
G-code generation in a NURBS workflow
for precise additive manufacturing

Jesús Miguel Chac�on, Javier S�anchez-Reyes and Javier Vallejo
Department of Applied Mechanics and Projects Engineering, IMACI, Universidad de Castilla-La Mancha,

Escuela Tecnica Superior de Ingeniería Industrial, Ciudad Real, Spain, and

Pedro José Núñez
Department of Applied Mechanics and Projects Engineering, INEI, Universidad de Castilla-La Mancha,

Escuela Tecnica Superior de Ingeniería Industrial, Ciudad Real, Spain

Abstract
Purpose – Non-uniform rational B-splines (NURBSs) are the de facto standard for representing objects in computer-aided design (CAD). The purpose
of this paper is to discuss how to stick to this standard in all phases of the additive manufacturing (AM) workflow, from the CAD object to the final
G-code, bypassing unnecessary polygonal approximations.
Design/methodology/approach – The authors use a commercial CAD system (Rhino3D along with its programming environment
Grasshopper) for direct slicing of the model, offset generation and trimming. Circular arcs are represented as quadratic NURBSs and free-form
geometry as quadratic or cubic polynomial B-splines. Therefore, circular arcs are directly expressible as G2/G3 G-code commands, whereas
free-form paths are rewritten as a succession of cubic Bézier curves, thereby admitting exact translation into G5 commands, available in
firmware for AM controllers, such as Marlin.
Findings – Experimental results of this paper confirm a considerable improvement in quality over the standard AM workflow, consisting of an initial
polygonization of the object (e.g. via standard tessellation language), slicing this polygonal approximation, offsetting the polygonal sections and,
finally, generating G-code made up of polyline trajectories (G1 commands).
Originality/value – A streamlined AM workflow is obtained, with a seamless transfer from the initial CAD description to the final G-code. By
adhering to the NURBS standard at all steps, the authors avoid multiple representations and associated errors resulting from approximations.

Keywords Additive manufacturing, NURBS, Cubic Bézier curve, G-code, G2/3 command, G5 command

Paper type Research paper

1. Introduction

1.1 The non-uniform rational B-splines standard for
computer-aided design (CAD) representation
The input data in any additive manufacturing (AM) process
consists of a CAD model, typically a boundary representation
(Shapiro, 2002) whose faces are trimmed non-uniform rational
B-spline (NURBS) surfaces (Farin, 2002). A NURBS-based
representation enjoys the following advantages, relevant for AM:
� De facto standard: NURBSs are implemented in data

exchange formats [initial graphics exchange specification
(IGES), STEP], allowing an exact transfer between
dissimilar CAD–computer aided manufacturing (CAM)
systems or a unified database in geometric libraries (SMS,
2022).

� G-code support: Cubic integral (i.e. polynomial) curves, the
most popular subset of NURBS for free-from geometry, admit
an exact conversion into cubic Bézier curves. In turn, these
cubics are expressible as G5 commands, available in AM

firmware. Circles and circular arcs also admit an exact
representation as NURBS and, hence, a direct implementation
asG2/3 code.

The current issue and full text archive of this journal is available onEmerald
Insight at: https://www.emerald.com/insight/1355-2546.htm

Rapid Prototyping Journal
28/11 (2022) 65–76
Emerald Publishing Limited [ISSN 1355-2546]
[DOI 10.1108/RPJ-09-2021-0254]

© Jesús Miguel Chac�on, Javier S�anchez-Reyes, Javier Vallejo and
Pedro José Núñez. Published by Emerald Publishing Limited. This article is
published under the Creative Commons Attribution (CC BY 4.0) licence.
Anyone may reproduce, distribute, translate and create derivative works of this
article (for both commercial and non-commercial purposes), subject to full
attribution to the original publication and authors. The full terms of this licence
may be seen at http://creativecommons.org/licences/by/4.0/legalcode

The authors thank the Precision Center of HexagonManufacturing Intelligence
in Vitoria-Gasteiz (Álava, Spain) for providing the necessary equipment for
measuring the NURBS and STL models, and the Applications Engineer Mr
Manuel Castaño Hipólito for his professional assistance, and Dr R. Dorado for
several helpful discussions on how to enable the G2/3 and G5 commands.
Authors are also grateful to the referees for their valuable suggestions, which
improve this article.

This research was supported by grant PID2019-104586RB-I00, funded by
MCIN/AEI/10.13039/501100011033; and grants SBPLY/19/180501/
000247, SBPLY/19/180501/000170, Consejería de Educación, Cultura y
Deportes (Junta de Comunidades de Castilla-La Mancha), co-financed by
the ERDF (European Regional Development Fund).

Received 24 September 2021
Revised 21 December 2021
8 June 2022
9 August 2022
Accepted 10 August 2022

65

http://dx.doi.org/10.1108/RPJ-09-2021-0254


� Precision: NURBS, based on weights and control points,
can express not only free-from geometry but also analytic
shapes in exact fashion.

� Graphics Processing Unit (GPU) support: Graphic libraries
(OpenGL, DirectX) directly support NURBS, which can,
hence, be manipulated and visualized in real-time
thanks to the GPU. Furthermore, there exist GPU
implementations of some geometric computations, such
as area integrals or Hausdorff distances.

Software developers have invested heavily in NURBSs for all these
favorable properties, so downstream applications should be
adapted to this representation, as Allen (2013) notes. Such
applications include AM-related software, but unfortunately, this
is not the case. Consequently, the potential of NURBSs has been
entirely untapped inAM.

