
Using machine learning
to determine factors
affecting product and

product–service innovation
Oscar F. Bustinza and Luis M. Molina Fernandez

University of Granada, Granada, Spain, and

Marlene Mendoza Mac�ıas
Universidad Catolica de Santiago de Guayaquil, Guayaquil, Ecuador

Abstract

Purpose – Machine learning (ML) analytical tools are increasingly being considered as an alternative
quantitative methodology in management research. This paper proposes a new approach for uncovering the
antecedents behind product and product–service innovation (PSI).
Design/methodology/approach – The ML approach is novel in the field of innovation antecedents at the
country level. A sample of the Equatorian National Survey on Technology and Innovation, consisting of more
than 6,000 firms, is used to rank the antecedents of innovation.
Findings – The analysis reveals that the antecedents of product and PSI are distinct, yet rooted in the
principles of open innovation and competitive priorities.
Research limitations/implications – The analysis is based on a sample of Equatorian firms with the
objective of showing how ML techniques are suitable for testing the antecedents of innovation in any other
context.
Originality/value – The novel ML approach, in contrast to traditional quantitative analysis of the topic, can
consider the full set of antecedent interactions to each of the innovations analyzed.
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1. Introduction
In the domain of artificial intelligence (AI), technologies encompass the identification of
precise information management challenges, the introduction of computational models to
address these and the subsequent development of algorithms (Liebregts et al., 2023). AI
notably differs from traditional statistical and operational research methods due to its
adaptability to new data streams and assimilation of existing knowledge (Rodr�ıguez-
Esp�ındola et al., 2020). Key AI technologies span natural language processing, computer
vision (e.g. object detection, image classification), robotics and expert systems that utilize
software programs for decision-making and problem-solving. Among these, machine
learning (ML) techniques are critical, focusing on algorithms enabling systems to learn and
enhance innovation performance using data (Hastie et al., 2009; Marr, 2019). Projections
foresee the total economic impact of AI technology andML techniques reaching $15.7 trillion
by 2030, with 45%of gains attributed to improvements in innovation (Rao andVerweij, 2017).
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Hence, integrating ML into innovation processes holds promise in fostering more effective
strategies, enabling adaptation to competitive landscapes and enhancing overall innovation
capabilities and performance (Mikalef et al., 2023).

Incorporating ML techniques into firms’ innovation processes offers significant potential
for crafting more effective strategies, aiding firms in navigating intense market competition
and handling the increasing volume of available data (Mariani et al., 2023). The rise of
innovation ecosystems has intensified competition, shifting away from traditional process
and product evaluations to swiftly translating customer needs into innovative product-
service bundles through product–service innovation (PSI). In this context, ML plays a pivotal
analytical role in fostering processes, capabilities and improving the offerings of new and
updated products and services (Sj€odin et al., 2020). These evolving ecosystems have identified
PSI as a distinct area in innovation research (Baines et al., 2017; Bustinza et al., 2022;
Kowalkowski et al., 2017a, b; Rabetino et al., 2018), encompassing diverse technology-driven
business models focused on gaining a competitive edge by delivering knowledge-based
customer services throughout the lifecycle of manufacturing products (Bustinza et al., 2019).
The evolving landscape of innovation ecosystems advocates for new theoretical and
methodological approaches, calling for an enhanced understanding of the implications of
incorporating these new innovative forms, such as PSI (Kolagar et al., 2022) and ML
techniques into the traditional spectrum of theoretical (Rabetino et al., 2021) and quantitative
methods (Lindner et al., 2022).

In studies concerning product innovation and PSI, the choice of suitablemethodologies for
acquiring and analyzing empirical evidence has consistently sparked debate. These
methodologies hold a critical role in evaluating the validity of foundational theories
(Cornelissen, 2017; Wolstenholme, 1999). The discourse commonly revolves around the
appropriateness of regressionmethods, widely employed in quantitative analyses within this
domain (Cerniglia and Fabozzi, 2020). It is crucial to acknowledge that there’s no universal
method or standardized rules dictating the use of regression methods across the majority of
empirical studies in innovation. Scientific inquiry hinges on both deductive and inductive
reasoning.While deductive reasoning tests hypotheses by deriving logical consequences and
comparing them to empirical data, a significant part of scientific exploration leans on
inductive, probabilistic explanations, particularly when confronting complex phenomena
(Prasad and Prasad, 2002). Theories endeavor to interpret intricate phenomena like PSI by
proposing fundamental laws or principles that govern them. These theories utilize these
principles to elucidate observed regularities and frequently predict new, analogous patterns
(Hempel, 1966). Therefore, employing appropriate methodological approaches becomes
crucial in comprehending and interpreting complex phenomena marked by diverse and
intricate attributes, including various forms of innovation such as product innovation
(Vendrell-Herrero et al., 2023) or PSI (Kowalkowski et al., 2017a, b). In the rapidly evolving
landscape of innovation, the incorporation of ML techniques represents a novel frontier,
revolutionizing traditional approaches to innovation processes by harnessing the potential of
cutting-edge analytical tools and methodologies.

The traditional approach of incorporating all seemingly relevant variables into regression
models encounters substantial challenges in contemporary managerial research (Kalnins,
2022) due to the need for extensive databases. Moreover, attempts to construct
comprehensive regression models often exacerbate multicollinearity, diminishing result
stability and interpretability (Kalnins, 2018). Furthermore, the intricate nature of variable
relationships demands mediated and moderated models, further complicating result stability
and hindering definitive interpretations (Johnston et al., 2018). As scientific inquiry, crucial
for unraveling complex phenomena like PSI, involves both deductive and inductive
reasoning, the potential of inductive open-ended studies emerges as a promising avenue to
comprehend such intricacies. Open-ended studies foster fluid and unrestricted data collection,
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liberating researchers from rigid confines and facilitating a holistic and adaptable analysis of
phenomena (Schmenner and Swink, 1998). While open-ended studies are focused on
understanding complex phenomena without pre-defined hypotheses, the challenge arises
when complex phenomena analysis models should incorporate all seemingly relevant and
observable variables (Kalnins, 2018). Therefore, new methodological approaches are needed
to overcome regression analysis limitations (Kalnins, 2022).

