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Abstract

Purpose – A new research domain known as the Quantified Self has recently emerged and is described as
gaining self-knowledge through usingwearable technology to acquire information on self-monitoring activities
and physical health related problems. However, very little is known about the impact of timewindowmodels on
discovering self-quantified patterns that can yield new self-knowledge insights. This paper aims to discover the
self-quantified patterns using multi-time window models.
Design/methodology/approach –This paper proposes amulti-timewindow analytical workflow developed
to support the streaming k-means clustering algorithm, based on an online/offline approach that combines both
sliding and damped time window models. An intervention experiment with 15 participants is used to gather
Fitbit data logs and implement the proposed analytical workflow.
Findings –The clustering results reveal the impact of a time windowmodel has on exploring the evolution of
micro-clusters and the labelling of macro-clusters to accurately explain regular and irregular individual
physical behaviour.
Originality/value – The preliminary results demonstrate the impact they have on finding meaningful patterns.

Keywords Wearable devices, Fitbit, Multi-time window analytical workflow, Physical activity behaviour,

Self-quantified patterns, Streaming k-means clustering

Paper type Research paper

1. Introduction
Continuously-worn wearable devices are becoming more prevalent in society for quantifying
yourself through collecting data for the monitoring of physical health related problems such
as blood pressure, sugar level and obesity, which are usually associated to chronic diseases
like cardiovascular disease and diabetes [1–3], and early detection of neurodegenerative
disorders [4]. There has also been considerable research using clustering algorithms for
analysing wearable device logs since a variety of information about the individuals’ activity
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is reported, including the calories consumed, sleep patterns, steps walked, distance moved
and stairs climbed; despite the fact that there might be a specificity issue with this
information related to low accuracy.

Previous research has shown that the k-means algorithm is the most commonly
partitioning based approach using historical wearable device logs [5–7]. However, very few
attempts can be found in the literature in clustering wearable data streams [8, 9]. Mainly
because analysing them brings along a research challenge in which the rate of the data
compiled and stored is not being optimised to each use case, which is where time window
models come into effect. When the wearable data streams are continuously brought into the
k-means algorithm, it is challenging to retrieve any insight since previous and future data
streams are needed to provide context. For example, a user may have a one minute peak in
heart rate while not having any steps taken during the one minute interval, but looking at the
previous minute timestamps may provide important context such as the user may have just
sprinted during previous minute. This detracts from the possibility that this sudden heart-
rate spike could be due to a health issue. This contextual information is what makes the time
window models an important factor to take into account in the streaming k-means clustering
algorithm when analysing wearable data streams.

Different time window models can be coupled within the streaming k-means clustering
algorithm, including sliding, landmark, damped and pyramidal [10]. Each of these models
aims to handle the evolution of the distribution of the data streams over time, and as a result,
they determine at which time frame the streams are stored and analysed, and when the
previous historical streams are discarded [11]. With regards to wearable devices, this can
become an issue since historical data streams might be as important as new incoming data
streams. It is paramount to understand what the impact these windows have on generating
self-quantified patterns over time.

This paper proposes an analytical workflow to reveal self-quantified patterns by using a
streaming k-means clustering algorithm based on finding online micro-clusters from the
wearable data streams and offlinemacro-clusters from re-clustering thesemicro-clusters. The
sliding time window model is used to understand micro-cluster evolution, which plays an
important role in distinguishing actual novel self-quantified patterns from possible existing
outliers. Meanwhile, the damped time window model draws on micro-cluster scalability,
defined here as the maximum number of current and historical data streams which
guarantees context consistency that is needed to compute micro-clusters. Consequently, self-
quantified patterns are inferred from the kmacro-clusters that are computed by re-clustering
the set of k0 micro-clusters using a particular time window model. The labelling of these
k macro-clusters is a process aimed to reveal changes in physical activity behaviour,
targeting on individuals rather than their physical and social environments.

The scientific contributions of this paper can be described as follows:

(1) A new multi-window analytical workflow for streaming k-means clustering since
previous research work has neglected the role of time window models in cluster
evolution and cluster scalability.

