA is substituted commonly by the other vaccine types. On
the other hand, the number of substitutions from viral vectoral
to the others is relatively low. The purchasing cost can explain
these trends since the viral vectoral is the least cost vaccine,
whereas the mRNA is the highest cost.
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5.2.1 The impact of time berween recurring orders
Initially, it is assumed that the government may order any
vaccine type every week. However, suppliers may have
limitations in processing frequent recurring orders in real life
and thus need a specific time between two consecutive order
placements. This section presents a numerical analysis to
observe the effect of the time between recurring orders on the
objective function. For two to three weeks’ time intervals
between recurring orders, the results are presented in Figure 4.
When the time between recurring orders increases, the total
objective function value as a weighted average of deviations
from all objectives, Z-values, worsens as deviations from
minimum values of inefficacy and postponed quantities
increase. However, as seen in Figure 4, variations from
minimum cost value decrease as the number of weeks between
recurring orders increases.

Figures 5 and 6 depict the change in the ratio of postponed to
planned quantities and the proportion of substituted to planned
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Table 8 Vaccination plan for mRNA in the optimistic scenario
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Number of people requesting mRNA

vaccinated with Substituted for
Total number
Planned Realized Number of of people
order order mRNA  Inactivated  Viralvector ~ postponed  Inventory  vaccinated Viral
Week  quantity quantity (i=1) i=2) (i=3) vaccinations level with mRNA Inactivated  vector
t Xt Orealized!, X1 XS{_21s XS{_31s xbi N P XS} j2s XS] p-3s
1 960 960 795 82 82 41 0 912 117 0
2 890 890 755 114 114 57 0 846 90 0
3 1,000 940 893 66 66 33 0 893 0 0
4 970 970 897 54 54 27 0 922 25 0
5 800 594 354 269 269 135 210 354 0 0
6 1,000 940 1,103 13 13 6 0 1,103 0 0
Table 9 Vaccination plan for mRNA in most-likely scenario
Number of people requesting mRNA
vaccinated with Substituted for
Total number
Planned Realized Number of of people
order order mRNA  Inactivated  Viral vector postponed Inventory vaccinated Viral
Week  quantity quantity (i=1) i=2) (i=3) vaccinations level with mRNA Inactivated  vector
t Xt Orealized!, Xfl, XSg_y 14 XSe-31 xb3, R Qi XS\ ya XS j3s
1 960 589 560 176 176 29 0 560 0 0
2 890 852 721 147 147 52 0 809 89 0
3 1,000 783 659 166 166 75 0 744 85 0
4 970 595 405 271 271 208 0 565 160 0
5 800 380 0 454 454 242 0 361 361 0
6 1,000 149 0 491 491 248 0 141 1141 0
Table 10 Vaccination plan for mRNA in the pessimistic scenario
Number of people requesting mRNA
vaccinated with Substituted for
Total number
Planned Realized Number of of people
order order mRNA  Inactivated  Viral vector postponed Inventory vaccinated Viral
Week  quantity quantity (i=1) i=2) (i=3) vaccinations level with mRNA Inactivated  vector
t Xt Oreatized?, it XSi_a1s X311 xb3, R Qi XSipmae  KSigeas
1 960 900 555 178 0 87 0 855 0 300
2 890 824 0 507 0 132 0 783 512 271
3 1,000 834 0 704 0 282 0 792 401 391
4 970 786 0 822 822 203 0 747 747 0
5 800 758 349 425 379 722 0 720 371 0
6 1,000 720 0 503 0 460 0 684 0 684

Table 11 Vaccine order allocation and postponed vaccination percentages

among vaccine types

Vaccine type

Percentage of
order allocation

Percentage of postponed
vaccinations

mRNA
Inactivated
Viral vectoral

15.4%
40.2%
44.5%

16.9%
22.3%
60.8%
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vaccinations while increasing the time between recurring orders
in vaccination planning.

As seen in Figure 6, substitution quantities in optimistic
and most likely scenarios, but the pessimistic scenario,
increase as the time between recurring orders increases. The
contradicted behavior of pessimistic scenarios can be
explained by the lower availability of capacity substituting
for another vaccine type.
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Table 12 The postponed and substituted vaccinations for each scenario
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Ratio of postponed to Ratio of substituted to
Scenario # of postponed vaccination planned vaccination # of substituted vaccination planned vaccination
0 530 1.4% 1,736 4.7%
ML 1,688 4.6% 5,361 14.6%
P 15,779 43.1% 13,936 38.1%

Table 13 Substitution quantities among vaccine types

mRNA Inactivated Viral vectoral
mRNA 0 984 411
Inactivated 1,787 0 658
Viral vectoral 1,302 1,457 0

Figure 4 The effect of time between orders on objectives of the model
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Figure 5 The ratio of postponed to the planned vaccination
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Figure 6 The ratio of substituted to the planned vaccination