All of this has led to the advocacy for newmethods capable of overcoming these obstacles
and bolstering research outcomes (Tonidandel et al., 2018). Several high-impact journals have
released editorials or calls for papers aimed at introducing these ML techniques (Lindner
et al., 2022; Pagell et al., 2019), signifying an increasing recognition of the necessity for
sophisticated analytical approaches. These novel ML methodologies, proposed as efficient
solutions, hold promise in enhancing research, particularly in areas such as breakthrough
research identification (Li et al., 2022) and tackling the limitations of classical regressions,
notably concerningmulticollinearity (Kalnins, 2022). These techniques offer an alternate path
for advancing knowledge in innovation research. As Tonindadel et al. (2018, p. 534) stated:
“(this) new epistemological approach seeks to develop knowledge from data as opposed to using
the data to test existing theory”. In alignment with this perspective, our study does not
commence with preconceived theories indicating the most relevant variables for predicting
innovative outcomes. Instead, we leverage ML tools to uncover the attributes and their
relationships that best elucidate those primary outcomes, specifically product innovation and
PSI innovation (Bustinza et al., 2019; Gault, 2018; Slater et al., 2014; Snyder et al., 2016). This
leads us to propose the following research questions:

RQ1. What factors exert the most positive and negative influences on companies’
product and PSI outcomes from a pool of over 500 initial variables?

RQ2. How are the patterns that emerge from the interplay of those factors related to
existing theories on innovation?

To address the research questions, we utilize the National Survey on Science, Technology and
InnovationActivities in Ecuador (ACTI), which offers data on key indicators related to scientific
research, technological development and innovation in the country, as well as information on
human resources and assets dedicated to these activities. This survey adheres to the Oslo
Manual (OCDE, 2005), a widely recognized conceptual and methodological framework for
gathering firm-level data on innovation activities within a specific national system.

2. Methodology
2.1 Machine learning
Data analytics employs statistical methods to uncover patterns and extract meaning from data
(Liebregts et al., 2023). This process extends to predictive analytics, which leverages advanced
techniques to analyze historical data, utilizing data mining models andML algorithms to reveal
potential scenarios. These predictive analytics techniques combine new algorithms with
traditional models like regression to assign probabilities to instances for outcome classification.
Finally, prescriptive analysis is built upon the patterns uncovered during the predictive
analysis, providing actionable decision options and future opportunities within the analyzed
context. In this context, ML is “the subset of artificial intelligence devoted to defining computer
algorithms that automatically improve through experience” (Liebregts et al., 2023).

The core objective of ML is to craft a model capable of accurately predicting outcomes
based on a given set of input o predictor variables. It is important to note that the data used in
ML is typically divided into three subsets: (1) The training set: This subset is used to train the
model by feeding it with input variables and their corresponding outcomes. Themodel learns
from this data to understand the underlying patterns and relationships. (2) The validation set:
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After training the model, it is necessary to fine-tune its performance. The validation set is
employed for this purpose, allowing the classifier to undergo feature selection and data
balancing techniques. These steps help optimize the model’s predictive capabilities. (3) The
test set: Once the model has been trained and validated, it needs to be evaluated on unseen
data (known as out-of-sample data) to assess its performance. Notably, supervisedML entails
out-of-sample validation, a distinguishing feature when contrasted with the traditional
econometric regression, which primarily focuses on in-sample fitting (Chou et al., 2022). The
test set serves as a final benchmark, providing an estimation of how well the model can
predict outcomes when faced with new input variables.

Moreover, preceding model training, ML entails several preparatory steps to ensure a
robust model foundation, including:

(1) Data cleaning and missing value handling: The training data may contain errors,
outliers, or missing values. Therefore, it is necessary to perform data cleaning, which
involves removing or correcting inaccurate data points and handling missing values
appropriately, either by imputing them or excluding the corresponding inputs.

(2) Input scaling: In order to standardize the range and distribution of the inputs, input
scaling techniques are applied. This typically involves two common methods: min-max
normalization, which scales the values to a specific range (e.g. 0–1) and standardization,
which transforms the inputs to have zero mean and unit variance (Han et al., 2012). This
step ensures that all inputs are on a comparable scale andprevents certain features from
dominating the learning process due to their larger magnitude.

(3) Input selection (if necessary):Depending on the nature and complexity of the problem,
it may be beneficial to select a subset of relevant inputs. Input selection techniques
help identify the most informative and discriminative inputs, reducing the
dimensionality of the input space and potentially improving model performance.

(4) Data balancing: In situations where the training data is imbalanced, meaning there is a
significant difference in the number of inputs belonging to different classes (e.g. positive
and negative outcomes), it is crucial to address this issue. Data balancing techniques, such
as resampling, are employed to adjust the class distribution and equalize the number of
inputs in each class (He and Garcia, 2009). This ensures that the model is not biased
toward the majority class and can effectively learn from both positive and negative
outcomes.