(2) The multi-window analytical workflow achieves the optimal storage capacity in the
online component, so the wearable data streams never overwhelm the streaming
k-means clustering algorithm, as well as immediately storing the processed micro-
clusters for further re-clustering. This is achieved despite the complexity of
integrating two different time window models.

(3) This proposed new workflow has not been described previously, and is a ground-
breaking research in applying the damped time window model for clustering
wearable data streams.
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(4) Unique empirical results are provided that advance understanding of the impact of a
time window modelling for finding self-quantified patterns from wearable stream
data.

2. Related work
Although seemingly a modern invention, wearable technology has been around since the
early 1960’s when Claude Shannon and Edward Thorp invented what is known as the first
wearable computer in order to beat a casino game of roulette [12]. One of the main use cases
comes from the health sector. Devices such as Fitbit make use of sensors through a wearable
watch to track the health and fitness activities of the user. Invented in 2007, Fitbit has become
the current market share leader for wearables across the world [13]. Currently, Fitbit has
seven different models in the market, all varying in price, health features, exercise features,
smart features and design style. All the current models feature an accelerometer to measure
acceleration and determine orientation used to compute step count, where five types
(i.e. Versa 2, Versa, Ionic, Charge 3 and Inspire HR) utilise a heart rate sensor to measure a
user’s heart beats per minute [14].

Recent research has tested different Fitbit models to determine whether they are effective
at monitoring physical activity, and whether they can potentially be used by healthcare
professionals to guide decision making and treatment plans. Feehan et al. [15] evaluated 67
studies and experiments carried out by other researchers in the field to evaluate the data
reliability of Fitbit devices. They found consistent evidence indicating that these devices
would meet an acceptable accuracy for step count only half the time, with a tendency to
underestimate steps in a controlled setting, while overestimating in a real-world setting. They
further describe the accuracy rates for different activities such as jogging, sleeping and slow
walking in comparison to research grade accelerometers. When measuring a user’s sleep
activity, such as sleep time and time in bed; the Fitbit devices provided similar measurements
in comparison to the research grade accelerometers such as an Actigraph. They recommend
using discretion when considering using Fitbit devices as an outcome measurement tool in
research and making health care decisions, bearing in mind this is less so in adults with no
mobility issues.

Due to the data reliability, the use of Fitbit devices has been limited to physical activity
monitoring to produce acceptable accurate results. Koolean et al. [16] proposed a method to
relate physical activity to physical capacity. This was done by using a quadrant method to
place individuals into different categories based on one variable (i.e. step count) to represent
physical activity, and one variable (i.e. 6 minute walk distance (MWD)) to represent physical
capacity. If an individual had a high step count but lowMWD, then hewould be categorised in
“Can’t do, do do”which represents that he does not have capacity to do what he is doing, and
vice versa for the other categories. The notion that physical activity can be represented by
step count is currently accepted in the Quantified Self domain, however, it is still an issue of
debate coming back to how reliable the wearable devices are, and also how just one variable
can accurately represent a user’s capacity level.

From an analytical perspective, Carnein et al. [11] provide an extensive survey on stream
clustering algorithms, outlining how each algorithm performs during a streaming process by
delineating their advantages and limitations. The overall strategy is based on a two-phase
clustering approach, having an online phase which uses a time window model to capture the
data streams and then computing micro-clusters (i.e. preliminary clusters within each time
window). The second phase is carried out offline as the micro-clusters are re-clustered to
generate the macro-clusters after the entire stream data is processed. The use cases revolve
largely around clustering sensor based data streams due to the need of supporting real-time
communication between the sensors themselves and the resultant output. More in-depth
investigation is needed for supportingmulti-window analytical workflows, identifyingwhich
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stream clustering algorithm should be used, and which time window actually reveals
interesting self-quantified patterns from a vast amount of wearable data streams.