1.2 Conventional additivemanufacturing workflow:
problems
Recently, AM hardware capable of generating three-
dimensional (3D) trajectories has been introduced, which adds
flexibility to the specification of AM paths (Ezair et al., 2018).
However, as most AM is still restricted to planar paths, the AM
workflow proceeds in two steps (Figure 1):
1 Generating a polygonal approximation to the exact NURBS

model within a CAD system, typically a standard tessellation
language (STL) file, setting amaximumdeviation «STL.

2 Transferring the polygonal model to a 3D printing
software that performs three operations:
� Slicing the model along horizontal planes P, which

furnishes its contours (sections);
� Path planning for outer and inner walls, which

involves offsetting and infill patterns; and
� G-code generation, usually based on linear

interpolations (G1 instruction).

The first problem stems from the discretization in Step 1, which
may generate invalid tessellations, especially for complexmodels.
The STL file may need post-processing to fix errors (Kumar and

Dutta, 1997), such as gaps, overlaps or degenerate faces,
resulting in slicing failures. The required file checks and manual
repairs (Starly et al., 2005) significantly slow the workflow.
Replacing the exact CAD model with an error-free polygonal

approximation allows a straightforward computation of the
contours (Step 2a) as polylines. However, even trying to reduce
the effect of the discretization, the resulting deviation
considerably exceeds the geometric tolerance of the machine for
complex geometries (Bertacchini et al., 2021). Moreover, a
tighter «STL could makematters worse by increasing the chances
of errors. The discretization leads to downstream problems, as
surveys onAM (Gao et al., 2015;Qin et al., 2019) highlight:
� Slicing: As Figure 2 illustrates, the vertices Vi of the

polygonal section SSTL (in red) do not lie, in general, on
the actual CAD section SCAD, for the vertical curvature of
the surface, which introduces an error. Even if these
vertices Vi lie on SCAD, a chordal error results from the
horizontal curvature of SCAD. Thus, the total error «
between the section SCAD and that SSTL from the
polygonal file could grow larger than the error «STL in
Step 1, as Jamieson and Hacker (1995) remark.

� Path planning: It feeds on inaccurate polygonal geometry,
which leads to downstream errors when offsetting polyline
contours and generating the corresponding strands, whose
width is determined by the nozzle diameter Øn. As depicted in
Figure 3, voids between strands may appear, compromising
themechanical integrity of the object.

� G-code generation: As the final trajectory amounts to
polylines, they only display positional continuity at the joints,
thereby lacking the higher smoothness of circular arcs and
cubic Bézier curves available in existing AM firmware.

1.3 Our proposal: adhering to non-uniform rational B-
splines at all steps
The conventional AM workflow incurs an error larger than that
derived fromhardware limitations, hindering themanufacturing of
truly functional parts. Our proposal addresses this issue by sticking

Figure 1 Conventional generation of G-code for additive manufacturing, based on an initial polygonal approximation

G-code generation

Jesús Miguel Chac�on et al.

Rapid Prototyping Journal

Volume 28 · Number 11 · 2022 · 65–76

66



to a NURBS representation at all steps. Clearly, we have to bypass
the polygonal approximation (Step 1) and then proceed as follows:
� direct slicing of the model in the NURBS environment

provided by a NURBS-based CAD system;
� path planning, including offset generation, in this NURBS

environment; and
� G-code generation in NURBS format; circles and circular

arcs (G2/3 code) and Bézier cubics (G5), in addition to
polylines (G1).

Thus, the paper is arranged as follows. First, in Section 2, we
compare our approach with alternative proposals. Section 3,
focusing on slicing and path planning, outlines our implementation
in the NURBS-based commercial software (Rhino3D and
Grasshopper). Then, in Section 4, we discuss how to exploit the
untapped NURBS capabilities of G-code generators. In Section 5,
we describe implementation details in existing AM firmware to
encourage the reproducibility of our work. We also show a real
example of a final part manufactured with a fused filament
fabrication (FFF) 3D printer, which corroborates the improvement
in geometric quality. Finally, in Section 6, conclusions are drawn.

2. Alternatives to conventional polygonization

2.1 Alternative formats
A first option to overcome the inaccuracies of the STL format is
replacing it with a more advanced one. Qin et al. (2019)
compare alternative AM formats, concluding that none of them
fulfills all the requirements needed. This conclusion applies to
themost supported commercial formats:
� 3MF: Although it compares favorably against STL for

incorporating data such as color or material,
unfortunately, it is still based on triangular meshes.
Therefore, it does not tackle the critical deficiency of STL.

� OBJ: It allows meshes as well as NURBS, but AM
controllers do not support the latter for its complexity, so
once again, it does not provide a practical solution.

� Additive manufacturing file format (AMF): It not only uses
triangular meshes, like STL, but also admits curved
triangular faces. However, Yu et al. (2017) warn that the
tangent definition for these faces results in a slicing error
(Step 2a) similar to that incurred by STL and then put
forward improvements to tackle this deficiency.

Figure 2 Errors incurred by slicing a polygonal approximation through a planeP

Figure 3 Path planning: Offsetting polygonal inner and outer walls

G-code generation

Jesús Miguel Chac�on et al.

Rapid Prototyping Journal

Volume 28 · Number 11 · 2022 · 65–76

67



Following the idea of the open standard AMF, a low-degree
patch would be a reasonable compromise between a polygonal
model and complex NURBSs (Allen, 2007). For instance, Paul
and Anand (2015) propose Steiner patches, a subset of
quadratic rational Bézier triangles that admits accurate slicing,
as any plane intersects a Steiner surface in a NURBS curve.
However, Allen (2007) also notes that this strategy would entail
rewriting existing software and hamper data exchange
capabilities. Other formats exist, but none has gained
widespread acceptance, so they do not stand as a viable option.