As to the ML approaches and depending on the data, various techniques can be selected, namely
“supervised learning,” “unsupervised learning,” “semi-supervised learning,” and “reinforcement
learning” (Dasgupta and Nath, 2016). In this paper, we will utilize supervised learning algorithms
sincewehave knowledge of the output to be predicted (product innovation andPSI).Within the set
of supervised learning algorithms, themain groups are as follows:Rule Induction algorithms such
as ZeroR (often considered the baseline algorithm), PART, OneR, Decision table, or Jrip; Decision
Tree and CART (Classification and Regression tree) algorithms such as SimpleCart, REPTree,
LMT, J48, HoefidingTree, or RandomForest; Nearest Neighbors algorithms such as Lazy.Ibk;
Bagging/Boosting ensemble algorithms such as Bagging, or AdaBoostM1; Neural Networks
algorithms such as RBFNetwork; Support Vector Machines (SVM) algorithms such as LibLinear;
Statistical Classifiers algorithms such as logistic, NaiveBayes, or BayesNet (Stockdale and
Standing, 2006).

2.2 Data selection
For our analysis, we used data from the National Survey on Science, Technology and Innovation
Activities conducted by the Government of Ecuador (https://www.ecuadorencifras.gob.ec/
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encuesta-nacional-de-actividades-de-ciencia-tecnologia-e-innovacion-acti/). This database includes
a total of 566 fields of information about 6,275 companies, the majority of which are related to
innovative activities, as the survey adheres to the standards of theOsloManual (OCDE, 2005). The
outcome objectives of this study are product innovation and PSI, which are measured by the
introduction/commercialization of new products and services. Product and PSI are concepts
critical in the field of innovation (Mendoza-Silva, 2020; Vendrell-Herrero et al., 2023), as well as in
the analysis of competitive position in themarket (Baines et al., 2009; Bustinza et al., 2015; Gunday
et al., 2011).

Subsequently, leveraging Python along with libraries such as Pandas, Scikit-learn, Weka
and Statsmodels, we conducted an in-depth analysis of the dataset. The missing data, which
was limited in quantity, was handled as follows: first, we identified the columns with null
values using the “isnull()” function. Then, we applied an imputation technique using the
“KNNimputer()” function, where the missing values were predicted based on the mean of
neighboring data points. This approach allowed us to retain as much data as possible, and
subsequently, we applied appropriate techniques to select the attributes (inputs) that best
predict the classes (outcomes). Regarding the number of manufacturers and servitized
manufacturers, there were 1,412 instances (observations) of pure manufacturers and 177
instances of servitized manufacturers. One of the advantages of using ML techniques is that
researchers do not need to preselect predictors and their interactions, as is required in
traditional regression techniques. ML tools incorporate “meta” classifiers such as
AttibuteSelectedClassifier, which provides an automated feature selection tool that is
particularly useful when working with databases containing a large number of inputs, such
as the one used in this study. Meta-classifiers are algorithms designed to enhance the
performance and address specific challenges in classification tasks by either combining or
modifying predictions generated by other base algorithms. Several prominent meta-
classifiers (Fern�andez-Delgado et al., 2014) include:

(1) Bagging (bootstrap aggregating): Bagging creates an ensemble of base algorithms by
training them on various bootstrap samples derived from the original training data.
The predictions of these classifiers are subsequently combined through methods
such as majority voting or averaging to formulate the final prediction.

(2) AdaBoostM1 (adaptive boosting): AdaBoost iteratively adjusts the weights of training
inputs based on the performance of the base algorithms. AdaBoostM1 amalgamates
predictions from multiple weak algorithms, often decision trees, by assigning greater
weights to misclassified inputs, thereby constructing a robust classifier.

(3) RandomSubSpace: RandomSubSpace introduces random feature subsetting during
the training of base algorithms. This entails the random selection of a subset of inputs
for each base algorithm, enabling them to specialize in distinct input subsets. The
predictions of these specialized base algorithms are then merged to generate the
ultimate prediction.

(4) AttributeSelectedClassifier: This approach integrates a input selection algorithmwith
a base algorithm. Initially, it employs a input selection method to identify a subset of
relevant inputs, subsequently training the base algorithm exclusively on these
selected inputs.

3. Results
In the current study, we employed 10-fold cross-validation, which involves randomly
dividing the data into 10 parts, ensuring that the output is almost equally represented in each
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part. The algorithm is then executed 10 times using different training datasets, and the 10
error estimates are averaged (Witten and Frank, 2002). The results, in terms of accuracy
achieved by the different algorithms, are presented in Figures 1 and 2.

As shown in both Figures 1 and 2, the highest accuracy is achieved by Trees and Rules
algorithms. In the case of Trees, LMT (Logistic Model Trees) is a logarithm for building
classification trees with logistic regression functions at the leaves. J48 is the traditional C4.5
algorithm (Quinlan, 1993) used for generating pruned or unpruned decision trees. SimpleCart
implements minimal cost-complexity pruning to the tree, while RandomForest uses a greedy
algorithm that splits the data at the best point for each step of the tree building process.
Regarding Rules algorithms, PART reports a decision list through separate-and-conquer
searches. JRIP (Repeated Incremental Pruning to Produce Error Reduction) is a variant of the

Figure 1.
Accuracy achieved by
the different
algorithms when the
outcome is product
innovation

Figure 2.
Accuracy achieved by
the different
algorithms when the
outcome is PSI
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RIPPER algorithm (Cohen, 1995). Finally, DecisionTable is a simple decision table majority
classifier (Witten and Frank, 2002).

When examining the accuracy achieved by different algorithms, it is crucial to consider all
predictors, even those potentially insignificant in the analysis. To identify the set of predictors
that truly contribute to predicting the outcome, especially in caseswith a large number of inputs,
the AttibuteSelectedClassifier is used. This classifier offers various evaluators, such as
CfsSubsetEvaluation which evaluates the worth of a subset of inputs by considering both the
individual predictive ability of each predictor and the degree of redundancy between them.
Other evaluators are GainRatioAttributeEval or WrapperSubsetEval, which use a learning
algorithm as the baseline (e.g. ZeroR), among others. Additionally, three different search
techniques are available: BestFirst, GreedyStepwise and Ranker.