The streaming k-means clustering was chosen for finding self-quantified patterns due to
its ease of use and overall popularity amongst clustering algorithms. Originally published in
1955, k-means has stood the test of time due to its simplicity and overall insightful results
associated with many use cases [17]. Research revolving around the usage of k-means can be
found ranging from the 1960’s to today in 2020 [18]. The idea behind k-means can also be
traced back to 1957 from polish mathematician Hugo Steinhaus [19]. With the nature of
wearable stream data, an unsupervised learning method is needed to further gain new
insights, and using k-means meets this requirement as well as provides easy comparisons to
the numerous amounts of use cases that have as well applied k-means in the past.

From a temporal perspective, time windows have been used to extract small, quasi-static
subsets from the data streams [20]. The main time window models proposed in the literature
are damped, sliding, landmark and pyramidal [11]. The sliding time window model has been
previously proposed to improve clustering results from wearable data streams. Park et al. [8]
provide empirical results showing the main limitations of considering a wearable device log
as one whole snapshot rather than considering accumulated wearable data streams using a
time window. They were able to find insightful consecutive insomnia-activity clusters of
individuals with similar sleep-related dysfunctions by coupling sliding time windows of an
8-day period of daily intervals with a neural-net based unsupervised method, using various
information modalities from smart bands.

Interestingly, Keogh and Lin [21] demonstrate that clustering time series sub-sequences is
meaningless while using a sliding window. They state that since the output is independent of
the input that a time window is meaningless. Their research can be considered as the first
disclosure of the importance of investigating the use of multiple types of timewindowmodels
to ensure that clustering results gathered have meaning.

To the best of our knowledge, no previous research work has been focussed on exploring
wearable stream data by coupling different time window models with streaming k-means
clustering.

3. Multi-window analytical workflow
This section describes our proposed analytical workflow that is developed to clusterwearable
stream data using the sliding and damped timewindowmodels. The workflow consists of six
phases as shown in Figure 1, which are described as follows:

(1) Data collection phase: The process of gathering wearable device logs from individual
users.

(2) Data pre-processing phase: Encompasses the cleaning, transforming, and encoding
tasks.

Figure 1.
Main phases of the
multi-window
analytical workflow
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(3) Data stream simulation phase: The process of generating streams from a user’s
wearable data log.

(4) Online micro-clustering phase: The tasks that are necessary to compute the micro-
clusters using the sliding and damped time window models.

(5) Offline macro-clustering phase: Generates the macro-clusters by re-clustering the
micro-clusters found in each time window model.

(6) Quantified Self phase: The process of visualising the clustering results to outline the
self-quantified patterns of a user.

3.1 Data collection phase
This phase consists of retrieving Fitbit device logs, which are usually storedwithin the device
and can only allow for retrieval once connected to a computer or synced to a third party cloud
platform. Initial pre-sets are needed to account for individual tracking, such as personal
information such as age, weight, height and sex. Other sensors connected to the Fitbit devices
also generate data such as heart rate, steps, temperature and location, which contribute to a
different range of physical outputs.

Fitbit device logs are usually fetched as an offline data package. Third party platforms
such as Fitabase can allow wearable device logs to be retrieved in its raw format in
comparison to usual summarised data from device manufacturers. In conjunction with this, if
continuously synced to the platform the offline data can bemonitored in real-time, acting as a
data stream on itself. Once the offline logs are fetched, the data pre-processing phase is
initiated as described in the next section.

However, retrieving raw data streams directly from the devices online software brings
many technical issues since the information is currently generated to be as simplified as
possible for the end user. The implementations of new capabilities need to be developed by
the manufactures to allow access to rawwearable data streams that are essential for the next
generation of multi-window analytical workflows.

3.2 Data pre-processing phase
Data pre-processing is an important phase in the proposed analytical workflow. The ultimate
goal of this phase is to clean, encode and transform the Fitbit data logs (i.e. raw data) into a
revised format that is easily readable by a machine in such a way that data points can be
easily processed by the streaming k-means clustering algorithm. Guaranteeing data quality
and providing accurate data points is key to the success of the subsequent analytical phases
in the proposed workflow. However, due to usage deviation, limitations of Fitbit devices or
flaws in the data collection phase, it is not realistic to expect that the raw data will always be
ready to be analysed. Therefore, fivemain data pre-processing tasks are designed to deal with
the common issues including missing data points, duplicated data points, missing variables,
redundant variables and variables selection. Once the data pre-processing phase is
completed, a target data set is ready to be used by the data stream simulation phase.