2.2 Direct slicing
As concluded in the previous subsection, no format provides a
practical alternative to current tessellated approximations. The
only option is bypassing the initial conversion (Step 1) to an
intermediate format and direct slicing the original CADmodel,
an idea that goes back almost three decades (Carleberg, 1994).
Slicing a NURBS surface does not yield, in general, a NURBS

curve, aside from simple cases, such as transversal sections of
swung surfaces (Piegl and Tiller, 1997), which encompass
revolution and extrusion surfaces or arbitrary sections of the
above Steiner patches. These patches encompass quadrics, which
also furnish simple conic sections, admitting an exact quadratic
NURBS representation and hence simplifying path planning
(Farouki andKönig, 1996). Although direct slicing is not without
its own challenges (Oropallo and Piegl, 2016), it boils down to
intersecting the CAD model with a plane, a fundamental
operation implemented in existing geometric kernels, which
furnish excellent NURBS approximations within the tolerance of
theCADmodel.
As Pandey et al. (2003) conclude, there is a need for

modification in hardware that can drive the output of direct slicing
instead of splitting it into polylines. Unfortunately, most previous
proposals that advocate direct slicing do not exploit its true
potential and incur inaccuracies, as they abandon the NURBS
representation at somepoint in theAMworkflow.For instance:
� Contours are not represented directly as NURBS curves

but as discrete points (Ma et al., 2004; Feng et al., 2018),
slice raster lines (Starly et al., 2005) or bitmap images (Xu
and Jing, 2011; Xu et al., 2011).

� Contours are represented as NURBS, but their offsets for
path planning are not generated using techniques tailored to
NURBS (Patrikalakis andMaekawa, 2002; Elber et al., 1997;
S�anchez-Reyes and Chac�on, 2015) but via less precise
methods.

2.3 Our proposal
A sensible, more practical solution is adapting an existing
commercial tool to perform direct slicing and path planning. A
first possibility could be using commercial CAM software,
adapting it from subtractive to AM and exploiting its
functionalities. Actually, CAM software can be used to compute
horizontal contours (Step 2a), whose definition does not depend
on the manufacturing method. However, it aims at
manufacturing by removingmaterial, whereas, in AM,material is
added, so path planning (Step 2b) from a given contour SCAD
differs significantly. More specifically, CAM path planning
involves outer offsets toSCAD, whereas AM involves inner offsets.
Therefore, as a first step, the original CAD model should be
transformed into its negative version, which boils down to a
simple Boolean operation (Figure 4). We successfully tested a
rear-view mirror housing with SolidCAM (SolidCAM, 2022),
using its built-in functionalities to slice the model and offset the
contours. Unfortunately, a CAM system is already designed to
output G-code, usually as polylines, for a chosen CNC
controller, a scheme too rigid for our purpose of controlling all
steps in the AMprocess tomaximize output accuracy.
The alternative we put forward is using a commercialNURBS-

based CAD system for both direct slicing and path planning and,
finally, custom generating the G-code, always in a NURBS
framework (Figure 5). This proposal resembles modern
approaches to streamline the CAD-to-Print workflow based on
developing specific AM kernels. In particular (Dyndrite, 2022),
the recent Dyndrite Accelerated Computation Engine tries to do for
3D printing what Adobe’s PostScript page-description language
(Adobe Systems, 1985) did for two-dimensional (2D) printing in
the 1980s. Our goal is precisely to generate the final G-code for
AM instead of printing on paper. The details of our system
implementation are described in the next section.

3. System description

Our implementation was carried out by developing two
software modules. First, a module in Grasshopper, the visual
programming environment for Rhino3D, complemented with
the add-on Xylinus (Hoover, 2022). This module performs the
following tasks:
� Slicing: For simplicity, we used uniform slicing, that is, at

constant vertical increments h (Figure 6), as our goal is
not testing adaptive slicing but our proposal of a NURBS
environment for AMworkflow.

Figure 4 Generating a negative version of a CADmodel for additive manufacturing path planning using a CAM system

G-code generation

Jesús Miguel Chac�on et al.

Rapid Prototyping Journal

Volume 28 · Number 11 · 2022 · 65–76

68



� Path planning: It involves offset generation for external and
internal walls as well as generating the infill pattern.

� IGES generation: the resulting trajectories are exported as
NURBS via an IGES file.

A second module, implemented in MatLab for convenience,
interprets this IGES file and performs three tasks:
1 Trajectory preprocessing: At each layer, we concatenate the

trajectories in an orderly manner to avoid non-extrusion
movements in FFF by identifying coincident endpoints.
This step is mandatory because Rhino3D exports the
trajectories not necessarily in a connected way.

2 Geometric processing of trajectories: Rhino3D resorts to
different NURBS curve geometries (polylines, circular
arcs, quadratic or cubic integral B-splines). These
different curves must be sorted out to take different
actions that may include degree-elevation and splitting
into Bézier cubics for the next operation.

3 G-code generation: In addition to geometric data (points and
trajectory lengths) required in G-code commands, we add a
header with the appropriate parameter settings (such as feed
and flow rate or nozzle and bed temperature).

In the first module, Grasshopper takes care of all geometric
operations, so there is no need to program complex routines for
slicing or offset generation. In particular, offsetting (Elber et al.,
1997; Maekawa, 1999; Patrikalakis and Maekawa, 2002) is a
challenging geometric problem in path planning, which in
addition involves trimming (Figure 7), also handled by Rhino3D.
The add-on Xylinus includes a Curve to G-code component, but
unfortunately, it transforms all paths to polylines, as G1 code.
Hence, there is the need for a second module for generating our
customized G-code to avoid the error of these polyline
approximations and replace them by exact conversion into G2/3
andG5 commands.