Among all the evaluators and search techniques, GainRatioAttributeEval, which
evaluates the worth of a predictor by measuring the gain ratio with respect to the
outcome, combined with the Ranker search technique, which ranks predictors based on their
individual evaluations, consistently offered the highest accuracy for most of the algorithms.
This search technique provided the ranked contribution of the most important inputs for
predicting product and PSI (see Table 1). All predictors are grounded in the literature, as the
survey follows the OECD standards for analyzing innovation. In our case, the inputs or
predictors unveiled by the ML algorithms are related to two different innovation
determinants:

(1) Sources of information (Amara and Landry, 2005): They comprises the internal
sources of information and knowledge such as headquarter (HQ) cooperation and in-
house R&Ddepartments, the external or Open Innovation sources (Chesbrough, 2006;
Laursen and Salter, 2006; Vendrell-Herrero et al., 2023) and the specialized and
generally available sources as trade fairs and exhibitions, technical standards
licensed through Intellectual Property Patents (IPO), or safety and environmental
standards such as ISO 14001.

(2) and competitive priorities determinants: that is, the set of internal and external
competitive variables that exert influence to generate innovation: (1) internal

Product innovation Product–service innovation
Input Information gain Input Information gain

Headquarter cooperation 0.494 IPO cooperation 0.526
Other firms cooperation 0.494 Competitors cooperation 0.525
Government cooperation 0.494 University cooperation 0.525
Suppliers cooperation 0.494 Total percentage of funding 0.525
Total percentage of funding 0.494 Government cooperation 0.525
IPO cooperation 0.473 Clients cooperation 0.525
Ind. manufacturing sector 0.418 Other firms cooperation 0.525
University cooperation 0.398 Labs cooperation 0.449
Labs cooperation 0.357 Headquarter cooperation 0.367
Customers cooperation 0.320 Customers cooperation 0.315
Competitors cooperation 0.312 Suppliers cooperation 0.311
Clients cooperation 0.299 Obj.: Increase quality 0.277
Obj.: Incr. mark. share 0.248 Objective: Incr. flexibility 0.203
Obj.: reduce environ. impact 0.239 Obj.: Incr. mark. share 0.172
R&D Department 0.144 Obj.: Entry into new markets 0.169
Obj.: entry into new markets 0.122 Obj.: Reduce environ. impact 0.151

Source(s): Authors’ own work

Table 1.
Attribute gain ratio

with respect for
product innovation

and PSI
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competitive priorities of the firm (Alegre-Vidal et al., 2004; Hayes, 1984) such as cost
efficiency, quality, delivery and flexibility, and (2) external market orientation
strategies such as increasing market share, entering new markets, or reducing
environmental impact (Appiah-Adu and Ranchhod, 1998; Tajeddini et al., 2006).

In exploring the determinants of information sources encompass a multi-dimensional
perspective related to the origins of information and knowledge required for innovation
activities: (1) Internal Sources: These sources emanate from within an organization,
frequently stemming from in-house departments that contribute valuable insights for
product development and innovation. Collaborative efforts with headquarters, involving
various functions such as marketing, production, or management staff, can also be of
instrumental importance (Amara and Landry, 2005). These internal sources originate from
the organization’s own activities, operations and resources, assuming a pivotal role in
decision-making, problem-solving and process enhancement; (2) Market sources that
encompass knowledge-driven innovations derived from interactions with suppliers, clients,
competitors, consultants and commercial laboratories. The well-established literature
underscores the significance of involving lead users or customers in the innovation
process (von Hippel, 2007). Their participation is highly esteemed for the complementary
skills and knowledge they contribute, along with their role in mitigating the risks associated
with innovation development andmarket adoption. Additionally, suppliers enjoywidespread
recognition as fundamental sources of innovation. Previous empirical studies investigating
the impact of market-based cooperation on the level of innovation novelty within the
manufacturing sector have consistently demonstrated a positive correlation (Mention, 2011);
(3) General and Specialized Sources: These encompass a range of sources including
regulations, environmental and safety standards such as ISO 14001, professional
conferences, trade associations, initial public offerings (IPOs), scientific publications and
professional associations. These sources have previously been associated with specific types
of innovation, such as green innovation (Thao and Xie, 2023) or biotechnological innovation
(Gertler and Levitte, 2005).

Furthermore, within the realm of competitive priorities shaping innovation, ever since
Skinner’s seminal work in (1969), the literature on operations strategy has consistently
emphasized the delineation of competitive priorities through the lens of four fundamental
components: low cost, quality, delivery time and flexibility (Wheelwright and Hayes, 1985).
These components are defined as follows: (1) Cost Importance: The concept of cost
importance revolves around the effective management of manufacturing costs,
encompassing direct production expenses, productivity, capacity utilization and inventory
reduction, all aimed at minimizing the monetary valuation of production (Ward et al., 1998).
This encompasses various facets, such as overhead costs and inventory management, all
with the overarching goal of effectively controlling production costs and adding value. (2)
Quality Importance: Quality importance is associated with notions of excellence, value,
adherence to specifications and the ability to meet or exceed customer expectations (Reeves
and Bednar, 1994). (3) Delivery Time Importance: The significance of delivery time lies in the
capacity to promptly provide goods and services, adhering to promised schedules. It also
encompasses considerations related to the time-to-market for new products (Leong et al.,
1990). (4) Flexibility Importance: Flexibility importance pertains to the capacity to deploy
and/or reallocate resources in response to changes in contractual agreements, often instigated
by customer demands (Phusavat and Kanchana, 2007). This encompasses various facets,
including adjustments in design and planning, changes in production volume and product
variety.