3.3 Data stream simulation phase
Data streams are a countable infinite sequence of data points that can be formalised as
follows [22]:

T ¼ ½t1; t2; . . . ; tn� (1)

Where each data point contains many sets of variables as follows:

Multi-time
window
models



½t1 ¼ ðP1; S1; Q1; X1; U1Þ�; ½t2 ¼ ðP2; S2; Q2; X2; U2Þ�; . . . ; ½tn ¼ ðPn; Sn; Qn; Xn; UnÞ�
Where

(1) Pn: is a set of categorical variables related to personal information (e.g. age, weight,
height and sex);

(2) Sn: is a set of numerical variables related to sensor measurements (e.g. temperature,
vibration and location);

(3) Qn: is a set of ordinal variables related to ratio scales (e.g. sleep quality and activity
intensity);

(4) Xn: is a set of numerical variables related to physical measurements (e.g. step count
and heart rate);

(5) Un: the identifier of a wearable device.

This research replicated the stream process using the target data set created in the previous
phase, since the current manufacturers do not support this capability. To achieve this, an
assortment of frameworks is available to simulate or connect to a data stream, including
MOA (massive online analysis) [23], MLFlow [24] and StreamR [20]. The StreamR framework
to simulate the data streams, compute the clusters and visualise the results. This framework
is further explained in Section 4.

3.4 Online micro-clustering phase
For this phase, the simulated data streams of each Fitbit device arrive as a continuous
sequence of data points that are accumulated using a time windowmodel. Each time window
has the same time frame (e.g. 2-h). The streaming k-means clustering algorithm requires
incrementally updating the computation of the micro-clusters, which are represented by their
respective k0 centroids.

Amicro-cluster represents a set of similar data points, created using a single pass over the
data currently available within a time window. The algorithm selects k0 random data points
as seeds until clustering converges in such a way that for each time window, any new data
point ti is always assigned to one unique micro-clustermcj by minimising the sum of square
distances [25]. Therefore, a centroid is the centre (i.e. the mean point) of a micro-cluster
belonging to a specific time window.

There are two approaches for selecting the partitions for computing the micro-clusters.
The first approach is based on applying the elbowmethod for computing the optimal number
of k0 partitions for each time window. In this case, the number of centroids will vary from one
time window to another. A second approach consists of applying a fixed number of k0
partitions for all time windows. In other words, it is assumed that the optimal number of
micro-clusters should be the same across the time windows. The choice between these two
approaches will depend on the selected variables for performing the clustering.

This phase is themost important in the proposed analytical workflow, as the different time
windows used have a direct impact on the computation of micro-clusters, and play an
important role in finding the macro-clusters in the next phase.

3.4.1 Sliding time window model. The sliding time window model only considers the most
recent data point for computing the micro-clusters, since the older data point is removed once
a new data point is available. A start window is initiated having a-priori defined time frame
(e.g. 2-h) and containing the accumulated data points that were streamed during this time
frame. As soon as the new data point arrives, the algorithm incrementally updates the micro-
clusters. The nextwindowutilises all the new data points and clusters as the data points enter
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and exit the stream, storing the micro-cluster and its representative centroid after each
completion.

It is important to point out that using a sliding time windowmodel, the minimisation of the
sum of square distances will often terminate at a local optimum, as expected when using
k-means clustering.Therefore, the analyticalworkflow aims to gather insights on the evolution
of micro-clusters rather than a full explanation as to why the data points were grouped under
them. The main focus is on exploring the evolution of micro-clusters to distinguish new
clusters from outliers, indicating the actual cluster evolution from the wearable data streams.

