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Abstract
Purpose – The COVID-19 pandemic has forced countries to consider how to reach vulnerable communities with extended outreach services to
improve vaccination uptake. The authors created an optimization model to align with decision-makers’ objective to maximize immunization
coverage within constrained budgets and deploy resources considering empirical data and endogenous demand.
Design/methodology/approach – A mixed integer program (MIP) determines the location of outreach sites and the resource deployment across health
centers and outreach sites. The authors validated the model and evaluated the approach in consultation with UNICEF using a case study from The Gambia.
Findings – Results in The Gambia showed that by opening new outreach sites and optimizing resource allocation and scheduling, the Ministry of
Health could increase immunization coverage from 91.0 to 97.1% under the same budget. Case study solutions informed managerial insights to
drive gains in vaccine coverage even without the application of sophisticated tools.
Originality/value – The research extended resource constrained LMIC vaccine distribution modeling literature in two ways: first, endogenous calculation
of demand as a function of distance to health facility location enabled the effective design of the vaccine network around convenience to the community
and second, the model’s resource bundle concept more accurately and flexibly represented complex requirements and costs for specific resources, which
facilitated buy-in from stakeholders responsible for managing health budgets. The paper also demonstrated how to leverage empirical research and spatial
analysis of publicly available demographic and geographic data to effectively represent important contextual factors.
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1. Introduction

Vaccine supply chains have received significant attention given
their vital role in addressing theCOVID-19 pandemic. Incredible
effort was exerted to rapidly develop, manufacture and distribute
COVID-19 vaccines. The urgent need to reach every person has
revealed gaps in providing access to vaccination services for all
communities. There is renewed global awareness that vaccine
supply chains must extend into every community with sufficient
physical and human resources to provide convenient and
trustworthy vaccination services.
Though vaccine supply chain has appropriately focused on

COVID-19 outbreak response, attention must also remain on
support for routine immunizations that lagged due to the
pandemic. Early in the pandemic, vaccine shipments were
significantly impacted by a dramatic decline in commercial air
transportation and lockdowns of receiving countries. InMay 2020,
a total of 99 countries reported the suspension of immunization
campaigns for the following antigens: measles/measles rubella,
polio (including for vaccine derived polio virus response activities),
meningococcal A, yellow fever, typhoid, cholera and tetanus/
diphtheria (UNICEF, 2019).
Despite remarkable progress in the reduction of child

mortality through immunization, coverage for routine vaccines

had stagnated even before the COVID-19 disruption. Experts
at the 2019 Regional Immunization Technical Advisory Group
(RITAG) meeting called for strengthened routine
immunization as coverage in sub-Saharan Africa had plateaued
at 72% (WHO, 2019). The COVID-19 disruptions further
strained health systems such that 23 million children missed
out on vaccination in 2020, 3.7 million more than in 2019 and
the highest number since 2009 (WHO, 2021).
UNICEF, with a mandate to help meet children’s basic needs

and expand their opportunities to reach their full potential, plays a
central role in vaccine supply chains. In 2019, UNICEF procured
an estimated 2.43 billion doses of vaccines to around 100 countries
to reach approximately 45% of the world’s children under five
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(UNICEF, 2019). UNICEF has also scaled efforts for
procurement and distribution of COVID-19 vaccine doses as a
partner of the COVAXFacility, led by Gavi, the Vaccine Alliance,
World Health Organization (WHO) and the Coalition for
Epidemic Preparedness Innovations (CEPI). UNICEF also
procures and transports immunization supplies such as syringes,
safety boxes for their disposal, and cold chain equipment such as
vaccine refrigerators. The collaboration between MIT and
UNICEF that supported this research began prior to theCovid-19
pandemic. While the research was motivated to increase routine
immunization coverage in Low and Middle Income Countries
(LMICs), the approach to design vaccine networks with the
primary objective of community outreach also applies directly to
pandemic vaccination response such as forCOVID-19.
Consultation with UNICEF shaped the scope of our vaccine

network design efforts. Given the goal to increase community
access to vaccines, we focused on distribution with the primary
decisions of facility location and resource deployment. Facility
location focused in outreach sites, which are single-day clinics
conducted inmore remote communities. Resource deployment
considered both the established health centers that offer routine
immunization services and the outreach sites, which are
supported by staff deployed from the health centers.
Efforts to improve immunization coverage through vaccine

network designmust embed the realities of health system services
and the behaviors of people in the communities they serve.
Starting with the community, vaccine networks should improve
access by striving to reach people with convenient services that
are trustworthy. Vaccine uptake depends on a combination of
interventions to drive demand (e.g. information dissemination,
community engagement) and provide services. While we do not
link demand to specific interventions, our approach explicitly ties
demand with proximity to the facilities that implement them. To
consider the health system realities around implementation, we
modeled the deployment of specific commodities, equipment,
assets, and skilled workers required by the interventions. Finally,
the fundamental reality in providing health services is a
constrained budget, especially in LMICs. As a result, many
vaccine network design efforts focus on minimizing cost.
However, given our research aim to increase access, our objective
function focused on providing access to community members
while respecting the budgetary constraints.
Based on the motivation and context, the study sought to

answer the following questions:
1 How can vaccine distribution networks be designed to

maximize immunization coverage given budget constraints?
2 How does the proximity of population to vaccination

services affect the immunization coverage?
3 How can important contextual factors that affect

vaccination demand and/or resource deployment in
LMICs be effectively modeled?

To optimize vaccine network design, we developed amixed integer
program (MIP) to determine the location of outreach sites and the
resource deployment across health centers and outreach sites. Our
research extended the vaccine distribution modeling literature with
two novel contributions. First, the model included a general
function for endogenous calculation of demand based on network
design decisions such as distance to vaccination locations. Second,
the model’s resource bundle concept more accurately and flexibly

represented complex resource requirements and costs to facilitate
buy-in from stakeholders responsible formanaging health budgets.
We validated the model and evaluated the approach in

consultation with UNICEF using empirical data from The
Gambia. While we did not develop further evidence linking
immunization coveragewith proximity of population to vaccination
services, we calibrated the model’s endogenous demand function
to the country context and conducted sensitivity analysis with the
demand function. Results show the potential to increase
immunization coverage from 91.0% to 97.1% under the same
budget through better deployment of equipment and staff across
existing health centers and support for more outreach sites. The
case study provided two additional contributions. First, it
demonstrated how to leverage empirical research and spatial
analysis of publicly available data to effectively represent important
contextual factors. Second, case study solutions informed
managerial insights to drive gains in vaccine coverage even without
application of sophisticated tools. Thus, the research provided
practical tools and insights such that LMICs specifically, and public
health agencies more generally, can more easily pursue evidence-
driven improvements to vaccine distribution in various contexts.
The paper is organized as follows: a review of literature on

vaccine network design and immunization demand in Section 2
informs our methodology described in Section 3. A case study
of The Gambia in Section 4 informs research and managerial
insights discussed in Section 5.We conclude in Section 6.

2. Literature review

This literature review is organized around our research questions.
Although research on network design is abundant, we focused
our literature review on models that address context of vaccine
networks and compare studies based on a set of criteria relevant
to this problem. Next, we explored the health literature to
characterize research on the impact of proximity on demand.
Finally, we outlined contextual factors with potential impacts on
demand and how this topic could be further explored. We close
by identifying research gaps to position our work.