Ratio of substituted to planned vaccination
50%
40%

30%

20%

10% :7

0%
1 2 3
Periods
| ——0 =o—ML P

| ~

135

5.2.2 The impact of changing substitution ratios

The substitution ratios indicating the rate of substitutions
among vaccines are set as high, moderate, and no substitution.
Table 14 shows the substitution matrix for high substitution
ratios, which assumes that people prefer to switch from one
vaccine to another instead of postponing their vaccinations.
Thus, substitution ratios are zero from any vaccine to the
postponement. Moderate substitution ratios are gathered from
Figure 2, and their analysis is discussed in Section 4.1. No
substitution scenario assumes that all planned vaccinations not
fulfilled directly are postponed to further periods.

The impact of substitution ratios on objective function values
is revealed in Figure 7. It is observed that objective function
values (Z, Z,, and Z5) slightly increase as changing from high
substitution to no substitution except for the objective of
minimizing inefficacy (Z;).

The impact of substitution ratios on the ratio of postponed to
planned vaccination quantities and substitution to planned
vaccination quantities are given in Figures 8 and 9. A vaccination
plan has no postponed vaccination when the substitution level is
assumed to be high in which substitution rates are significantly
large among vaccine types. Postponed vaccination quantities in
optimistic and most likely scenarios increase as the substitution
levels change from high to no substitution. However, changing
substitution levels does not affect amounts postponed in the
pessimistic scenario since realized delivery quantities are too low
to substitute another vaccine type.

6. Conclusion and future research directions

This study investigates a multi-objective vaccine allocation
problem by considering vaccine substitution and supplier
reliability under optimum, most likely, and pessimistic
scenarios. The impact of Covid 19 is discussed, relying on
numerous factors such as health care, social, and economic to
minimize its effect on a country. Experimental analysis is
conducted to evaluate the impact of time between orders,
substitution ratios, and supplier reliability on the government
vaccine allocation plan.

The hypothetical data analysis reveals that the MIP model
may provide essential insights to the decision-makers for the
vaccine allocation problem regarding the substitution among
various vaccines, duration between consecutive orders, and
supplier reliability. The viral vectoral vaccine has the lowest

Table 14 Substitution rates for the high substitution scenario

Ok mRNA  Inactivated  Viral vector ~ Postponed
mRNA - 0.50 0.50 0
Inactivated 0.45 - 0.55 0
Viral vectoral 0.35 0.65 - 0
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Figure 7 The effect of substitution ratio levels on objectives
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substitution ratio in the sample problem, while mRNA is the
most substituted vaccine in the base scenario. The model shows
that inexpensive vaccines will replace expensive ones if possible.
Another significant insight is about the time between recurring
orders. Although the same amount of vaccine is available in
scenarios with an increasing duration between recurring orders,
the sum of the weighted average of deviations from all objectives,
Z-value, gets worse, and deviations from minimum values of
inefficacy and postponed quantities increase.

On the other hand, total cost descends since the time between
recurring orders affects the available supplier capacity. Besides,
substitution level has a significant impact on postponed
quantities. When the substitution ratios are significantly large
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between vaccine types, the postponed vaccinations go down to
zero. Postponed vaccination quantities in optimistic and most
likely scenarios increase as the substitution levels change from
high to no substitution. However, changing substitution levels
does not affect amounts postponed in the pessimistic scenario
since capacities are too low to substitute another vaccine type.

The MIP model developed in this study is an invaluable tool
supporting governments in allocating the best vaccine by
considering the number of postponed vaccinations, vaccine
efficacy, and purchasing cost. The results of the hypothetical
study show that the government should motivate people to get
vaccinated as early as possible without considering the type of
vaccine. The model indicates that inexpensive vaccines might
be preferred to expensive ones as long as a substitution exists.

The vaccine markets under pandemic conditions are unstable
since there are many uncertainties about suppliers, vaccines, and
conflicts among governments. Therefore, the government should
prefer to make agreements with high reliable suppliers. Besides,
the government should push suppliers to have minimum time
between orders. While deciding the vaccines and their order sizes,
governments should not consider the price and effectiveness of
vaccines in the first place. Instead, a reliable supplier should be
targeted to start the vaccination process at the earliest time.

An illustrative data set with a limited number of vaccines and
their exogenous substitution rates are studied to test the
proposed model. In further studies, substitution between
vaccines might be calculated with logistic regression based on
the real-time data for more vaccines. Moreover, it is assumed
that the number of vaccines will be allocated to various groups
such as health employees and older adults. The MIP model
may be modified to consider this group allocation problem.
Substitution rates may also be calculated based on these
groups. Finally, several modifications and extensions to the
mathematical model developed in this paper are possible.
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