4. Geometric processing of non-uniform rational
B-splines trajectories and G-code generation

4.1 Transforming IGES entities into G-code commands
As Rhino3D is a NURBS-based package, the IGES file it
generates describes all trajectories as 2D NURBS curves (i.e.
IGES entity 126). We checked out that all the trajectories have
degree n� 3 and fall into one of these categories (Figure 8):

Figure 5 Our approach for generating accurate G-code for additive manufacturing

Figure 6 Slicing a CAD object with a horizontal planeP

G-code generation

Jesús Miguel Chac�on et al.

Rapid Prototyping Journal

Volume 28 · Number 11 · 2022 · 65–76

69



� Polylines: Polynomial NURBS (unit weights) are of
degree n = 1. They are used for linear contours and infill
patterns.

� Cubic polynomial spline: these include cubic NURBS with
unit weights. They provide a unified representation to
accommodate curves resulting from different geometry
processing operations (in particular, offsetting).

� Parabolic polynomial spline: these include quadratic
NURBS (n = 2) with unit weights. These curves are also
used for offset approximation.

� Circles: these include quadratic NURBS (n = 2), with non-
unit weights. They are used to represent holes, circular
walls and fillets.

All this geometry admits an exact translation into a G-code
command (G1, G2/3 and G5) without any approximation.
However, aside from the simple case of a polyline, the
geometric data the G-code needs do not coincide with the
NURBS description provided in IGES (in terms of control
points). Consequently, some geometry processing is required
to translate the NURBS description into G-code. In addition,
with FFF and a Marlin firmware in mind, the G-code
requires a field with the accumulated length e of the extruded
filament, which implies computing the arc length of each
segment.

4.2 Splitting a cubic polynomial non-uniform rational
B-splines into Bézier cubics via knot insertion
A cubic Bézier curve is implemented exactly as a G5 command.
For a cubic with control points bif g3i¼0, this command requires
the endpoint b3 = {x3, y3}, as well as the vectors u = {ux, uy}
and v = {vx, vy} defining the end control legs u = b1 – b0 and
v= b3 – b2, following the syntax:

G5 Iux Juy PvxQvy Xx3Yy3 Ee:

However, free-form curves resulting from geometry processing
are represented as cubic polynomial NURBS d(u) instead of
cubic Bézier curves. Consequently, to find the Bézier points bi,
the spline curve d(u) must be split into its cubic Bézier
components by inserting all inner knots (Hoschek and Lasser,
1993). A general polynomial B-spline curve of degree n (order
n 1 1) is defined by a knot vector u = {u0, . . ., ui, . . ., uK} and
N 1 1 control points (de Boor points) dif gNi¼0, N = K – n–1,
N � n. In the IGES file exported from Rhino, B-spline curves
have a nonperiodic knot vector (aka clamped or open), which
means that the end knots have multiplicity n1 1, following the
widespread convention in the CAGD community, as in the
treatises onNURBS (Piegl and Tiller, 1997; Rogers, 2001) and
the textbook onCAGD (Hoschek and Lasser, 1993):

Figure 7 Offset trimming in path planning

Figure 8 Transforming an IGES entity 126 into G-code commands

G-code generation

Jesús Miguel Chac�on et al.

Rapid Prototyping Journal

Volume 28 · Number 11 · 2022 · 65–76

70



u ¼ fu0 ¼ . . . ¼ un; . . . ; uK –n ¼ . . . ¼ uKg;

We adhere to this notation, warning that the Rhino3D
command Analyze > Diagnosis > List shows only multiplicity n
at the end knots, as in Farin’s books on NURBS and CAGD
(Farin, 1999; Farin, 2002).
Next, we customize the general knot-insertion algorithm to

our particular goal for cubics (n = 3), namely, taking an already
existing inner knot ui and inserting it up tomultiplicity three:
� If the existing knot ui is simple (i.e. of multiplicity one), then

replace the original de Boor point di–2 with three new control
points dA, dAB, dB [Figure 9(a)], computed as barycentric
combinations of the original points di–3, di–2, di–1:

dA ¼ 1� aAð Þdi�3 1aAdi�2; aA ¼ ui � ui�2

ui1 1 � ui�2
;

dB ¼ 1� aBð Þdi�2 1aBdi�1; aB ¼ ui � ui�1

ui1 2 � ui�1
;

dAB ¼ 1� aABð ÞdA 1aABdB; aAB ¼ ui � ui�2

ui1 1 � ui�2
:

� If the existing knot already has multiplicity two, so that
ui–1 = ui, then insert only the new control point dAB =
(1–aAB) di–31 aABdi–2 on the segment di–3di–2, where aAB

denotes the quotient above.

The sought consecutive Bézier segments, making the original
cubic spline, span between pairs of consecutive distinct knots and
haveBézier pointsbi coincidingwith sequences of four consecutive
de Boor points. Figure 9(b) shows an example, a cubic B-spline
d(u) with original knot vector u = {0,0,0,0,1/3,2/3,1,1,1,1}.
Inserting the internal knots, up to multiplicity three, furnishes the
three Bézier segments I, II and III making up d(u), which meet at
points d2, d5 of the refined B-spline representation. Thus,
segments I, II and III have Bézier polygons {d0,d1,d2,d3},{d3,d4,
d5,d6} and {d6,d7,d8,d9}, respectively.