2.1 Vaccine distribution network design
Two prior studies categorized optimization models for vaccine
network design. Lemmens et al. (2016) characterized studies of
network design by the type of problem they aimed to solve,
creating the following framework: (1) demand allocation; (2)
vaccination location; (3) production capacities, and (4) batch sizes.
A more recent work (Duijzer et al., 2018), used four different
components for classification, similarly focusing on the problem
being solved: (1) product; (2) production; (3) allocation; and (4)
distribution. Although the naming of the categories is different, we
found similarities. For example, vaccination location (Lemmens
et al., 2016) is similar to distribution (Duijzer et al., 2018) as the
decision of where a vaccination center should be located is
intrinsically connected to how vaccines are distributed.
Our research problem fell within this combined category,

distribution and vaccination location. Our work with UNICEF
specifically focused on the LMIC context, though the approach is
generally applicable. For LMIC vaccine networks, it is
reasonable to assume that the product and production decisions,
such as who will supply vaccines and how many doses of what
type will be made available, are made by national government
planners (Chen et al., 2014). Moreover, the allocation decision,
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such as who should receive the vaccine, is not pertinent to our
research objective to maximize the access to immunization.
According to Chen et al. (2014), the basic structure of vaccine
supply chains in LMIC follows a similar structure, with a central
storage location that serves as a supplier to a multi-layered chain
formed by regional stores/hubs and clinics. With the product,
production, and allocation decisions out of scope, our literature
review focused on vaccine distribution in LMIC.
We identified six highly relevant papers to the specified topic.

To establish a methodology of comparing these six works, we
defined the following criteria for classification:
1 Objective: Minimize costs and maximize access to vaccine
2 Decisions: Locations, flow between nodes, inventory level,

vehicle types, storage types and other relevant characteristics.
3 Network structure: Central distribution, hubs, clinics and

outreach sites
4 Demand: Fixed exogenous, stochastic and causal

endogenous (distance based function)
5 Product: One vaccine and multiple vaccines
6 Period: Single and multi-period
7 Constraints: Vehicle/storage capacities andmaximal distance

Our classification criteria built on the three types of decisions in the
distribution phase of vaccine supply chains proposed by Duijzer
et al. (2018): (1) the design of the supply chain – number of layers
and its locations; (2) the inventory control policy – size and location
of stock; and (3) the dispensing points. We added details in our
criteria to further differentiate existing models and identify gaps. A
summary matrix below illustrates the different characteristics
(Table 1). For the clarity of analysis, we divided the six papers into
two groups based on the strong connection among theworks.
In thisfirst group, we clustered three papers that do not consider

outreach sites. Chen et al. (2014) built a general mathematical
model to optimize operations in vaccine networks in LMIC. They
proposed a formulation that considers a multi-period capacitated
network model with different types of storage devices, vehicles,
and vaccines types with the introduction of the vaccination
regimen concept that determines howmany doses of each vaccine
type a childmust receive to be considered fully immunized.
Building upon the work done by Chen et al. (2014), Lim

(2016) proposed a model to redesign vaccine distribution
networks in LMIC. This paper did not have the multiple
vaccine complexity of Chen et al. (2014), but did consider the
decision to open locations, combined with other more
operational aspects, in formulating a MIP to minimize cost.
Due to this complexity, a novel hybrid algorithm based onMIP
and an evolutionary strategy was developed.
Yang et al. (2021) built upon (Lim, 2016) by adding

complexities to the model such as flexible sizes of storage
devices and a single trip constraint on deliveries. Once again,
problem complexity and size made it necessary to create a
disaggregation-and-merging algorithm.
Although these papers were a potential source of operational

constraint enhancements, they considered exogenous demand
and required a complex solution methodology. Most critically,
none of them incorporated outreach sites where health care
professionals are regularly sent from fixed clinics to operate one-
day clinics in villages to vaccinate the nearby population.
Interviews with UNICEF revealed that vaccination through
outreach sites is highly relevant for immunization efforts in

LMIC. The Reaching Every District strategy (RED) established
byUNICEF and its partners aims to develop vaccination delivery
strategies that reach more of the target population (Vandelaer
et al., 2008). Thus, the second group of three works
incorporating outreach sites ismore closely related to our work.
Lim et al. (2016) contained the first quantitative model to

determine optimal outreach trips and policies to maximize
coverage. This work also considered the distance impact in
coverage – one of our research questions. Their main decisions
were the location of outreach sites and which fixed clinics should
serve as a base for outreach operations. An important assumption
of this modeling was that each outreach sites was located at a
given and constrained, i.e. maximum, Euclidean distance from
fixed clinics. They did not consider candidate sites throughout
the region identified by systems of access, such as road networks.
Mofrad (2016) extended (Lim et al., 2016) by combining health

center location and outreach planningwhile including vaccinations
at health centers. Using a different solution approach, this model
treated outreach planning as a vehicle routing problem. In
practice, this further limits the number of vaccines each outreach
location can receive from a single trip. The formulation included
stochastic demand but did not consider causal demand based on
population distance. The modeling approach in the third paper
(Yang and Rajgopal, 2019) was very similar to Mofrad (2016),
with the addition of a time aspect into the outreach trip planning.
In this sense, thework byYang andRajgopal (2019) can be seen as
a vehicle routing problem with time windows (VRPTW)
combinedwith a set-covering problem (SCP).
The models proposed by Mofrad (2016) and Yang and

Rajgopal (2019) added significant complexity to the modeling of
Lim et al. (2016) with the incorporation of routing aspects to
outreach trips, clinic location decisions, and service levels.
However, both papers excluded an important aspect of Lim et al.’s
(2016) formulation: formal incorporation of the effect of distance
on immunization demand. In addition, planning outreach as a
vehicle routing problem was not an operational aspect raised by
our stakeholders. Finally, the health center opening decision was
irrelevant to ourmodel since these locationswere treated asfixed.
Following the criteria established at the beginning of this

section and presented in Table 1, we defined our model
characteristics as follows:
1 Objective: Maximize access to vaccine
2 Decisions: Open outreach; service level at fixed clinics
3 Network structure: Clinics and outreach sites
4 Demand: Causal and endogenous
5 Product: Single vaccine
6 Period: Single period
7 Constraints: Maximum distance between outreach and

fixed clinics

2.2 Distance effect on vaccination coverage
Our second research question explored the impact of proximity
on vaccination coverage. The relevance of including this factor
was quantitatively assessed by Blanford et al. (2012). After
conducting a study in Niger, their results showed a 95%
significance level that the probability of children living an hour
from vaccination facilities being fully immunized at one year old
is 1.88 higher than children living in more distant areas. Ibnouf
et al. (2007) explored how time influences immunization demand
among children under five in Sudan. Children of mothers who
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have better access to vaccine services, less than 30 min walking
time to the nearest place of vaccination, were about 3.4 times
more likely to have correct vaccinations than were children of
mothers walking 30 min or longer. Some papers studied

distance-decay quantitatively. For instance, Feikin et al. (2009)
considered resident distance from a peripheral health facility on
pediatric health utilization in rural western Kenya. The rate of
clinic visits decreased linearly at 0.5 km intervals up to 4 km, after

Table 1 Comparison of key characteristics of previous vaccine network models

Group 1 - No outreach locations Group 2 - outreach locations

1. Chen et al.
(2014) A planning
model for the
WHO-EPI . . .

2. Lim (2016)
Improving the
design and
operation . . .

3. Yang et al. (2021)
Optimizing vaccine
distribution
networks . . .

4. Lim et al. (2016)
Coverage models to
determine outreach
. . .

5. Mofrad (2016)
Optimizing
vaccine clinic
operations . . .

6. Yang and
Rajgopal (2019)
Outreach strategies
for vaccine
distribution . . .

Objective
Maximize
coverage

Maximize coverage Maximize coverage

Minimize costs Minimize costs Minimize costs Minimize costs Minimize costs
Decisions
Open locations Open hub Open hub Open outreach Open outreach and

clinic
Open outreach and
clinic

Flow between
nodes

Flow between nodes Vehicle types and
number

Vehicle types and
number

Vehicle types Vehicle types Vehicle types Vehicle types Vehicle types and
outreaches