The evaluation of attribute gain ratio, an essential measure assessing input relevance
concerning product innovation and PSI prediction, delves into the intrinsic information of
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predictors while considering their information gain. It helps to identify inputs that have a
strong relationship with the outcome variable. In the case of Product Innovation, the attribute
gain ratio measures the importance of each input in predicting whether a company will
introduce new products. Similarly, for PSI, the attribute gain ratio assesses the significance of
inputs in predicting the introduction of new bundles of product-services by a company.
Predictors with higher gain ratios indicate a stronger association with the respective
innovation type, making themmore influential in predicting the occurrence of product or PSI
respectively.

Transitioning to logistic regression, this method helps identify the key predictors and
their impact on the likelihood of achieving product or PSI. It provides insights into the
statistical significance of the selected predictors and their contribution to the innovation
outcomes. In Tables 2 and 3, the logistic regression results for both product innovation and
PSI can be observed. In both cases, the relevance of variables in explaining the propensity to
innovate in product and PSI is demonstrated, considering the increase in the probability of
occurrence. In this analysis, the marginal effect is considered, taking into account the effect of
the other variables on the propensity to innovate. Thus, considering the marginal effects, in
the case of product innovation, all previously analyzed factors are significant except supplier
cooperation, IPO cooperation and the competitive priority of increasing market share. In the
case of PSI, all the presented factors have significant marginal effects, except competitor and
other firm cooperation and the pursuit of competitive priorities such as increasing market
share or flexibility. It is particularly noteworthy that in the case of PSI, supplier and lab
cooperation have a negative marginal effect, making it more challenging to successfully
innovate in PSI. This result contradicts the findings presented in the case of product

Logistic regression results

Dep. Variable: product innovation Observations: 1,412 pure manufacturers
Model: Logit (Method: MLE) Pseudo R-squ.: 0.664
AIC: 2956.710 BIC.: 3064.617
converged: True (Interactions 5 9) Log-Likelihood: �1462.4
LL-Null: �4348.8 LLR p-value: 0.00

Coef Std. err z P>jzj [0.025 0.975] OR

Intercept �7.483 0.246 �30.381 0.000 �7.966 �7.001 0.001
Headquarter cooperation 0.352 0.170 2.073 0.038 0.019 0.686 1.422
Other firms cooperation 0.438 0.164 2.666 0.008 0.116 0.761 1.550
Government cooperation 0.532 0.240 2.213 0.027 0.061 1.003 1.702
Suppliers cooperation �0.144 0.114 �1.265 0.206 �0.368 0.079 0.866
Total perc. of funding 0.004 0.001 2.693 0.007 0.001 0.006 1.004
IPO cooperation 0.093 0.292 0.318 0.750 �0.480 0.666 1.097
Ind. Manuf. sector 4.106 0.122 33.542 0.000 3.866 4.346 60.703
University cooperation 0.674 0.239 2.821 0.005 0.206 1.143 1.962
Labs cooperation 0.659 0.189 3.480 0.001 0.288 1.030 1.933
Customers cooperation 1.221 0.093 13.126 0.018 1.038 1.404 3.391
Competitors cooperation 0.457 0.137 3.352 0.001 0.190 0.725 1.579
Clients cooperation 0.567 0.111 5.102 0.000 0.350 0.786 1.763
Obj.: Incr. mark. share �0.039 0.060 �0.648 0.517 �0.157 0.079 0.962
Obj.: Reduce envi. impact 1.003 0.091 11.019 0.002 1.001 1.005 2,726
R&D Department 1.484 0.106 13.981 0.000 1.276 1.692 4.411
Obj.: Entry new mark 0.439 0.056 7.890 0.000 0.330 0.549 1.551

Source(s): Authors’ own work

Table 2.
Logistic regression
results for product

innovation
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innovation, where the marginal effect was not significant for supplier cooperation and was
positive for Lab cooperation.

Post preselection of inputs or predictors, two decision trees are developed to delineate the
pathways and rules governing product innovation and PSI, thereby providing a
comprehensive understanding of the process. These decision trees provide a visual
representation of the factors and their relationships that contribute to each type of
innovation. Decision trees has been generated by the J48 algorithm. J48 provides the ability to
visualize the generated decision tree, aiding in better comprehension and interpretation. J48 is
a versatile and widely utilized decision tree algorithm that offers a robust and efficient
approach to classification tasks. The J48 algorithm is an implementation of the C4.5 decision
tree algorithm (Quinlan, 1993). It is a popular decision tree algorithm known for its top-down,
greedy approach to building decision trees from training data. The name “J48” signifies that it
is a Java implementation of the C4.5 algorithm. Some noteworthy features and functionalities
of the J48 algorithm includes (1) Input Selection: J48 employs information gain or gain ratio
(used in the current study) as criteria for selecting inputs. These measures assess the quality
of an input in terms of its ability to reduce uncertainty or impurity in the data; (2) Missing
Values Handling: J48 can effectively manage missing values in the dataset by utilizing
surrogate splits. Surrogate splits allow the algorithm to make predictions using alternative
inputs when the primary input is missing; (3) Pruning: J48 incorporates pruning techniques,
such as reduced error pruning or cost-complexity pruning, to prevent overfitting. Pruning
involves the removal of nodes or branches from the decision tree to enhance its generalization
capability; (4) Confidence Factor: J48 allows for the adjustment of the confidence factor
parameter, which governs the extent of pruning. A higher confidence factor leads to more

Logistic regression results

Dep. Variable: Product-service Innovation Observations: 177 servitized manufacturers
Model: Logit (Method: MLE) Pseudo R-squ.: 0.488
AIC: 3669.284 BIC.: 3773.938
converged: True (Interactions 5 8) Log-Likelihood: �1818.6
LL-Null: �3548.9 LLR p-value: 0.00