4.3 Transforming quadratic polynomial non-uniform
rational B-splines
Some geometry processing operations in Rhino3D yield a
quadratic (n = 2) polynomial B-spline instead of cubic. To
transform this curve into Bézier cubics, we proceed in two
steps:
1 Insert all simple inner knots ui, from multiplicity one to

multiplicity two, to split the curve into quadratic
Bézier segments. As in the cubic case, we insert a new
de Boor point dC between the original points di–2, di–1

[Figure 10(a)]:

dC ¼ 1� aCð Þdi�2 1aCdi�1;aC ¼ ui � ui�1

ui1 1 � ui�1
:

Figure 9 Cubic polynomial B-spline curve

G-code generation

Jesús Miguel Chac�on et al.

Rapid Prototyping Journal

Volume 28 · Number 11 · 2022 · 65–76

71



2 Take triples p0, p1 and p2 of consecutive de Boor points,
making up each quadratic Bézier (i.e. a parabola) and
degree elevate it up to degree n = 3 [Figure 10(b)], to
obtain the Bézier points bi of its cubic representation:

b0 ¼ p0; b1 ¼ 1
3

p0 1 2p1ð Þ
b3 ¼ p2; b2 ¼ 1

3
p2 1 2p1ð Þ

4.4 Circular arcs
Circular arcs are implemented exactly as a G2 (clockwise) or
G3 (counterclockwise) G-code command (Figure 11). For a
circle centered at C = {xC, yC} and traced from the current
point A = {xA, yA} to the endpoint B = {xB, yB}, the I, J form
has the following syntax:

G2=3XxB YyB I xC–xAð Þ J yC–yAð ÞEe:
In contrast, in the IGES file that Rhino3D generates, circular arcs
are represented as quadratic NURBS, with all inner knots of
multiplicity two, that is, a piecewise rational Bézier form. Thus, we
compute the required data as follows:

Points A and B: They coincide with the first and last de Boor
pointsA = d0 andB = dN, respectively. CenterC: Given by the
intersection between a pair of lines Li and Lj through points di

and dj (i, j even) and orthogonal to control polygon, which is
tangent to the circle at these points. Two consecutive lines are
guaranteed not to be parallel in this piecewise rational Bézier
form (with positive weights).

4.5 Computing the length of the extruded filament for
fused filament fabrication
As already observed, all G-code instructions considered include a
field with the accumulated length e of the extruded filament, which
means computing the incremental length De of the filament
consumed. Figure 12 depicts the geometry involved in extruding a
strand of length L and layer height h, consuming a length De. A
constant density of the deposited material implies that the volume
V of the filament consumed equals that of the layer between
endpoints. Assuming constant sections Sf and SL of filament and
layer,De turns out to be proportional to the trajectory lengthL:

V ¼ SfDe ¼ SLL ! De ¼ L
SL

Sf

The values Sf and SL are obtained as follows:

Figure 10 Transforming a quadratic B-spline curve into Bézier cubics

Figure 11 Circular arc

G-code generation

Jesús Miguel Chac�on et al.

Rapid Prototyping Journal

Volume 28 · Number 11 · 2022 · 65–76

72



� Sf = p·Øf
2/4 (circular section of a filament with diameter Øf).

� SL = kh is proportional to the layer height h, where the
constant k must be estimated in terms of nozzle diameter
Øn and printing parameters (Hodgson, 2022).

Regarding L, straightforward trigonometry yields it for linear
(G1) or circular arcs (G2/3). For cubics (G5), the exact arc
length Lb of a Bézier segment b(u) involves integrating the
module of its derivative, a quadratic curve b0(u) = q(u) with
Bézier pointsqi:

Lb ¼
ð1
0
kq uð Þkdu;qi ¼ 3 pi1 1 � pið Þ; i ¼ 0; 1; 2:

Unfortunately, this integral incurs high computational cost
(Guenter and Parent, 1990). Thus, for practical purposes,
Gravesen (1997) puts forward a simple approximation,
namely, the average L = (L031 L0123)/2 between the length L03

of the chord b0b3 and the length L0123 of the control polygon
(Figure 13). We checked that his approximation suffices for the
short Bézier segments we are dealing with, making up the paths
Rhino3D generates.

5. Implementation in commercial firmware and
experimental results

5.1 Implementation in commercial firmware
The practical implementation of the proposed approach
requires some customizing of the firmware controlling the 3D
printer. This software reads the G-code commands and
translates them into the electrical commands for the stepper
motor driving the print head, among other tasks. We focus on

the commercial firmware Marlin (2022) for its popularity
and, more importantly, open-source character, allowing
customization by editing the configuration files Configuration.h,
Configuration_adv.h (header files inC11).
We used Marlin 1.1, supporting not only G2/3 (circular arc)

but also G5 (Bézier cubic) commands. However, by default,
these commands may not be activated, but this is fixed by
editing the configuration files in the following way (Dorado-
Vicente et al., 2019):
� If an editable version of the firmware provided by the

printer’s manufacturer is available, in the file
Configuration_adv.h, then simply check out that the
following lines are activated by removing the comment tag
(double forward slash) if necessary:
//#define ARC_SUPPORT
//#define BEZIER_CURVE_SUPPORT

� If not, then download a generic Marlin firmware and
adapt it to the specific machine. This customization
involves activating not only these two lines but also the
more complex task of setting several parameters in the files
Configuration.h, Configuration_adv.h.

Once the configuration files have been edited, recompile to
generate the executable firmware, for instance, using Arduino
IDE and upload the firmware in the 3D printer. We have
implemented procedure a) using BQWitBox 3D and CreatBot
PEEK-300 printers and procedure b) withUltimaker 21.