3.4.2 Damped time window model. The damped time window model continuously adds
new data points into the feature space with each iteration lessening the weight of each point,
the less weight it has the less it contributes to generating a micro-cluster. This is done to give
the highest weight to themost recently captured instances. The streaming k-means algorithm
computes the k0micro-clusters after a set of data points are damped due to the decay function.
As defined in Ref. [26], the weight of each data point within a damped time window decreases
exponentially with time t using the decay function

f ðtÞ ¼ 2−λt (2)

Where, λ should be always greater than 0.
The smaller the value of λ, the most important the historical data points are in comparison

to the current data points. This makes the damped time window model effective to indicate
the cluster scalability, In this research, the cluster scalability is defined as the maximum
number of data points which guarantees context consistency in the data streams that are
needed to compute micro-clusters. This time window model supports the ability of a micro-
cluster to grow while conforming within the a-priori k0 partitioning.

The outcomes from this phase are two sets of k0 micro-clusters, one for each type of time
windowmodel being used for the computation. They will be re-clustered as macro-clusters in
the next phase.

3.5 Offline macro-clustering phase
After the streaming has ended and all the centroids of themicro-clusters have been computed
using both timewindowmodel; macro-clusters are generated by re-clustering these centroids.
The k-means algorithm is again used to compute the final k macro-clusters. The k centroids
will be generated from re-clustering the k0 centroids of micro-clusters found using the sliding
and damped timewindow, respectively. The benefit of using the proposed offline clustering is
to gain further insight from the entirety of the k0 centroids after it has finished streaming
while not adding stress to the stream flow itself due to the half the process being performed on
a solid state [27].

3.6 Quantified-self phase
The Quantified-Self phase begins with plotting each time window k0 micro-clusters and
comparing themwith the final k0macro-clusters. Moreover, external variables obtained in the
data collection phase are also used to label the final macro-clusters. Each time window will
consist of differentmicro-clusters, whichwill directly impact themeaning behind theirmacro-
clusters.

The macro-clusters ultimately represent self-quantifying patterns that can be interpreted
as regular and irregular physical activity behaviour. They may facilitate our understanding
of the reasons leading to individual changes in lifestyles and health care settings. Therefore,
the outcomes of the proposed multi-window analytical workflow provide empirical evidence
that captures the range of self-quantifying patterns on behaviour; these outcomes also offer
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an analytical perspective that may help identifying a range of variables involved in
monitoring behavioural changes in physical activities.

4. Implementation
4.1 Data collection phase
The wearable device logs used in this research were collected from an intervention
experiment performed at Flinders University, Australia, where 15 participants continuously
wore a Fitbit Charge 2 device for approximately a 2-month period. The raw Fitbit data
consisted of approximately 87,600 data points per participant with a data rate of one data
point per minute containing 31 variables as shown in Table A1.

Typically, extracting the data directly from the Fitbit device is possible but limited due to
the majority of the data being summarised, rather than providing a minute by minute
description of the collected data.

To address this issue, Fitabase, a third party research cloud platform designed to collect
data from Fitbit devices with more diverse options, was used. The major benefit being the
raw data can be extracted in a range of formats. Using the third party cloud platform allows
the data to be retrieved on a per participant basis or in a batch with all participants on one
spreadsheet. To keep the participants separate, the raw data was retrieved on a per
participant basis, and transformed to multiple. CSV files in order to be used in the next phase.

4.2 Data processing phase
During this phase, a variety of pre-processing tasks were performed to determine the quality
of collected data points. A number of issues were detected that allowed for insight on data
quality. One instance was a participant who did not wear the device to bed, showing a defined
gap in the data. Another instance was a failure to sync to the platform, which lead to missing
minute-to-minute values although the daily step count and heart rate were still collected. This
also resulted in a complete loss of sleep data during these intervals. Due to lack of
connectivity, devices not worn and sensor problems, missing data points occurred during
participant data streams.

Another example being a participant having mismatched variables that should be the
same such as sleeping and quality of sleep, it may show in one category that a participant was
asleep, but awake in the other. Finally there were instances of times when it was proven a
participant was not moving (via video recording or a time use diary) where step counts were
recorded.