Storage types Storage types Storage types Storage types
Inventory levels Inventory levels Inventory levels Inventory levels
Outreach routes Number of outreach

trips
Number of outreach
trips

Capacity Variable device
capacity

Network structure
Central
distribution

Central distribution Central
distribution

Central distribution

Hubs Hubs Hubs (variable) Hubs (variable)
Clinics Clinics Clinics Clinics Clinics Clinics (variable) Clinics (variable)
Outreaches Outreaches Outreaches

(variable)
Outreaches (variable)

Demand
Fixed exogenous Fixed Fixed
Stochastic Stochastic Stochastic Stochastic
Causal (distance) Causal (distance)

Product
Single vaccine Single vaccine Single vaccine Single vaccine Single vaccine Single vaccine
Multiple vaccines Multiple vaccines

Period
Single period Single period Single period Single period
Multiple periods Multiple periods Multiple periods Multiple periods

Constraints
Capacity on
facilities

Capacity on facilities Capacity on
facilities

Variable capacity

Capacity on
vehicles

Capacity on vehicles Capacity on
vehicles

Capacity on vehicles Capacity on
vehicles

Capacity on vehicles

Others Single trip delivery Dist. max outreach to
fixed HC

Daily trips to one
dest

Max travel time to
multiple dest

Patient and outreach
max travel dist

Patient max travel
dist
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which the rate was stabilized. Using Poisson regression, for every
1 km increase in distance of residence from a clinic, the rate of
clinic visits decreased by 34%. Different from our research, their
studywas not applied to the immunization context.
Verter and Lapierre (2002) modeled the negative impacts on

coverage as distance increases from clinics. Their maximal
coverage location of preventive care facilities problem assumed
that coverage reduced linearly with distance. Tanser (2006) and
Gu et al. (2010) also incorporated this effect in their healthcare
facility location research with similar approaches. The first paper
to incorporate this specific effect in the optimization of vaccine
networks models was Lim et al. (2016). Unlike Verter and
Lapierre (2002), however, they considered the reduction of
coverage to be either binary or stepwise. In our modeling, we
assumed a linear decrease in demand function based on the
distance, similar towhat was done byVerter andLapierre (2002).

2.3 Other factors affecting the demand
We found only one paper related to our last research question
on modeling contextual factors that affect vaccination demand.
Echakan et al. (2018) quantitatively and qualitatively assessed,
through interviews of the population and health records
analysis, that distance/time is a main factor in immunization
access. Their work highlighted the importance of advertising
outreach operations so that the target population knows when
and where outreach sites will be opened. This is an intuitive
piece of information that models have not directly considered.
While not focused on vaccination demand, Burkart et al. (2017)

explored how beneficiaries’ choice can improve the design of a
distribution network. The authors explained that beneficiaries do
not necessarily follow the assumed assignment of relief goods
demand to the nearest distribution centers. Although the context
of this study was the distribution of relief goods after a disaster
rather than regular vaccination activities, it is important to note
that beneficiaries might prefer to visit a location other than the
nearest one. Capturing and incorporating information on the
potential attractiveness of potential sites could result in improved
model performance. Such efforts could be incorporated through a
different demand function,which ourmodel could incorporate.
In addition, from discussions with UNICEF, the quality of

human resources, especially at outreach locations, significantly
affects vaccine demand. Human resources includes both the
skilled health professionals and unskilled volunteers. If their
morale, as well as their quality of work, are high, more people
will tend to get vaccinated. It is not yet clear, however, how
these effects can be incorporated into optimizationmodels.

2.4 Literature gaps
Much of the vaccine network design research focused on cost
minimization and did not explicitly model the causality between
design decisions and immunization demand. Engagement with
stakeholders confirmed the centrality of designing operations to
maximize immunization coverage given a constrained budget.
From the papers relevant to our problem only (Lim et al., 2016)
focused on both maximizing coverage and modeling casual
demand and is most relevant to our work. Our model extends
(Lim et al., 2016) in the following ways. First, we explicitly
modeled the ability of fixed clinics to serve the population.
Second, we incorporated flexible capacity at the fixed clinics as
decision variables by varying the number of employees or
working hours. Third, we defined candidate outreach sites based

on road networks rather than Euclidean distance. Fourth, we
tailored cost functions for both fixed clinics and outreach sites
that combine fixed and variable costs in representing realistic
resource bundles. Finally, we incorporated a generic demand
function instead of requiring a stepwise function.

3. Research methodology

We aimed to support a government’s strategic decisions in
terms of budget for vaccination campaigns as well as a
structured and optimized way to determine the location of the
vaccination points. It was not the objective of this model to
provide a daily schedule of how to operate the network, and for
this reason, we did not follow the location routing approach
applied byMofrad (2016) and Yang and Rajgopal (2019).
The methodology used in this study was Mixed Integer

Programming (MIP) with a formulation developed in Python
using a solver to perform the MIP optimization. The objective
function maximizes access to vaccination in LMIC while
incorporating an endogenous demand function into themodel. To
develop this model, we followed a multi-setup approach by first
defining an exploratory model to facilitate interaction with
UNICEF in formulating the formal model to use with empirical
data fromTheGambia.

3.1 Exploratorymodel
Based on the literature review and initial discussions with
UNICEF Supply Division, we developed an exploratory model
for a small-scale problem with fabricated data. Researchers
could explain the model and share dynamics with an easily
understood problem that facilitated stakeholder feedback to
improve themodel design (see Figure 1 for a visual depiction).
The objective function of the exploratory model was to

maximize immunizations in either fixed health centers or
outreach sites subject to a constrained budget. Fixed health
centers were established locations that offer routine
immunization services and outreach sites were single-day clinics
conducted in more remote communities by people sent from
fixed health centers. The demand for immunization was
modeled as an endogenous function that reflects people’s
willingness or capacity to travel for immunization services.
Decision variables included the number of employees at the
fixed health centers and the candidate outreach sites to open.
Discussion of the exploratory model centered on scenarios tied

to three input factors – outreach implementation costs, health
center employee costs, and the demand function. Exploratory
model interaction with UNICEF Supply Division identified two
important model improvements. The first was that the outreach
sites’ size should vary depending on the resources used. The
second was that the costs of an outreach operation should not be
variable and based on the operation size and distance from its
supplying facility. Validation of the demand function based on
health expert experiences was also an important development.