Coef Std. err z P>jzj [0.025 0.975] OR

Intercept �4.466 0.212 �21.074 0.000 �4.882 �4.051 0.011
IPO cooperation 2.988 0.458 6.520 0.000 2.090 3.886 19.849
Competitors cooperation 0.051 0.114 �0.450 0.653 �0.275 0.172 0.950
University cooperation 0.536 0.216 2.488 0.013 0.114 0.959 1.709
Total percentage of funding 0.050 0.004 12.497 0.000 0.041 0.058 1.051
Government cooperation 0.909 0.274 3.313 0.001 0.371 1.447 2.482
Clients cooperation 0.373 0.093 4.017 0.000 0.191 0.555 1.452
Other firms cooperation 0.161 0.131 1.233 0.217 �0.095 0.418 1.175
Labs cooperation �0.795 0.203 �3.909 0.000 �1.194 �0.396 0.451
Headquarter cooperation 0.983 0.148 6.649 0.000 0.694 1.274 2.674
Customers cooperation 0.598 0.101 5.924 0.000 0.400 0.796 1.819
Suppliers cooperation �0.659 0.094 �7.008 0.000 �0.843 �0.475 0.517
Obj.: Increase quality 1.090 0.124 8.794 0.000 0.946 1.234 2.974
Objective: Incr. flex 0.064 0.047 1.381 0.167 �0.027 0.156 1.066
Obj.: Incr. mark. share 0.073 0.047 1.546 0.122 �0.020 0.166 1.076
Obj.: Entry new markets 0.228 0.044 5.168 0.000 0.141 0.314 1.256
Obj.: Red. env. impact 0.406 0.037 10.854 0.000 0.333 0.479 1.501

Source(s): Authors’ own work

Table 3.
Logistic regression
results for product–
service innovation
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aggressive pruning, resulting in smaller trees; (5) Binary and Multi-class Classification: J48
supports both binary classification (two outcome classes) andmulti-class classification (more
than two outcome classes) tasks.

By integrating insights from both logistic regression analysis and decision trees, a holistic
comprehension of the drivers behind product and PSI emerges. These findings hold immense
potential to guide strategic decision-making, offering invaluable insights for organizations
seeking to bolster their innovation prowess in these domains. Figures 3 and 4, coupled with
Table 4, intricately detail the outcomes derived from the decision tree analysis elucidating the
triggers for innovation activation in both product innovation (Figure 3) and PSI (Figure 4).
These visual representations significantly contribute to understanding the nuanced
pathways to innovation. These decision trees depict the path of necessary conditions
leading to an outcome, in our case, product innovation and PSI [1]. These illustrate the
combination of company characteristics that result in a high probability of success for each
type of innovation. For example, focusing on Figure 4, the first characteristic that appears is
customer cooperation. Thus, if the company does not cooperate with its customers, the
decision tree informs us that the company has low chances of success. Once it cooperateswith
customers, there are different ways to improve the probability of success in PSI, depending on
whether the company is manufacturing and transitioning to services or vice versa, entering
into goods production from services. We will delve deeper into analyzing these relationships
in the results discussion.

In essence, this section encapsulates an extensive exploration comprising one regression
analysis and 3ML technique analyses conducted on a database housing over 500 explanatory
variables pertinent to product innovation and PSI. Findings derived from attribute gain ratio,
ML logistic regression and decision tree algorithms persistently underscore the criticality of
fostering collaboration with ecosystem stakeholders alongside aligning organizational
competitive priorities and market orientation. These analyses collectively unravel a
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multifaceted framework previously inaccessible through conventional data analysis
methodologies.

4. Discussion
The discussion of these results enables us to gain a deeper understanding of the factors that
exert the greatest influence on innovation success, both within product and PSI domains. By
collectively examining the results, we can identify the most pertinent factors and determine if
they exhibit consistency across both types of innovation. Furthermore, the techniques
employed in this study allow us to explore the interactions among these factors and
investigate the configurations that lead to success in both product and PSI. This analysis
offers valuable insights into the intricate relationships and interdependencies between
various factors. Lastly, these findings can be scrutinized within the context of innovation and
manufacturing strategy theories to assess their alignment with the propositions presented by
theoretical models. Through comparing the results with existing theories of innovation and
the literature on competitive priorities, we can evaluate the extent to which our findings either
support or diverge from these theoretical frameworks.

In previous investigations concerningML techniques in innovation, the primary focus has
been on the broader field of Information and Communication Technology (ICT) business
innovation. This pertains to the systematic utilization of advancements in information and
communication technologies to generate novel or refined products, services, processes, or
business models within an organizational or industrial context (Yunis et al., 2018). For
example, building upon this foundation, Eom et al. (2022) conducted a comprehensive
analysis to ascertain the most suitable ML techniques in terms of their predictive accuracy
concerning specific innovation outcomes, such as innovation performance. In a similar vein,
Lim et al. (2020) utilized ML tools and analytical methodologies to investigate the synergistic
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relationships between product lifecycle management and business innovation. Lastly,
Nafizah et al. (2023) conducted an evaluation of the innovation benefits resulting from diverse
strategies adopted by micro-businesses when implementing AI and machine learning
techniques. The results obtained in our study align with those of previous studies in terms of
revealing the relationships between determinant factors and innovation outcomes.