5.2 Experimental results
We tested our proposal with free-form printouts using PLA
filament, feed rate 50 mm/s and constant layer height h = 0.15
mm. As tolerance distribution (Ma et al., 2004), we opted for a
mixed tolerance, that is, slicing the model at the middle of each
layer. This choice corresponds to the recommended middle
setting of the slicing tolerance parameter in the Cura slicing
application (Ultimaker, 2022).
The example of Figure 14, a rear-view mirror housing

designed with SolidWorks and printed with CreatBot PEEK-
300, compares the traditional method (via STL file) and our
direct NURBS-based approach. We generated in SolidWorks
both the STL file and the .SLDPRT (SolidWorks) CAD file
imported into Rhino3D for slicing. Table 1 lists the
corresponding file sizes, along with those of the resulting G-

Figure 12 Extruding a strand of length L and layer height h, consuming a filament lengthDe

Figure 13 Bézier cubic: Exact arc length Lb, Chord L03 and control
polygon length L0123

b0

b1
b2

b3

L0123
Lb

L03

G-code generation

Jesús Miguel Chac�on et al.

Rapid Prototyping Journal

Volume 28 · Number 11 · 2022 · 65–76

73



Figure 14 Example (CreatBot PEEK-300) comparing traditional additive manufacturing via STL and our non-uniform rational B-splines-based workflow

G-code generation

Jesús Miguel Chac�on et al.

Rapid Prototyping Journal

Volume 28 · Number 11 · 2022 · 65–76

74



code files fed to the controller and the number ofG-code lines they
contain. For STL and CAD files with comparable sizes, the G-
codes have roughly the same number of lines, albeit the file size for
NURBS doubles that of the STL case. Note that the G5
instruction (Bézier cubic) is longer than the G1 (line segment), as
it requires three pairs of coordinates instead of just one.
As Figure 14(a) shows, the STL facets are visible, whereas the

NURBS-based approach results in a noticeable improvement in
surface quality. In large-scale printing (Roschli et al., 2019), these
artifacts would be evenmore noticeable, and large STL files would
be needed to achieve a precision comparable to that of the 3D
printer. Figures 14(b) and (c) depict the dimensional deviations d
between the outer surface of the STL/NURBS model and that of
the theoretical CAD model, with a common color code. We
display a 3D plot [Figure 14(b)] as well as two partial horizontal
sections z = constant [Figure 14(c)] with magnified errors,
showing that theNURBSprintout enjoys a notably smoother error
distribution. The models were measured using a Hexagon
GLOBAL-S Blue coordinate measuring machine. The sensor was
a Hexagon HP-L-10.10 laser scanner with an 8 mm probing form
error capturing up to 600 K points per second. The Hexagon
PCDMIS 22021.1 scanning software was used to obtain the 3D
colormap and sections.

6. Conclusions

The traditional AM workflow, involving an initial
polygonization of the object via STL, does not meet the
requirements for truly functional parts regarding quality and
precision, especially in large-scale 3D printing. This software
limitation wastes the possibilities of existing AM hardware and
precludes them from furnishing such functional parts. As
Dyndrite (2022) highlights, modern hardware has outpaced
software. The situation epitomizes a case of technological lock-
in (Arthur, 1989), whereby a well-established standard
becomes obsolete yet remains in use for compatibility reasons
and the reluctance to change, trapping an industry (Farrell and
Saloner, 1985). In the long term, the savings of switching to a
modern standard would outperform the initial investments
required in updating existing software. To break out of the
locked-in STL and ease the transition process, we propose
switching to the current NURBS standard, already used in the
initial description of theCADmodel.
The fundamental tenet in our proposal is the avoidance of

multiple representations in the AMworkflow by adhering to the
NURBS standard at all steps, namely, slicing, path planning
and G-code generation. Both slicing and offsetting, the most
complex geometry operation in path planning, are already
available, in a reliable way, in any NURBS-based CAD system.
Therefore, there is no need to develop ad hoc procedures, as we
can access these capabilities through a suitable programming
environment. Direct slicing and offsetting could also be
accessed by interacting directly with an existing commercial

kernel, like the already mentioned Dyndrite Accelerated
Computation Engine (Dyndrite, 2022), built with AM inmind.
Our main contribution is sticking to the NURBS standard at the

last step of AM, namely, G-code generation, a possibility
overlooked in both the literature and commercial applications. To
this aim, we exploit the possibilities of exact conversion of NURBS
trajectories into G2/3 (circular arcs) and G5 (cubic Bézier curves)
commands, available in existing firmware controlling 3D printers.
As these NURBS trajectories are usually restricted to polynomial
cubic or quadratic splines and quadratic circles, the exact
conversion is readily performed via standard NURBS geometry
processing (knot-insertion and degree-elevation). General NURBS
curves, of arbitrary degree andweights, could be handledwith high-
fidelity approximation techniques (Piegl et al., 2007), which incur
negligible errors. Remarkably, this idea of accommodating non-
linear trajectories to either circles or Bézier cubics resembles that
implemented in the PostScript page-description language (Adobe
Systems, 1985), yet it also admits ellipses, a geometry not available
as a G-code. PostScript triggered the 2D printing revolution in the
1980s, whereas NURBS-based geometry at all steps of the AM
processmay help consolidate the currentAMrevolution.
We have implemented our ideas using the popular NURBS-

based Rhino3D package as a testbed platform, with Grasshopper
as a programming environment, but other combinations allowing
customization would be feasible. As commercial firmware
supporting the required G-code commands, we used Marlin.
Preliminary examples manufactured with different 3D FFF
printers corroborate the feasibility of our proposal and the
resulting improvement in part quality.

References

Adobe Systems (1985), PostScript Language Tutorial and
Cookbook, Addison-Wesley, Reading,MA.