3.2 Formal model
When exploratory model results aligned with stakeholder
intuition, researchers formalized the model. The formal model
formulation in this section uses the following notation.
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Figure 1 Exploratory model scenario

Sets
F ¼ set of fixed health centers f
O ¼ set of potential outreach centers o
J ¼ set of population regions j

Variables
Xfj ¼ people from region j vaccinated by fixed health center f [Continuous]
Xoj ¼ people from region j vaccinated by outreach site o [Continuous]
Xfo ¼ resource bundles from fixed health center f to outreach site o [Integer]

Yfj ¼ 1 if region j served by fixed health center f
0 if otherwise

�
[Binary]

Yoj ¼ 1 if region j serviced by outreach site o
0 if otherwise

�
[Binary]

Xfj; Xoj; Xfo � 0 8feF;8oeO; 8jeJ
Parameters
Fixed health centers
CEf ¼ employee cost at fixed health center f ($/day)
PEf ¼ employee productivity at fixed health center f (doses/day)

Resource bundle (outreach)
CEo ¼ employee cost at outreach o ($/day)
PEo ¼ employee productivity at outreach o (doses/day)
Vp ¼ doses per resource bundle
Ve ¼ max employees per vehicle
Vcv ¼ max cold boxes per vehicle
Vdc ¼ average vaccine doses per cold box
Distfo ¼ distance between fixed health center f and outreach o (km)
Cfo ¼ total resource bundle cost ($)

Demand
/fj ¼ vaccination coverage of region j by fixed health center f
/oj ¼ vaccination coverage of region j by outreach center o
Dj ¼ total demand for immunization in region j
dfj ¼ doses demanded by region j filled by fixed health center f
doj ¼ doses demanded by region j filled by outreach center o

Costs
B ¼ total available budget ($)
Cv ¼ cost per vaccine dose ($/dose)
Cov ¼ vehicle operation cost per km ($/km)
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3.2.1 Endogenous demand function
This research sought to answer how the proximity of outreach
centers affect demand. This research began to answer that
question through the incorporation of an endogenous demand
function. Based on our previous work (Russell et al., 2019),
literature review, and conversations with stakeholders, we
started from the assumption that the demand that a fixed health
center f can capture from population center j, dfj, decreases as
the distance between f and j increases. This captured the
conclusion that people would be less likely to travel for
immunization services as the location for immunization
becomes further away from them. Mathematically, this was
formulated by multiplying the demand Dj by factor afj , as
shown in Equation (7). This factor, called vaccination
coverage, is a function of the distance between f and j,
afj ¼ f Distfjð Þ. The same approach is extended for outreach
sites, as Equation (8) shows.
The key question is the shape of the function afj5f Distfjð Þ.

As shown in the literature review, there is no consensus on the
shapes and coefficients of such a function. In addition, the
derivation of a demand function for a specific country requires
detailed data and study. However, the literature review allowed
us to arrive at reasonable estimations and boundaries on which
it would be reasonable to evaluate. In The Gambia case study,
we explore three demand function options.
As an example, the equation below describes a linear decay

function a demand decrease of 20% every 100 km.

afj51� 0:2 �Distfj
100

8f eF; 8jeJ

Assume fixed health center 1 is at a distance of Dist12 5 200 km
to Region 2 and at a distance Dist13 5 300 km to Region 3.
Using the function, the vaccine coverage would be a12 5 0.6
and a13 5 0.4. Assuming the total demand in the two regions is
the same (D2 5 D3 5 500), Equation (7) defines the final
demand for immunization in the arcs d12 5 300 and d13 5 200.
By incorporating the demand function in this way, demand

becomes a property of the arc and not the node, as is typical in
network optimization problems. In addition, Equations (7) and (8)
remain applicable for any functional form – such as linear,
exponential, or polynomial decay. Finally, functions that
incorporate additional location or arc factors beyond distance
could be defined and used. Thus, behavioral research regarding
access to healthcare in a particular context can be easily
incorporated in our formulation. See 4.2 for how we defined the
demand function inTheGambia case study.

3.2.2 Outreach cost and capacity
In the exploratory model, the cost of an outreach operation
added a fixed implementation cost with the cost of vaccinating
each population center from the outreach site, which we
fabricated by making more distant centers more expensive.
Feedback from experts highlighted that cost and capacity of an
outreach operationwas not fixed but dependent on the distance
to and resources supplied by the health centers. In addition, the
immunization cost at an outreach site was not dependent on
the distance from the outreach site to the population, as the
population traveled to the outreach site. This patient travel
does not impact cost but undoubtedly impacts the number of

patients that access a facility, and thus the endogenous
demand.
The authors updated the model formulation to incorporate

this feedback adding a resource flow from the fixed health
center f to the outreach site o. Resources included everything
necessary to implement an outreach operation. Interviews with
UNICEF experts identified five fundamental resources
necessary to guarantee outreach implementation: (1) vaccines
doses; (2) cold boxes and ice packs; (3) transport vehicle; (4)
nurses responsible for administering vaccines; and (5) other
basic equipment, such as needles.
The flow of resources along the network arc determined the

cost and capacity for each outreach site. In defining parameters
for this flow, it was helpful to create resource bundle concept,
which is defined as a unitary package of the essential resources
necessary to implement a certain amount of capacity for each
outreach site. This enabled definition of cost and capacity
drivers that could change according to location while ensuring
that all required resources were accounted for.
The model restricted the amount of resource bundles that

could be allocated to each operation to integer values. The
resource bundle concept enabled customization of the mix of
resources required or possible. For example, one vehicle could
seat two people and hold 12 cold boxes while another could
seat five people and hold five cold boxes. Thus, the formulation
could be tailored to different contexts by defining a “recipe” of
ratios for the five key resources in the bundle to the unitary
resource. The definition of the unitary resource depends on the
most relevant factor to in specific circumstances and/or the
operational bottleneck. In one context, nurses could have open
access to transportation. In this case, the unitary resource
would be a single nurse, the modeler would derive a ratio for
the resources each nurse, and the model would allocate nurses.
In a different context, the limiting factor might be the number
of available vehicles. Thus, the unitary resource would be a
vehicle that is filled with a relative amount of other resources.
In The Gambia, the vehicle was often defined as the unitary

resource for the bundle, though the flexibility in customizing
resource flows for different contexts is important. With the
unitary resource defined, it was necessary to define conversion
factors that flow the relative amount of key resources per
bundle. Conversion factors would depend on the specific
characteristics of each country’s immunization network
logistics, such as vehicle types and cold box sizes. Table 2
summarizes the conversion factors necessary for a vehicle-
driven bundle. These parameters are included in the formal
model formulation as an example that is applicable for The
Gambia.

3.2.3 Mathematical formulation
This section presents the mathematical formulation of the formal
model. Our objective function remains the maximization of the

Table 2 Resource bundle parameters

Input variable Unit

Vcv Number of cold boxes per vehicle
Ve Maximum number of employees per vehicle
Vdc Number of doses per cold box
PEo Employee productivity in outreach operation [doses/day]
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total amount of doses distributed. The total amount of doses was
obtained through the sum of the doses distributed from fixed
health centers Xfj plus the ones from outreach sites Xoj

(Equation 1). There were three key decisions in the formal
model: (1) which facilities will serve each region; (2) doses
supplied to each region; and (3) how many resource bundles will
be sent from each health center to each outreach site. This third
decisionwas an addition to the exploratorymodel formulation.
To model this new feature, we added a new variable to

capture the flow of resource bundles from health centers to
outreach locations: Xfo 5 resource bundles sent from fixed
health center f to outreach location o. Thus, the decision to
send bundles to an outreach site defined whether the candidate
location was used or not. Table 2 introduced the parameters
that define the bundle structure used in The Gambia case. The
parameters that make up the cost of a resource bundle,
Equation (9), were the vehicle cost per km, the distance, the
number of employees in a vehicle, and the cost per employee.
Formalmodel formulation:

Maximize
X
j2J

X
f2F

Xfj 1
X
o2O

Xoj

� �
S:T

(1)

A B C

X
f2F

X
o2O

Xfo � Cfo 1
X
f2F

X
o2O

CvðXfj 1XojÞ1
X
j2J

X
f2F

Xfj � CEf

PEf
1
X
o2O

Xoj � CEo

PEo

 !
� B

(2)

Xfj < dfj � Yfj 8f 2 F; 8j 2 J (3)

Xoj < doj � Yoj 8o 2 O;8j 2 J (4)

X
f eF

Xfo � Vp �
X
jeJ

Xoj 8o 2 O (5)

X
f2F

Yfj 1
X
o2O

Yoj

� �
� 1 8j 2 J (6)

doj ¼ Dj � /oj 8f 2 F; 8j 2 J (7)

doj ¼ Dj � /oj 8o 2 O; 8j 2 J (8)

Cfo ¼ Cov �Distfo 1CEo 8f 2 F; 8o 2 O (9)

The model includes several complex constraints that deserve
further explanation. Equation (2) represents the budget
constraint. To simplify its explanation the total cost was broken
down into its three expressions: (A) the vehicle operation costs;
(B) the vaccination cost at fixed health centers; and (C) the
vaccination cost at outreach sites. The first cost component of
the budget constraint refers to the cost of sending the resource
bundles. The second is a straightforward calculation of the cost
per dose multiplied by the number of doses. The last cost
component calculates the direct labor costs for vaccination by
multiplying the daily cost of an employee by the total amount of
employees required to administer doses.