Temperature was being captured from a sensor located at the office of each participant.
Considering that the participants were not always in their offices, this variable provided an
unrealistic context on the participants’ behaviour. Adding outdoor weather information may
have provided additional context to explaining some self-quantified patterns. However, there
was little to no rain during the duration of the 2-month experiment.

Finally, the variable selection task was performed to prepare a target data set ready to be
used by the two phase clustering algorithm. For this research, three numerical variables are
summarised in Table A2.

4.3 R stream framework
The R Stream framework was used to simulate the data streams, generate the time windows
and run the online and offline clustering. Therefore, the data stream simulation phase, the
online micro-clustering and offline macro-clustering phases were implemented using the
stream R framework, seamlessly integrating the extensive existing R packages, including
stream MOA [28], cluster [29], clusterGeneration [30], and fpc [31].
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The overall architecture is shown in Figure 2. Initially, the data stream data was used due
to its ease of use and ability to simulate a live stream from any CSV file. Table A3 illustrates
the CSV format of our target input data set used for generating the stream simulation.

The Stream R framework was also developed to focus in the domain of data stream
clustering (DSC) which fits well to our need. The DSC was used to compute the online micro-
clusters, with the option of either a sliding window or a damped window, and then passing it
on to the offline phase which consisted of generating the macro-clusters.

In conjunction with implementing the time window models using the Stream R
framework, we have also explored different time frames that could generate the most
meaningful self-quantified patterns whilst not being computationally expensive were also
explored. The initial selected time frame had 1-h time intervals (60 data points), and was
expected to be an acceptable time frame due to the ability to visually recognise clusters.

However after adding more time for the time frame, it was discovered that a 2-h interval
was more appropriate. Figure 3 demonstrates that the micro-clusters are more diversified
with the addition of an extra hour of data. Furthermore, there was more distinction between
areas of no steps being taken, low amount of steps taken (<15 steps) and medium to high
amount of steps (>15 steps). The 2-h time frame was selected for implementing both time
window data models since it provided a richer context for generating the micro-clusters that
have optimised and further investigated to infer the self-quantified patterns for each
participant.

For the sliding time window model, the online clustering initialises with 120 data points
within the initial window where gradually over time new data points are introduced and old
data points are disposed. Micro-clusters were generated in each of these windows using the
DSC function generation, and stored once the slidingwindow passed over the 120th data point
relative to the starting data point.

For the damped time window model, micro-clusters were continuously generated after a
set of input data points were damped due to the decay function of λ5 0.033. This model like
the sliding time window model was also implemented using the DSC function generation.

With a fixed k0 5 4 for each time window (i.e. sliding and damped), once the data stream
was finished and the micro-clusters stored, the online clustering was finished. The DSC

Figure 2.
Overview of the stream

R architecture

Figure 3.
Macro-cluster

centroids (blue crosses)
and micro-cluster

centroids (red circles)
results using the

sliding time window
model: (a) with 1-h time
frame and (b) with 2-h

time frame
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function generation was again used for the computation of the macro-clusters in the offline
macro-clustering phase. The current version of theDSC does not support the streaming elbow
method yet, therefore, the optimal k value was computed separately usingR, and later used as
the input parameter for the DSC function.

5. Discussion of the results
5.1 The evolution of micro-cluster patterns
It was determined that the most relevant variables in our analytical workflow to be steps and
heart beat/minute (HR) due to these variables being themost accurate numerical values in the
collected data streams. Heart rate variability (HRV) was also used as in an input for the
streaming k-means algorithm. The initial k0 5 4 micro-clusters results from clustering data
points can be seen in Figure 4, using the first four sliding time windows of stream data, and
the steps and HR variables for comparison.