Allen, G. (2007), “Geometric modeling problems in
industrial CAD/CAM/CAE”. Technical report, Siemens
PLM Software, available at: www.scribd.com/document/
233753777/Allen

Allen, G. (2013), “Geometry in CAD systems: past, present,
and future”, presented at the 2013 SIAM Conference on
Geometric and Physical Modeling (GD-SPM13), 11–14 Nov.
2013, Denver, CO.

Arthur, W.B. (1989), “Competing technologies, increasing
returns, and lock-in by historical events”, The Economic
Journal, Vol. 99No. 394, pp. 116-131.

Bertacchini, F., Bilotta, E., Carnì, L.C., Demarco, F.,
Pantano, P., Scuro, C. and Lamonaca, F. (2021),
“Preliminary study of an innovative method to increase the
accuracy in direct 3D-printing of NURBS objects”, 2021
IEEE International Workshop on Metrology for Industry 4.0 &
IoT (MetroInd4.0& IoT), pp. 94-98.

Carleberg, P. (1994), “Product model driven direct
manufacturing”, Proceedings of the 1994 International Solid
Freeform Fabrication Symposium,Austin, TX, pp. 270-276.

Dorado-Vicente, R.,Medina-S�anchez, G., García-Collado, A.,
Carou, D. and Pérez, M. (2019), “How to use and compare
interpolations schemes in fused deposition modeling”,
ProcediaManufacturing, Vol. 41, pp. 343-350.

Dyndrite (2022), “Dyndrite”, available at: www.dyndrite.com
(accessed 8 August 2022).

Table 1 File sizes for the STL and non-uniform rational B-splines models of
Figure 14 (rear-view mirror housing)

Model File size and type G-code commands G-code size

STL 205 KB (�.stl) 646 KB 20.8 MB
NURBS 320 KB (�.sldprt) 586 KB 41.2 MB

G-code generation

Jesús Miguel Chac�on et al.

Rapid Prototyping Journal

Volume 28 · Number 11 · 2022 · 65–76

75

https://www.scribd.com/document/233753777/Allen
https://www.scribd.com/document/233753777/Allen
http://www.dyndrite.com


Elber, G., Lee, I.-K. and Kim, M.-S. (1997), “Comparing
offset curve approximation methods”, IEEE Computer
Graphics and Applications, Vol. 17No. 3, pp. 62-71.

Ezair, B., Fuhrmann, S. and Elber, G. (2018), “Volumetric
covering print-paths for additive manufacturing of 3D
models”,Computer-AidedDesign, Vol. 100, pp. 1-13.

Farin, G. (1999),NURBS: From Projective Geometry to Practical
Use, 2nd ed., AKPeters, Natick,MA.

Farin, G. (2002),Curves and Surfaces for Computer Aided Geometric
Design, 5th ed.,MorganKaufmann, SanFrancisco,CA.

Farouki, R.T. and König, T. (1996), “Computational methods
for rapid prototyping of analytic solid models”, Rapid
Prototyping Journal, Vol. 2 No. 3, pp. 41-48.

Farrell, J. and Saloner, G. (1985), “Standardization,
compatibility, and innovation”, The RAND Journal of
Economics, Vol. 16No. 1, pp. 70-83.

Feng, J., Fu, J., Lin, Z., Shang, C. and Li, B. (2018), “Direct
slicing of T-spline surfaces for additive manufacturing”,
Rapid Prototyping Journal, Vol. 24No. 4, pp. 709-721.

Gao, W., Zhang, Y., Ramanujan, D., Ramani, K., Che, Y.,
Williams, C.B., Wang, C.C.L., Shin, Y.C., Zhang, S. and
Zavattieri, P.D. (2015), “The status, challenges, and future
of additive manufacturing in engineering”, Computer-Aided
Design, Vol. 69, pp. 65-89.

Gravesen, J. (1997), “Adaptive subdivision and the length and
energy of Bézier curves”, Computational Geometry, Vol. 8
No. 1, pp. 13-31.

Guenter, B. and Parent, R. (1990), “Computing the arc length
of parametric curves”, IEEE Computer Graphics and
Applications, Vol. 10No. 3, pp. 72-78.

Hodgson,G. (2022), “Slic3rmanual”, available at: https://manual.
slic3r.org/advanced/flow-math (accessed 8August 2022).

Hoover, R. (2022), “Xylinus”, available at: http://grasshopperdocs.
com/addons/xylinus.html (accessed 8August 2022).

Hoschek, J. and Lasser, D. (1993), Fundamentals of Computer
AidedGeometric Design, AKPeters,Wellesley,MA.

Jamieson, R. and Hacker, H. (1995), “Direct slicing of CAD
models for rapid prototyping”, Rapid Prototyping Journal,
Vol. 1 No. 2, pp. 4-12.

Kumar, V. and Dutta, D. (1997), “An assessment of data
formats for layered manufacturing”, Advances in Engineering
Software, Vol. 28No. 3, pp. 151-164.

Ma, W., But, W.-C. and He, P. (2004), “NURBS-based
adaptive slicing for efficient rapid prototyping”, Computer-
AidedDesign, Vol. 36No. 13, pp. 1309-1325.

Maekawa, T. (1999), “An overview of offset curves and surfaces”,
Computer-AidedDesign, Vol. 31No. 3, pp. 165-173.

Marlin (2022), “Marlin firmware”, available at: https://
marlinfw.org (accessed 8 August 2022).

Oropallo, W. and Piegl, L.A. (2016), “Ten challenges in 3D
printing”, Engineering with Computers, Vol. 32 No. 1,
pp. 135-148.