The resource bundle constraint, Equation (5), guarantees
that the number of vaccines administered at each outreach site
does not exceed the vaccines in each resource bundle. This is a
generic constraint. Vp, the number of doses per bundle unit,
will depend on how the resource bundle is defined. The
resource bundle definition in Equation (5) is generic.
It is possible to replace Equation (5) with distinct equations by
resource to help decision-makers frame a more complex
resource context. For example, in developing our case study we
explored both a human resources constraint (Equation 10) and
a vehicle capacity constraint (Equation 11).X

f eF

Xfo � PEo � Ve �
X
jeJ

Xoj 8o 2 O (10)

X
f eF

Xfo � Vcv � Vdc �
X
jeJ

Xoj 8o 2 O (11)

In the human resources constraint, Equation (10), each vehicle
can carry a maximum Ve number of employees with average
productivity of PEo doses per day. Assuming each outreach trip
must start and end on the same day, given the available
employees in each vehicle, the number of doses per resource
bundle cannot exceed PEo

� Ve doses per day. In terms of
vaccine doses is given by Equation (10). A similar approachwas
taken with the vehicle capacity constraint, Equation (11), to
calculate the maximum amount of vaccinations per outreach
due to the vehicle transportation capacity of vaccine doses. In
this case, each cold box has a maximum number of doses per
unit, Vdc, and each vehicle has a maximum number of cold
boxes it can fit,Vcv. Stakeholders fromTheGambia ultimately
decided that the resource bundle would be represented by the
vehicle capacity for our case study, thus using Equation (11).

4. The Gambia case study

Application of the model to a real-world case study was a goal
of this research. This section presents an overview of the
current network structure in The Gambia and describes how
the empirical data were gathered and transformed to be used in
the model and how the endogenous demand functions was
calibrated. Lastly, the findings are presented.
The Gambia’s vaccine network followed a typical

vaccination supply chain design: a national store, regional
distribution centers, health centers, and outreach sites. The
fixed facilities (regional stores, national stores, and health
centers) were not only used for immunization services but were
also part of other health supply chains. The flow of
immunization commodities started at the ports and moved to
the national store. Next, products were distributed to the seven
regional stores and flowed down to health centers and outreach
sites. Regional stores were supplied every quarter by trucks
coming from the national stores. Each health center collected
commodities at the regional stores every month, using an
available vehicle. This vehicle was also used for outreach
operations.
Outreach trips departed from the health centers, where

medical staff left in a vehicle at the beginning of the day with all
the necessary equipment, traveled to the predetermined
outreach site, vaccinated, and returned the same day. A
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predetermined monthly schedule defined the specific days for
the immunization service at each outreach site and health
center.
Our model considered distribution in the vaccine network.

Therefore, the focus was on defining the optimal distribution
schedule to the outreach sites, the optimal location of outreach
sites (i.e. which should be opened and closed), and the
necessary personnel. The model did not suggest the opening or
closure of existing fixed health centers. We next provide details
for key elements of the network design problem.

4.1 Nodes
The nodes in the model were comprised of regions, health
centers, and outreach sites. This section discusses how the
regions’ populations were derived, how potential outreach sites
were selected, and how we calculated the distances between the
nodes.

4.1.1 Regions
The UNICEF field office in The Gambia provided population
by existing catchment areas as a data source. Without
information on how UNICEF defined the catchment areas, the
model could not utilize these data to inform demand for new
catchment areas. Instead, the model incorporated the
Socioeconomic Data and Application Center’s 1-km
population projections for 2020 (Jones et al., 2020). Extracting
a GeoTIFF from SEDAC, masking the extract for the
geographic boundaries of The Gambia, and then creating point
data for a 2-km grid resulted in 3,952 centroids each with a
corresponding population, which were treated as regions in the
model. While this dataset’s estimated total population is 10%
less than the dataset provided by UNICEF, the population was
similarly geographically distributed.

4.1.2 Facilities: fixed health centers and outreach sites
UNICEF provided the geolocation of current health centers
and outreach sites. Figure 2 shows the distribution of these
sites. The calculation of distances between these sites was a key
component of the model formulation as it impacts both the
endogenous demand function and the outreach distribution
costs. With network design problems, it is common to work
with linear Euclidian distances instead of road distances.
However, the road network distances and the calculated linear
distance differ dramatically for some geographies. This is the
case in The Gambia, as it is a long, narrow country divided by a
large river. As a result, the linear distance between two points

on opposite river banks differs significantly from the road
distance.
For the case study, the distances between health centers and

outreach sites utilized the shortest road distance, using Open Street
Maps (OSM),while regions to outreach sites used a linear distance.
Themodel used linear distances between the population regions to
the facilities for two main reasons: many regions in the 2-km grid
had no access to the road network, therefore the calculation of road
distance was not possible; and we assume that rural areas will walk
directly to a vaccination site rather than take the road.
The starting point for candidate locations for outreach sites

was the 2-km grid, with 3,952 centroids, used to create the region
nodes. Next, we identified the closest node in the OSM road
network for each centroid. Lastly, only the 2,331 unique nodes in
the road network were used as candidate sites in the model.
Figure 3 shows how this approach dramatically reduced the
number of candidate outreach sites in rural areas as the sparse
road network resulted in additional overlapping closest nodes.

4.2 Endogenous demand function
Our literature review on the impact of distance to a facility on
access levels did not reveal a definitive shape for the demand
function. Typically, researchers chose linear decay with
maximum distances up to 10 km. We defined the demand
function as a piecewise linear decay function with two key
parameters: the distance up to which 100% of the population
access services, d1, and the distance beyond which 0% access
services, d2.

afj ¼ f ðDistfj ; d1; d2Þ
1; if Distfj < d1

1�Distfj � d1
d2 � d1

; if d1 � Distfj � d2

0; if Distfj > d2

8>><
>>:

Figure 2 Baseline health centers and outreach sites

Figure 3 Candidate outreach sites using 2-km grid and OSM road
network
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The same function was used for outreach sites to calculate aoj.
The low reach demand function (d1 5 0, d2 5 2.5) reflected
Ibnouf et al. (2007), which suggested that usage of health
facilities significantly drops after 30 min of walking
(approximately 2.5 km). The moderate reach demand function
(d15 1, d25 5) reflected (Feikin et al., 2009) and also Blanford
et al. (2012), which focused on one hour of walking. The high
reach demand function (d15 2, d25 10) reflected other studies
and input from UNICEF that vaccinations are valued in The
Gambia such that people travel further than 5 km for services.