The evolution of the micro-clusters can be observed between these sliding time windows,
in particular the linear and constant micro-cluster patterns when steps 5 0 across a
distributed range of HR values during a period of 4-h. It is also possible to distinguish new
random turning shape patterns that have occurred when steps >0, within more specific
ranges of HR values (e.g. from HR > 90 to HR > 100). These types of patterns have emerged
throughout the time windows of several participants’ data streams. For example, in the first
and last sliding time windows, the new random turning shape patterns indicate movement
patterns of a participant after a period of 4-h staying still, rather than being outliers. These
results provide empirical evidence that the variables should be targeted for influencing
behaviour changewhen devising interventions, and that the evolving patterns of actual novel
micro-clusters represent a different context.

5.2 Macro-cluster results and the self-quantified patterns
A selection of four prominent participants out of 15 participants are used here to illustrate the
macro-clusters results and their respective self-quantified patterns that were found using
both sliding and damped time window models. Table A4 provides an overview of their
personal information.

The macro-clusters results of participant 12 can be seen in Figure 5(a), where the red
circles represent the centroids of the micro-clusters, and the blue crosses being the centroids
of the macro-clusters, which were found using the sliding time window model. The centroids
of the macro-clusters represent the self-quantified patterns, which reveal a balanced
relationship between strong regular physical activity behaviour that consists of no
movement (i.e. steps5 0) with moderate regular physical activity behaviour due to mobility
(i.e. steps between 10 and 40). Finally, it is also possible to visually identify the outliers by
looking at the off-set centroids of the micro-clusters that have emerged from the data points.

The moderate regular physical activity behaviour of participant 12 is more prominent in
the macro-clusters results using the damped time window model (Figure 5(b)). It is also
interesting to point out that this participant has shown very few outliers: only one outlier
micro-cluster in both time window models.

Table 1 provides statistics of the macro-clusters using some explanatory variables.
Cluster 3 for example, makes up 79%of leisure time with an average step count of 11.44 steps
per minute. This cluster represents time periods when the participant is active. Any new
values entering this cluster will fall into the same class. We can also see that the data points
belonging to this cluster fall largely on days 3 and 4 of the week (i.e. Tuesday and
Wednesday) leading further insight into the participant’s lifestyle, such as the participant
become more active during these days.
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Macro-clusters 3 and 1 are more generic in nature but still have unique labelling classes. For
example, macro-cluster 3 represents the largest portion of work time compared to the other
macro-clusters and macro-cluster 1 contains a mixture of values pertaining to the normal.
Comparing these macro-clusters to macro-cluster 4, it is noted that this macro-cluster mainly
represents 54% and 15% times that the participant is inactive with an average step count of
5.9 per minute, while maintaining a low average heart rate. The data points belonging to this
macro-cluster fall largely on days 1 and 7 (i.e. Saturday and Sunday), which shows that the
participant may be less active or sleeping more than on other days.

In comparison to the sliding window clusters, the damped window clusters offer a similar
but different perspective on the participants’ activity level as summarised in Table 1. We can
see that the main difference lies in there now being twomacro-clusters (1 and 3) that captured
high physical activity instances, whereas sliding time windows stored these into just one
macro-cluster. Although the count of data points per macro-clusters 1 and 3 are lower, they

Figure 5.
Macro-cluster (blue
crosses) and micro-
clusters (red circles)
results for participant
12 using the sliding
time window model
and damped time
window model
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Explanatory variables
for the macro-clusters
found for participant
12 using the sliding
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damped time

window model
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offer a diverse range of activity with high step counts and heart rate. Macro-cluster 4 offers a
higher sleep classification rate, and again, day 7 is recorded as a day with a low amount of
leisure time, populated mostly by sleeping time.

The damped window model was particularly effective in revealing macro-clusters that
could be associated to different physical activity intensity levels. One example was
participant 12who exhibited the whole spectrum of physical activity intensity levels, ranging
from very low (macro-cluster 1) and low (macro-cluster 2) intensity levels; up to high (macro-
cluster 3) and very high (macro-cluster 4) intensity levels. Figure 6(a) illustrates the evolution
of these intensity levels during the whole duration of the experiment. It is important to point
out that the highest intensity peaks have randomly occurred at any intensity level, showing a
volitional regulatory behaviour on different days of the week.