Delving deeper into the most influential factors considered individually, it becomes
evident that cooperation with other members of the innovation ecosystem emerges as pivotal
in the context of the analyzed companies (Kolagar et al., 2022; Vaccaro et al., 2010). Regarding
product innovation, combining the results presented in Tables 1 and 2, it is evident that the
most relevant factors are “headquarter cooperation” and cooperation with the ecosystem
members (government, universities, labs, customers, competitors, clients and other firms). On
the other hand, when considering other types of cooperation, although “supplier cooperation”
and “IPO cooperation” can predict the degree of product innovation according to Attribute
Gain Ratio, they do not have a direct effect on the degree of product innovation in the logistic
analysis results. This seemingly contradictory result is clarified when considering the
interactions between variables, as both types of cooperation may not be individually
significant but play a part in configurations that lead the company to success in product
innovation. Regarding other variables with predictive capacity, they revolve around the
competitive priority pursued and the percentage of funding. In the case of product innovation,
if the company’s objective is reducing environmental impact (Dangelico, 2016; Sz�asz and Seer,
2018) or entering a new market (Zhou and Li, 2008), the likelihood of success in product
innovation increases. However, when the objective is to increase market share (Cooper and
Kleinschmidt, 1987), despite its explanatory power, it does not have individual capacity but
rather operates within configurations of factors that influence product innovation success
when considered collectively.

Regarding the factors that individually affect PSI, “headquarter cooperation” remains
relevant (Cenamor et al., 2017). In terms of collaboration with ecosystem companies, “IPO
cooperation,” “universities,” “government,” “client,” and “customer cooperation” are significant.
However, when considered individually, the results for “competitor,” “lab,” “supplier,” and
“other firms cooperation” are not entirely conclusive.While they are deemed relevant according
to Attribute Gain Ratio, logistic regression results indicate a lack of significance. As to the
innovation objective, similar to product innovation, if the objective is to reducing environmental
impact or entering new markets, the probability of successful PSI increases. However, when
considered individually, if the objective is to enhance flexibility (Yeniaras et al., 2021) or increase
market share, despite their relevance according to Attribute Gain Ratio, they are not significant
once the other explanatory factors are considered in logistic regression.

Considering the individual factors that affect both product innovation and PSI, we can
observe that in both cases, “headquarter cooperation” and the objectives of reducing
environmental impact or entering newmarkets are relevant and have individual explanatory
power. The remaining factors are related to cooperationwith ecosystem agents (Kolagar et al.,
2022), but their relevance varies depending on the type of innovation. There are similarities
and differences between the two analyses regarding the significance of “supplier
cooperation” and the relevance of “government,” “universities,” “customers,” and “clients
cooperation.” However, the results vary for other agents. In the case of product innovation,
“IPO collaboration” is not significant, but it is in the case of PSI. On the other hand, the results
for “competitor,” “lab,” and “other firm cooperation” are inconclusive for PSI, but they are
significant for product innovation. These findings indicate that cooperation is highly
relevant, but the company should focus on cooperating with different ecosystem agents
depending on the type of innovation sought.

The analysis using decision trees allows us to delve deeper by examining the
interactions that exist between these factors, thereby increasing the probability of
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innovation in both products and PSI. In the case of product innovation, the most direct
approach is to collaborate with suppliers and laboratories. When collaboration with labs
(De Faria et al., 2010) is not feasible, the network of relationships emphasizes that
cooperation with companies in the business ecosystem (customers, suppliers and clients) is
crucial for forming different combinations (Li, 2009). In certain instances, it is possible to
foster product innovation through collaboration with competitors, other firms, or the
company headquarters, but this can only be achieved under the assumption that specific
competitive priorities are pursued.

Furthermore, in the realm of cooperation types leading to PSI, customer cooperation
emerges as the pivotal factor (Bustinza et al., 2013; Reim et al., 2019).Without it, PSI cannot be
achieved under any circumstances. Therefore, co-innovation with customers is a prerequisite
for the successful development of this type of innovation (Sj€odin et al., 2020). Once this
cooperation has been established, it becomes increasingly important to collaborate with
external entities outside the company’s business ecosystem, such as IPOs, universities, other
firms and the headquarters. Cooperation with suppliers and clients is comparatively less
significant, particularly when compared to the case of product innovation. In this context,
collaboration with laboratories, which was pivotal for product innovation, is not relevant.
These findings demonstrate that the nature of relevant collaboration in both types of
innovation differs significantly.

When it comes to competitive priorities, it is evident that focusing on improving quality
and increasing market share is highly relevant for product innovation, with either one of the
two being crucial in almost all combinations. However, in the case of PSI, competitive
priorities play a much less decisive role. Traditional manufacturing priorities such as quality
and flexibility are not significant in any combination, and the remaining priorities only hold
importance in very specific cases. The most noteworthy priority is entering new markets
(Aquilante and Vendrell-Herrero, 2021; Lafuente et al., 2023), particularly when combined
with collaboration with IPOs (Liu et al., 2023). This suggests that when manufacturing
companies aim to innovate in product-service with the goal of entering new markets,
collaborating with IPOs becomes essential, especially if they lack the necessary resources to
capture from the market.

Concerning internal variables, they are only relevant in the case of PSI. The most
significant variable is the distinction between manufacturing firms that adopt servitization
and service firms that expand their offerings to include physical goods, that is, productization
process (Leoni, 2019). The combinations of collaboration types and competitive priorities
differ between these two innovation processes. For servitization ormanufacturing companies
seeking to introduce new services, successful PSI can be achieved through collaborations
with companies in the business ecosystem (customers, clients, suppliers, or the headquarters),
depending on the competitive priority. On the other hand, for productization or service
companies aiming to innovate in products, there are two possibilities. They can either
establish their own R&D department (Ziaee Bigdeli et al., 2017), particularly if their
competitive priority is entering new markets, or collaborate with universities or other
companies outside the ecosystem (in addition to mandatory collaboration with customers in
all cases). This finding demonstrates that not only do the combinations of collaboration and
competitive priorities differ between product innovation and PSI, but they also depend on the
path (servitization/productization) chosen by the company.