4.3 Outreach schedule
Each region could be served either by a fixed health center or by
an outreach site. According to UNICEF interviews and data,
Gambian immunization professionals work a fixed monthly
schedule that specifies each day of the week where the team of
each health center should work. The 2019 immunization
schedule was used to derive how often a health center
performed immunizations and how frequently an outreach site
is visited and from which health center. After cleaning the
schedule data, we analyzed the number of visits per month at
health centers and outreach sites. The results are shown in
Figures 4 and 5.
In both histograms there are bins with no scheduled

immunizations. There are 19 health centers with no schedule in
Figure 4.We assumed that these facilities did not have outreach
treks originated from them, but they do provide immunizations
services. In the baseline, we treat them as candidate locations to
provide immunization services. In the second histogram,
Figure 5, 42 outreach sites are found in the location data but
not in the schedule data. In this situation, we assumed that
these outreach sites were unused. UNICEF representatives
supported this assumption saying that the schedule information
wasmore reliable than the location data.

Using data provided by UNICEF on the target population
assigned to each facility, we determined that 5.07% of the
target population is served from outreach sites with zero
scheduled outreach visits. For this reason, we optimized the
population allocation decision in the baseline and did not
enforce the population allocation constraint.

4.4 Costs
The costs in the resource bundle were integral to the optimal
solution. Based on interviews, we concluded that vehicles were
the unitary resource in the bundle to provide vaccination
services in The Gambia. Unfortunately, each health center had
only one vehicle available for performing both collection from
storage and outreach distribution. In addition, because each
outreach trip took one day, vehicles were scarce resources that
must be carefully planned.
The vehicles used in The Gambia network were Ford

Everests, Nissan Patrols, or Toyota Land Cruisers (UNICEF,
2019). UNICEF’s internal studies estimated that the average
vehicle operating costs, Cov, for the mentioned vehicles
averaged 0.6 $/km. The same study concluded that 12 cold
boxes could reasonably fit in the back of one of those vehicles.
However, this transport capacity assumed the entire rear of the
truck was filled with cold boxes. By considering the average
vehicle size, box sizes, and the photos, we concluded that it was
reasonable to assume that each vehicle was capable of taking a
maximum ofVe5 5 people andVcv5 3 cold boxes at the same
time.
The productivity of nurses at outreach sites was affected by

travel time and the time needed to set up at the outreach site.
Based on the interviews with UNICEF, we concluded that it
was reasonable to assume only six hours of the day were
available to perform the vaccination services. Mokiou et al.
(2018) outlined times involved in vaccinations leading us to
estimate that 20 doses could be administered per hour.
Therefore, using six hours instead of the health center nurses
8 h day, the average daily productivity of an employee at an
outreach trip, PEo, could be estimated as 20 � 65 120 doses per
day.
The cold box most commonly used in The Gambia was the

Blowkings 7-L unit measuring 49 � 44 � 49 cm (UNICEF,
2019). To derive the capacity measured in the number of doses
in a cold box, we determined the “packed volume” of each
vaccine dose vial. We defined packed volume as the average
volume occupied by a dose plus its package and surrounding
space in the box. The packed volume of each dose was
calculated by dividing the annual volume of vaccines (m3) by
the yearly doses administered. Based on this calculation, we
concluded that each dose volume is 26.20 cm3. Next, the
number of doses per cold box, Vdc, was determined by dividing
the cold box volume by the dose volume, resulting in 267 doses
per cold box.
By combining the vehicle’s transportation cold box capacity

for the cold boxes, employee productivity, and the cold boxes’
capacity, we calculated the capacity for doses per vehicle as:
1 Vaccination capacity per vehicle in terms of

employee5 120� 55 600 doses.
2 Vaccination capacity per vehicle in terms of cold

boxes5 267� 35 802 doses.

Figure 4 Number of scheduled visits per month

Figure 5 Number of visits per month (outreach sites)
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The bottleneck for an outreach operation was not the capacity
to transport the vaccines or the precise number of doses each
cold box can hold but the number of employees. The
constraining factor of an outreach operation was the number of
nurses available and their productivity (see Table 3).

4.5 Optimization scenarios
Three different scenarios were developed to assess the model.
The model baseline was defined by the first scenario running
with the current facilities, existing outreach sites, and current
site visit schedule. In the second scenario, the visit constraint
was relaxed, but only existing outreach sites were considered.
Finally, in the third scenario, both the outreach site locations
and the visit schedule were optimized (see Table 4).
The optimized baseline was the scenario to which other

scenarios were compared. The facility location, population,
and outreach schedule data all matched the information
described in earlier sections. The minimum budget necessary
to service the bundles required by the outreach schedule was
determined by varying the budget until the model became
feasible. The optimization determined which regions were
serviced by which nodes.

The outreach schedule optimization scenario determined if the
current outreach sites could be utilizedmore efficiently. For the
purpose of our model, efficiency was defined on whether it
was possible to achieve better vaccine access levels without
changing the current outreach footprint. The increase in
operational efficiency was optimized through the following
variables:
1 Number of bundles sent from a health center f to outreach

site o –Xoj .
2 Which node, f or o, services each region - Yoj , Yfj .
3 Number of health centers open.
4 Number of outreach sites used.

The optimization results determined the number of vehicles
necessary at each facility and the number of employees,
suggesting a better allocation of existing resources.
The last scenario, in addition to the population allocation

optimization (Scenario 1), and the schedule optimization
(Scenario 2), also optimized the location of the outreach sites.
All possible outreach site candidates were considered.

4.6 Results
The key results in the case considered solutions for the three
optimization scenarios introduced in Table 4: optimized
baseline; schedule and allocation optimization with current
outreach sites; and the schedule and outreach site location
optimization. More detailed analysis explored solution
characteristics for The Gambia as a basis for managerial
insights and recommendations that extend beyond the specific
case.

4.6.1 Impact on coverage
First, we identified which demand function best matched
The Gambia’s current vaccination DTP3 rates, 93% in 2018
and 88% in 2019 (WHO, 2020). We considered each of the
three demand functions, described in Section 4.2, using the
optimized baseline scenario that assumes the current network
structure. Generally, the vaccination coverage increased as the
budget increases until it reaches a saturation point
(see Figure 6) depending on the budget. The saturation point
indicates the maximum population has been reached given the
demand function and network design enabled by the budget.
The high reach demand function (d1 5 2, d2 5 10) with a
saturation coverage of 91.0% was the only one that
approximated the empirical coverage data. This function
aligned with input from UNICEF assuming that people value
vaccinations and would be willing to travel those distances for
immunization services. We conducted sensitivity analysis with
the moderate reach demand function (see Section 4.7), but the
maximum coverage for the low reach demand function was too
low and unrealistic from stakeholder perspective to merit
further consideration. The high reach saturation point also
defined a budget level of $12,000 where current levels of
coverage could be expected. This monthly budget of $12,000
was used as a reference point for our further analysis.
Second, we explored the impact of optimization scenario on

coverage. Some benefit could be derived simply by improving
the outreach allocation and schedule as, at the reference budget
of $12,000, the coverage increased from 91.0% to 92.8% (see
Figure 7). Alternately, optimized allocation and schedules
could also provide over 91% coverage with a lower budget of

Table 3 Summary of input parameters

Input
variable Description Value Unit

Cov Vehicle operation cost 0.6 $/km
CV Total cost to have a dose available at

fixed health center
0.02 $/dose

CEo Employee cost at fixed outreach site 3.68 $/emp/day
CEf Employee cost at fixed health center

f
3.68 $/emp/day

PEo Daily employee productivity at
outreach o

120 Doses/emp/day

PEf Daily employee productivity at
health center f

160 Doses/emp/day

Vcv Number of cold boxes per vehicle 3 Cold boxes
Ve Maximum number of employees per

vehicle
5 Nurses

Vdc Number of doses per cold box 267 Doses

Table 4 Overview of optimization scenarios

1. Optimized
baseline

2. Outreach
schedule
optimization

3. Outreach
schedule
and location
optimization

Population
allocation

Optimized Optimized Optimized

Health center
locations

Fixed Fixed Fixed

Outreach site
locations

Current Current Optimized

Outreach allocation
and schedule

Current Optimized Optimized
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$9,000. However, the biggest benefit came from optimizing the
network locations. At the $12,000 reference budget, optimizing
outreach sites and schedules together increased coverage to
97.1%. There were notable diminishing returns on coverage
from further budget investment.