A different evolution was observed for the intensity activity patterns of participant 18
who exhibit fewpeaks of very low intensity activities inmacro-cluster 1, as opposed to awave

Figure 6.
The evolution of
intensity activity
patterns of participant
12 and 18 using the
damped time
window model
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pattern formacro-clusters 2, 3 and 4 that reveal intensity peaks that occurred after awave has
passed (Figure 6(b)).

We can see from Table 2 that participant 19 produced similar clustering results from both
the sliding window and the damped window. Each window model produces one main
physically active cluster, where the makeup is approximately 68% leisure, 14% sleep and
19%working time. This encompasses a large portion of high step countminutes and a higher
than average heart rate. Similarly, another cluster results in most of the sleeping time with
approximately 46% sleeping time, 44% leisure time and 10% working time. This cluster
captures moments of lower step count, lower heart rate and during sleep. In certain instances,
like in the case of participant 19 the time windows model will produce similar results due to
low diversity in the movement and heart rate of the participant, which can be seen in
Figure A1(a) and (b) (participant 19 damped and sliding plot from R).

There is also evidence that the participant had less data captured on days 3 and 4 of the
week during the 2-month interval due to every cluster having day 3 and 4 as its least captured
day. This could be due to user routine (example: taking off the Fitbit during weekly practices)
or random errors (device/human). This case provides a good example of how low diversity
data sets provide minimal changes to the results of the time window models.

5.3 The impact of time window models on discovering self-quantified patterns
Moreover, the time window models play an important role on discovering self-quantified
patterns labelled as regular physical mobility behaviour because the actual steps trends
during the weeks have been different from each other during the experiment. After analysing
all the results of participant 20, it was clear that the macro-clusters have exhibited regular
physical mobility behaviour using the sliding time window as shown in Figure 7. In this case,
regular physical mobility was associated to the macro-cluster 1 on Monday (DOW 5 2);
Tuesday (DOW 5 3) and Saturday (DOW 5 7).

In contrast, the same findingswere not foundwhen analysing themacro-clusters using the
damped timewindowmodel (Figure 7). In this case, themacro-clusters results reveal irregular
physical activity throughout the various days of the week and macro-clusters. This exposes
how challenging is to differentiate regular from irregular physical activity behaviour in self-
quantified patterns due to the impact of a time window model being used to compute the
macro-clusters.

Finally, the clustering results were visualised using density heatmaps in order to compare
the global self-quantified patterns amongst the participants. Figure A2 provide an overview
of the variation of the number data points belonging to different macro-clusters of each
participants when taking into account the relationship between the HR and steps variables.

6. Conclusions and future research
A multi-window analytical workflow was proposed for improving the streaming k-means
clustering algorithm by integrating complementary time window models such as the sliding
and damped time windowmodels. Our preliminary results demonstrate the impact they have
on finding meaningful patterns. Time window models have not been researched exclusively,
as they have been considered as a minor step in current research on stream clustering
algorithms and therefore, they have not been explicitly understood in the required depth,
until now.

Future researchwill explore other timewindowmodels (e.g. landmark and pyramidal time
windowmodels) coupledwith the streaming k-means clustering algorithm in order to develop
further our multi-window analytical workflow. For example, our landmark time window
model will then be changed from time interval collection to “event” based collection, where
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Explanatory variables
for the macro-clusters
found for participant
19 using the sliding
time window model
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Figure 7.
The weekly evolution
of the macro-clusters
according to the steps
taken by participant 20
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data streams will be collected until a set “event” occurs. Initially we will start by setting the
event as a drastic change in HR, this is dependent on the participant so will be adapted
accordingly.

There is no time window that should be considered the most optimal for determining
whether k-means is an accurate algorithm to use for both the online and offline phases. It is
anticipated that there is to be a point where if the time frame of any type of time window
model is too large, noisewill always overcome the results and clusterswill not be recognisable
as self-quantified patterns. After this point is found, we will be able to accurately explain any
regular and irregular physical behaviour. It will also be possible that different time window
models will use different time frames within the same analytical workflow.
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