Pandey, P.M., Reddy, N.V. andDhande, S.G. (2003), “Slicing
procedures in layered manufacturing: a review”, Rapid
Prototyping Journal, Vol. 9 No. 5, pp. 274-288.

Patrikalakis, N.M. and Maekawa, T. (2002), Shape
Interrogation for Computer Aided Design and Manufacturing,
Springer, Cambridge,MA.

Paul, R. and Anand, S. (2015), “A new Steiner patch based file
format for additive manufacturing processes”, Computer-
AidedDesign, Vol. 63, pp. 86-100.

Piegl, L. and Tiller, W. (1997), The NURBS Book, 2nd ed.,
Springer, Berlin, Heidelberg.

Piegl, L.A., Rajab, K. and Smarodzinava, V. (2007), “High
fidelity conversion of NURBS curves for data exchange”,
Computer-Aided Design and Applications, Vol. 4 No. 5,
pp. 683-693.

Qin, Y., Qi, Q., Scott, P.J. and Jiang, X. (2019), “Status,
comparison, and future of the representations of additive
manufacturing data”, Computer-Aided Design, Vol. 111,
pp. 44-64.

Rogers, D.F. (2001), An Introduction to NURBS. With Historical
Perspective,MorganKaufmann, SanFrancisco,CA.

Roschli, A., Gaul, T., Boulger, A.M., Post, B.K., Chesser, P.
C., Love, L.J., Blue, F. and Borish, M. (2019), “Designing
for big area additive manufacturing”, Additive
Manufacturing, Vol. 25, pp. 275-285.

S�anchez-Reyes, J. and Chac�on, J.M. (2015), “A polynomial
Hermite interpolant for C2 quasi arc-length approximation”,
Computer-AidedDesign, Vol. 62, pp. 218-226.

Shapiro, V. (2002), “Solid modelling”, in Farin, G., Hoschek,
J. and Kim, M.-S. (Eds), Handbook of Computer Aided
Geometric Design, Elsevier, Amsterdam, pp. 473-518.

SMS (2022), “Solid modelling solutions”, available at: www.
smlib.com/products.html (accessed 7 August 2022).

SolidCAM (2022), “SolidCAM”, available at: www.solidcam.
com (accessed 7 August 2022).

Starly, B., Lau, A., Sun,W., Lau,W. and Bradbury, T. (2005),
“Direct slicing of STEP based NURBS models for layered
manufacturing”, Computer-Aided Design, Vol. 37 No. 4,
pp. 387-397.

Ultimaker (2022), “Ultimaker cura”, available at: https://
support.ultimaker.com/hc/en-us/sections/360003548339-
Ultimaker-Cura (accessed 7 August 2022).

Xu, G. and Jing, T. (2011), “Research of slicing CAD models
with pro/TOOLKIT for integral stereolithography”,
AdvancedMaterials Research, Vol. 321, pp. 226-229.

Xu, G., Zhang, J., Luo, S. and Jing, J. (2011), “Direct slicing
CAD models with SolidWorks for integral stereolithography
system”, Advanced Materials Research, Vols 148/149,
pp. 818-821.

Yu, K.M., Wang, Y. and Wang, C.C.L. (2017), “Smooth
geometry generation in additive manufacturing file format:
problem study and new formulation”, Rapid Prototyping
Journal, Vol. 23No. 1, pp. 34-43.

Corresponding author
Javier S�anchez-Reyes can be contacted at: Javier.
SanchezReyes@uclm.es

For instructions on how to order reprints of this article, please visit our website:
www.emeraldgrouppublishing.com/licensing/reprints.htm
Or contact us for further details: permissions@emeraldinsight.com

G-code generation

Jesús Miguel Chac�on et al.

Rapid Prototyping Journal

Volume 28 · Number 11 · 2022 · 65–76

76

https://manual.slic3r.org/advanced/flow-math
https://manual.slic3r.org/advanced/flow-math
http://grasshopperdocs.com/addons/xylinus.html
http://grasshopperdocs.com/addons/xylinus.html
https://marlinfw.org
https://marlinfw.org
http://www.smlib.com/products.html
http://www.smlib.com/products.html
http://www.solidcam.com
http://www.solidcam.com
https://support.ultimaker.com/hc/en-us/sections/360003548339-Ultimaker-Cura
https://support.ultimaker.com/hc/en-us/sections/360003548339-Ultimaker-Cura
https://support.ultimaker.com/hc/en-us/sections/360003548339-Ultimaker-Cura
mailto:Javier.SanchezReyes@uclm.es
mailto:Javier.SanchezReyes@uclm.es

	G-code generation in a NURBS workflow forprecise additive manufacturing
	1. Introduction
	1.1 The non-uniform rational B-splines standard for computer-aided design (CAD) representation
	1.2 Conventional additive manufacturing workflow: problems
	1.3 Our proposal: adhering to non-uniform rational B-splines at all steps

	2. Alternatives to conventional polygonization
	2.1 Alternative formats
	2.2 Direct slicing
	2.3 Our proposal

	3. System description
	4. Geometric processing of non-uniform rational B-splines trajectories and G-code generation
	4.1 Transforming IGES entities into G-code commands
	4.2 Splitting a cubic polynomial non-uniform rational B-splines into Bézier cubics via knot insertion
	4.3 Transforming quadratic polynomial non-uniform rational B-splines
	4.4 Circular arcs
	4.5 Computing the length of the extruded filament for fused filament fabrication

	5. Implementation in commercial firmware and experimental results
	5.1 Implementation in commercial firmware
	5.2 Experimental results

	6. Conclusions
	References