These results present a highly complex map of collaboration possibilities depending on
the type of innovation (product or product-service) and the competitive priorities and market
orientation (new market, market share, environmental performance, quality improvement,
etc.). Such interactions cannot be adequately studied using traditional research techniques in
the field of innovation and management. These findings hold great relevance on their own,
and importantly, they highlight the intricate nature of interactions between types of internal
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and external variables (Huizingh, 2011).With over 500 potential factors or explanatory inputs
of innovation success introduced, the results strongly reinforce the propositions of open
innovation theory (Dahlander and Gann, 2010; Enkel et al., 2020). Not only do different types
of cooperation have individual significance, but when analyzed collectively through decision
trees, cooperation with various stakeholders based on the type and objective of innovation
becomes crucial. It is essential to note that we did not start with preconceived research
hypotheses regarding the most relevant factors, and the research method is not bound by
requirements of normality or linearity in relationships. Therefore, the fact that most
explanatory factors are associated with open innovation further bolsters the central idea of
this theory, and our results provide substantial clarification in this regard.

Within this theoretical framework, a multitude of studies address the complexity of
collaboration and emphasize that open innovation is not a one-size-fits-all approach. Instead,
its implementation must be carefully analyzed (Xie and Wang, 2020). Our results strongly
support the idea that open innovation is contingent on two main types of factors. Firstly, the
way it is implemented differs between product innovation and PSI (Vendrell-Herrero et al.,
2023). Secondly, a commonly overlooked factor is the competitive priorities and market
orientation of the firms (Tajeddini et al., 2006). Our findings conclude that depending on the
objective, our collaborative efforts should be tailored accordingly.

5. Conclusion
The need for improved researchmethods to obtainmore robust results andmodels that better
reflect complex phenomena within organizations has been widely recognized (Chou et al.,
2022; Lindner et al., 2022; Prasad and Prasad, 2002). Our research presents an open-ended
study that provides alternative options to extend beyond current methodological techniques,
offering insights and conclusions that are challenging to obtain using traditional regression-
based research methods. This work represents a novel attempt to utilize ML techniques to
develop theory from data. The rationale for complementing open-ended studies with ML
techniques is grounded in their capacity to approximate complex functions and uncover non-
obvious patterns within data. Therefore, it represents a methodological advancement and a
way to validate theories on innovation and management by relying on induction rather than
being confined to incomplete theoretical models that may lack relevant variables that cannot
be incorporated due to the limitations of the models, or the analytical method used. We
contribute to previous studies where ML techniques have proven valuable in addressing
various aspects of supply chain management (Chuang et al., 2021; Mandl and Minner, 2023),
environmental innovation (Chang et al., 2021) and the enhancement of end-customer
experiences (Ilk and Fan, 2022; Jagabathula and Rusmevichientong, 2019).

Furthermore, our results are highly relevant to innovation theories as they strongly
support research in open innovation (Chesbrough, 2006; Vendrell-Herrero et al., 2023). The
factors proposed by this theory are crucial in determining success in both product and PSI.
Moreover, the collaboration landscape is complex and contingent upon the type of
innovation, competitive priorities andmarket orientation pursued. Therefore, it is essential to
incorporate this complexity into future studies, as mere collaboration is often insufficient to
achieve product and PSI. It is necessary to deploy specific combinations of collaborations
based on the type and ultimate competitive priority established. Similarly, the presented
results are relevant to studies on servitization and productization (Baines et al., 2017; Leoni,
2019). The conducted analyses conclude that the factors and, above all, the way they are
combined and deployed, do not fully coincide in the case of product innovation and PSI from
manufacturers or service firms. This finding reinforces the body of knowledge on PSI as a
specific type of innovation with its own characteristics that must be considered in research
and management (Opazo-Bas�aez et al., 2022).
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The implications of these results hold particular relevance for practitioners. They suggest
that managers should consider the intricate relationships between collaboration types and
competitive variables when implementing innovation initiatives. The decision regarding
whom to collaborate with and their significance for innovation success depends on both the
ultimate competitive priority and the established market orientation. Moreover, the findings
delineate essential pathways for firms to achieve product innovation and PSI in alignment
with their external and internal operational contexts. ML techniques prove instrumental in
understanding and pursuing specific objectives, such as identifying potential breakthroughs
in solar cell technology (Li et al., 2022), optimizing production processes in the chemical
industry (Arboretti et al., 2022) and implementing improvements in the urban administrative
public sector (Luo et al., 2023). Hence, ML techniques serve as valuable decision-making tools
for establishing and attaining strategic as well as operational objectives.

In terms of potential future research directions, additional logarithmic approaches may
prove advantageous for analyzing innovation outcomes. For instance, Logistic Model Trees
(LMT) integrate decision trees with logistic regression models. This method follows a two-
step procedure where decision tree nodes are established using specific splitting criteria, and
logistic regression models are subsequently applied at the terminal nodes (Landwehr et al.,
2005). The logistic regression models at the terminal nodes offer valuable insights into the
relationship between attribute values and class probabilities, making them suitable for the
analysis of both categorical and numerical attributes. Additionally, novel ML approaches for
hypothesis testing (Chou et al., 2022) involve fitting training samples with the Random Forest
method. They identify variables of interest, evaluate their predictive significance, employ
H-statistics for interaction quantification and utilize Jackknifed-based confidence intervals to
determine significance. These recent ML advancements significantly broaden the potential
application of these methodologies for testing and building theory.

Notes

1. Another methodological approach for identifying the necessary conditions to achieve an innovation
outcome is fsQCA (Xie and Wang, 2020). A key distinction between a decision tree and an fsQCA
analysis is that, in the former, achieving a specific outcome requires following the sequence of
decisions made at each internal node of the tree. Conversely, the latter identifies the set of necessary
and sufficient conditions for reaching the outcome without proposing a specific path to attain them.
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