4.6.2 Solution characteristics
We then explored solution characteristics for each optimization
scenario to build intuition.We did not seek to precisely calibrate
coverage since, without further research on the nature of the
demand function, this was impossible. However, with patient
behavior assumptions that reasonably represented reality, the
model could provide important insights on how network design
decisions increase vaccination coverage. We focused further
analysis on the scenario with high reach demand function and a
monthly budget of $12,000 to consider metrics like the number
of outreach sites, distance, asset utilization, and cost.
The baseline scenario used 263 current outreach sites.

Vaccine coverage increased by 1.8% in the schedule
optimization scenario because 311 outreach sites were used,
indicating that there were inefficiencies in the baseline. When
the network structure was optimized to select outreach sites,
the total number of outreach sites increased 44% to use 449
of the 2,331 possible candidate sites. Figure 8 offers a map of
the overall solution and Figure 9 provides a detailed zoom of an
area that shows how outreach site expansion can improve
proximity to services.
Compared with the baseline scenario, schedule optimization

reduced the average distance from fixed health center to
outreach site by 57%, from 21 km to 9 km. With more
candidate outreach sites, the location optimization further
reduced the average distance by another 11% to 8 km and

Figure 6 Vaccination coverage by demand function and budget for the Optimized Baseline Scenario

Figure 7 Comparison of vaccine coverage by optimization scenario
with high reach demand function

Figure 8 Optimized network - 73 health centers (blue) and 449 outreach sites (red)
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increased the vehicle utilization. Compared with the baseline,
location optimization used 33% more health centers for
outreach (from 46 to 61) and sent 69% more trips per health
center (3.6 per month for the baseline, 6.1 per month for
location optimization). We noted that no health centers had
over 20 trips per month, meaning the outreach plan was
feasible even if a health center only had one vehicle. It is also
important to note that monthly variable vehicle cost for
vaccination service could actually decrease as the reduction in
average distance more than offsets the increase in trips
(approximately 75 km/month for the baseline and 49 km/
month for location optimization).
Better operational efficiency lowered cost. Schedule

optimization reduced the cost to serve from outreach sites by
8%, from $0.112 per dose to $0.103, compared to the baseline.
Location optimization further reduced the cost to serve from
outreach sites by 16% to $0.87. The cost to serve from fixed
health centers was $0.043 per dose across the scenarios.
With no vehicle costs and more productive employee days,

the cost to serve was lower in a fixed health center. Therefore, it
could be expected that a region served by a fixed health center
in the baseline would continue to be served similarly in the
optimized scenario. This would be true if demand was a fixed
property of the node and did not vary with patient proximity.
However, as new outreach locations open, populations may
now have a closer location to visit. Compared with the baseline
scenario, schedule optimization had a 17% increase in the
doses delivered by outreach sites and a 11% decrease in service
by health center. Location optimization resulted in a further
29% increase outreach site volume and a 23% decrease at
health centers.
Based on the total amount of vaccines administrated in

the health centers, it is also possible to calculate the
employees-day required in each health center to fulfill its
onsite demand, i.e. this calculation does not include
employee requirements for the outreach sites. Overall, the
average number of employees-day in the baseline is 7.3
while in the optimized solution is 4.3.

4.7 Sensitivity analysis
In addition to the default scenario discussed in depth above, we
ran sensitivity analysis on three key assumptions. First, we
explored application of the moderate reach demand function
(d1 5 1, d2 5 5). Though the baseline with this demand
function did not align best with empirical coverage in The
Gambia, see Section 4.6.1, it is important to demonstrate how
a configurable demand function enables sensitivity analysis. In
addition, exploring a different demand function can build
intuition on the how network structure might change in an area
with lower outreach potential, which might be the case in other

countries. With a monthly budget of $10,000, where the
baseline scenario reached a saturation point with 67.3%
coverage for this demand function, location optimization
enabled coverage of 81.8% (see Figure 10). Doubling the
monthly budget to $20,000 bumped coverage to 89.3%.
Coverage increases came through more aggressive outreach
expansion for this demand function, resulting in fewer fixed
health centers and 1,469 outreach sites (see Figure 11). In
regions where patient reach is more challenging, health
authorities must be prepared to consider a shift from traditional
health centers a more aggressive community-based vaccination
network.
Second, we consider the sensitivity of network design to

transportation costs. Higher transportation costs effectively
decrease the budget, but with an implicit tradeoff in network
design. The optimization model weighed the value of budget
savings from avoiding distant outreach locations with the
loss of outreach in those areas. Doubling the transportation
cost, from $0.6/km to $1.2/km, reduced the coverage from
94.6% to 92.5% in the $10,000 budget scenario and from
97.1% to 95.8% in the $12,000 budget scenario (see
Figure 12). On the other hand, lower transportation cost
implicitly explores opportunities to deploy budget savings in
the network by opening additional outreach centers
resulting in improved vaccination coverage, though with
diminishing returns using the $12,000 budget. Figure 13
shows changes in the number of sites, which is the key driver
in coverage changes.
Finally, we consider sensitivity analysis on the cost per dose.

Emerging pathogens that result in a pandemic could require
newly developed vaccines that are more expensive, which has
been the case with Covid-19. Like transportation cost, vaccine
procurement cost changes shift the available budget but
without any implicit network design tradeoff. By doubling the
cost of a dose of vaccine, the vaccine coverage dropped from
97.1% to 91.8% (see Figure 12). Figure 14 supports that
finding as higher vaccine acquisition cost reduced the available
budget, resulting in fewer outreach centers. Analysis like this
could be critical in helping international aid organizations
determine the support required by LMICs in procuring
emergent vaccines. Given constrained national budgets, higher
procurement costs could dramatically reduce access to this vital
public health intervention.

Figure 9 Detail of baseline and optimized network maps

Figure 10 Vaccine reach by monthly budget for moderate reach
demand function in the location optimization scenario
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5. Discussion

This research sought to answer the primary research question
of how to design vaccine networks in order to maximize
immunization coverage given the tight budgets that are
common in LMICs. TheMIP formulation with an endogenous
demand function linking coverage with proximity designed the
vaccine network around the principle of convenience for
community members to access immunization services.
Detailed modeling of specific commodities, equipment, assets,

and skilled workers revealed resource scheduling
improvements that can increase coverage in The Gambia from
91.0% to 92.8% using the existing network of 80 health centers
and 311 outreach sites. Further, by reallocating the budget to
open an additional 138 outreach sites from among 2,020
candidate locations, the immunization coverage increased to
97.1%.
These results demonstrated the impact of important

contributions to the literature. One model aspect that was
important to UNICEF stakeholders but not common in the

Figure 11 Number of facilities by monthly budget for moderate reach demand function

Figure 12 Sensitivity analysis of transportation and vaccine cost

Figure 13 Sensitivity analysis of transportation cost at $10,000 and $12,000 monthly budgets
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literature was defining the objective function to maximize
immunization coverage subject to different budget levels to
understand tradeoffs. The model provided original
contributions to the literature on vaccine network design in two
important ways that are generalizable and that reflect important
contextual factors and empirical research inmodeling activities.
First, endogenous calculation of demand as a function of

distance to health facility location enables the model to
effectively design the vaccine network around convenience to
the community. Unlike prior efforts to incorporate distance as
an endogenous causal factor for demand in maximizing
coverage (Lim et al., 2016), our model incorporates a general
demand function that can reflect empirical health data.
Unfortunately, extensive review of the literature did not reveal a
robust demand function to causally link proximity of
population to vaccination services with immunization coverage.
For the case study, we calibrated a demand function that is
commonly used in health literature with empirical coverage
data for our focus country. Importantly, we developed the
capability to conduct sensitivity analysis with a flexible demand
function that could incorporate emerging evidence and/or
expert insights on the link between proximity and coverage.
Additional research is needed to determine the proper shape of
vaccination demand functions.
Second, definition of resource bundles enabled us to

incorporate various contextual factors to appropriately model
requirements and costs for specific resources. Vehicles, which
are scarce resources, emerged as the unitary resource to frame
the bundle. The remaining physical and human resources in
the bundle – vaccines, cold boxes, ice packs, other
immunization supplies such as syringes and safety boxes, and
skilled workers – could then be sized according to the expected
demand for the outreach trip. Resource bundles enabled more
accurate accounting of fixed and variable costs for both fixed
health centers and outreach sites. They also enabled more
precise resource deployment in defining flexible capacity by the
number of employees or working hours and to optimize
monthly schedules around key assets such as vehicles.
Results also reflect better model accuracy and credibility by

embracing empirical research such as consultation with health
system experts in the country and analysis of historical
operations (e.g. outreach site schedules). Early use of a simple,
exploratory model was very helpful in eliciting important
contextual factors from experts at UNICEF and in the public
health system. The Gambia case study also demonstrated
effective data collection and analysis methods to estimate key
parameters.

Sophisticated geospatial modeling also contributed to model
accuracy and robustness by leveraging demographic and
geographic data. Precise geographic distribution of population
is essential in modeling the effect of proximity on community
adoption. Extracting a GeoTIFF from the SEDAC 1-km
population projections for 2020, masking the extract for the
geographic boundaries of The Gambia and aggregating into a
2-km grid resulted in 3,952 centroids with a corresponding
population to accurately capture dispersion. The list of possible
outreach sites was created by using any nodes in the OSM road
network within 2 km of these centroids, yielding 2,331 nodes
that reflect the density of road networks in urban areas while
dramatically reducing the number of candidate outreach sites
on the sparse road networks in rural areas. This approach
positioned outreach opportunities in more practical locations
than Euclidean distance, which is more common in the
literature.
While model development would be ideal, our exploration of

various solutions also led to some managerial insights that
could frame operations principles for countries that are not able
to develop more sophisticated models. Many of these insights
focus onmore effective use of scarce resources:
1 Fixed health centers can and should use their current

vehicle more to support more vaccine outreach.
Compared with the baseline, location optimization used
33% more health centers for outreach and sent 69% more
trips per health center. Vehicles assigned to health centers
should be able to support this task, since the average
number of trips per month was between 6–7, with the
maximum being 20. If other vehicle requirements, such as
collecting commodities at the regional stores, do not
enable the 6–7 days per month for vaccination services,
then regional store delivery approaches for commodity
replenishment should be considered. Finally, the increase
in outreach requirements would still enable vehicles to be
shared between two health centers where needed. It is
important to note that variable vehicle costs, such as fuel,
for vaccination service could actually decrease as the
reduction in average distance more than offsets the
increase in trips.

2 Outreach trips vehicles often do not need to travel with
full nurse capacity. While UNICEF did not provide data
on the number of nurses sent on each outreach trip, we
showed that the optimal number can be far from the total
vehicle capacity. Therefore, the number of nurses should
not be set by the vehicle size but rather be sized to the
outreach campaign, as possible. Of course, this depends
on a better ability to assess demand for an outreach site
and health centers may be cautions in sending more
nurses. If so, then excess nurse time in the outreach
community could be used to improve vaccine outreach
through complementary interventions. Activities could
include vaccine information dissemination, data
collection regarding convenience of services and
beneficiary choices, and community engagement to
address vaccine hesitancy by building trust. As an
accurate demand function remains one of the
fundamental aspects for improving evidence-driven
vaccine distribution strategies, robust documentation of
nurse experiences in the community would be valuable

Figure 14 Sensitivity analysis of vaccine cost for $12,000 monthly
budget
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empirical data to further shape model and policy
development.

3 Increasing coverage requires more outreach sites but also
reduces volume at fixed health centers, which could be
used for other health services. The opening of outreach
sites to reach populations will also reduce service in fixed
health centers, i.e. people shift service from health center
to outreach site. In The Gambia case, the number of doses
provided via health centers decreased by 23% for some
scenarios. Sensitivity analysis with the moderate reach
demand function showed that in regions where patient
reach is more challenging, the shift from traditional health
centers to a community-based vaccination network would
be even more aggressive. Health leaders should not be
alarmed by a drop in vaccinations at traditional health
centers but instead see the reduced vaccination volume as
an opportunity to utilize the fixed facility for other
important health services.

4 Gains can be made without sophisticated tools by
managing outreach allocation and scheduling more
actively. Vaccine coverage increased by 1.8% with
allocation and schedule improvements alone, in part
because the current schedule only used 82% of the
outreach sites listed in the master file. Tactical resource
decisions must continually adapt to contextual conditions,
even if sophisticated GIS and optimization software
solutions are occasionally implemented, to maintain
effective utilization of scarce resources. Continual
alignment of outreach site volumes and visit frequency
with demand is important regardless of the application of
sophisticated tools.

6. Conclusion

This paper defined a novelmodel to design vaccine networks by
optimizing facility location and resource deployment in order to
increase immunization coverage within the resource constraints
of LMICs. Results from a case study in The Gambia showed
that by opening new outreach sites and optimizing resource
allocation and scheduling, the Ministry of Health could
increase immunization access from 91.0 to 97.1% with the
same budget. Considering specific solutions for The Gambia
framedmore generic operations principles for countries that are
not able to develop sophisticatedmodels.
The research contributed to the study of vaccine network

design in two ways. First, endogenous calculation of demand as
a function of distance to health facility location enabled the
model to effectively design the vaccine network around
convenience to the community. Second, the model’s resource
bundle concept more accurately and flexibly represented
complex requirements and costs for specific resources, which
facilitated buy-in from stakeholders responsible for managing
health budgets.
As an accurate demand function remains one of the

fundamental aspects for improving evidence-driven vaccine
distribution strategies, robust documentation of nurse
experiences in the community would be valuable empirical data
to further shape health budget deployment for vaccine
coverage.

This research was motivated to provide practical tools and
insights such that LMICs could more easily pursue evidence-
driven improvements to vaccine distribution in various
contexts. Modeling efforts drew from empirical research and
spatial analysis of publicly available demographic and
geographic data to accurately define parameters and effectively
represent important contextual factors. The model and the
empirical research methods are general and can easily extend to
other LMICs in order to improve coverage for routine
immunizations. Managerial insights drawn from case study
solutions are the foundation for gains in vaccine coverage even
without application of sophisticated tools. Principles guide
more effective utilization of common public health resources
such as fixed health centers, vehicles, and nurses to extend
vaccine outreach within existing budgets. Furthermore, the
approach of extending outreach to communities with low
vaccine coverage is not limited to LMICs. The global pandemic
of COVID-19 has forced every country to consider how it can
reach vulnerable communities with extended outreach services
to improve vaccination uptake.
Future research should seek to leverage empirical data from

COVID-19 vaccination drives, among other ongoing
vaccination campaigns, to better understand the role of service
proximity and other factors on vaccine adoption. Since the
shape of the demand function has a strong impact on the
model’s results, research that provides evidence linking
coverage and proximity would strengthen the impact of these
network designmethods.
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