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Abstract

Purpose –The purpose of this paper is to propose a semiparametric estimator for the tail index of Pareto-type
random truncated data that improves the existing ones in terms of mean square error. Moreover, we establish
its consistency and asymptotic normality.
Design/methodology/approach – To construct a root mean squared error (RMSE)-reduced estimator of the
tail index, the authors used the semiparametric estimator of the underlying distribution function given byWang
(1989). This allows us to define the corresponding tail process and provide a weak approximation to this one. By
means of a functional representation of the given estimator of the tail index and by using this weak
approximation, the authors establish the asymptotic normality of the aforementioned RMSE-reduced estimator.
Findings – In basis on a semiparametric estimator of the underlying distribution function, the authors
proposed a new estimation method to the tail index of Pareto-type distributions for randomly right-truncated
data. Compared with the existing ones, this estimator behaves well both in terms of bias and RMSE. A useful
weak approximation of the corresponding tail empirical process allowed us to establish both the consistency
and asymptotic normality of the proposed estimator.
Originality/value – A new tail semiparametric (empirical) process for truncated data is introduced, a new
estimator for the tail index of Pareto-type truncated data is introduced and asymptotic normality of the
proposed estimator is established.

Keywords Extreme value index, Product-limit estimator, Semiparametric, Tail-empirical process,

Truncated data

Paper type Research paper

1. Introduction
Let Xi;Yið Þ, i5 1, . . .,N≥ 1 be a sample from a couple X;Yð Þof independent positive random
variables (rv’s) defined over a probability space Ω;A;Pð Þ, with continuous distribution
functions (df’s) F and G, respectively. Suppose that X is right-truncated by Y, in the sense
that Xi is only observed when Xi ≤ Yi. Thus, let us denote Xi;Yið Þ, i 5 1, . . ., n to be the
observed data, as copies of a couple of dependent rv’s X ;Yð Þ corresponding to the truncated
sample Xi;Yið Þ, i5 1, . . .,N, where n5 nN is a random sequence of discrete rv’s. By the weak
law of large numbers, we have
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n=N →
P
pdP X≤Yð Þ ¼

Z
∞

0

F wð ÞdG wð Þ; asN →∞; (1.1)

where the notation →
P
stands for the convergence in probability. The constant p corresponds

to the probability of observed sample which is supposed to be non-null, otherwise nothing is
observed. The truncation phenomena frequently occurs in medical studies, when one wants
to study the length of survival after the start of the disease: if Y denotes the elapsed time
between the onset of the disease and death, and if the follow-up period startsX units of time
after the onset of the disease then, clearly,X is right-truncated byY. For concrete examples of
truncated data in medical treatments one refers, among others, to Refs. [1, 2]. Truncated data
schemes may also occur in many other fields, namely actuarial sciences, astronomy,
demography and epidemiology, see for instance the textbook of [3].

From [4] the marginal df’s F* and G* corresponding to the joint df of X ;Yð Þ are given by

F* xð Þdp−1
Z x

0

G wð ÞdF wð Þ andG* xð Þdp−1
Z x

0

F wð ÞdG wð Þ:

By the previous first equation, we derive a representation of the underlying df F as follows:

F xð Þ ¼ p

Z x

0

dF* wð Þ
G wð Þ ; (1.2)

which will be for a great interest thereafter. In the sequel, we are dealing with the concept of
regular variation. A function w is said to be regularly varying at infinity with negative index
� 1/η, notation w∈RV −1=ð ηÞ, if

w stð Þ�w tð Þ→ s−1=η; as t→∞; (1.3)

for s > 0. This relation is known as the first-order condition of regular variation and the
corresponding uniform convergence is formulated in terms of “Potter’s inequalities” as
follows: for any small e > 0, there exists t0 > 0 such that for any t ≥ t0 and s ≥ 1, we have

1� eð Þs−1=η−e < w stð Þ�w tð Þ < 1þ eð Þs−1=ηþe: (1.4)

See for instance Proposition B.1.9 (assertion 5, page 367) in Ref. [5]. The second-order
condition (see Ref. [6] expresses the rate of the convergence 1:3ð Þ above. For any x > 0, we
have

w txð Þ�w tð Þ � x−1=η

A tð Þ → x−1=η
xτ=η � 1

τη
; as t→∞; (1.5)

where τ < 0 denotes the second-order parameter and A is a function tending to zero and not
changing signs near infinity with regularly varying absolute value with positive index τ/η. A
function w that satisfies assumption 1:5ð Þ is denoted w∈RV2 −1=ð η; τ;AÞ. We now have
enough material to tackle the main goal of the paper. To begin, let us assume that the tails of
both df’s F and G are regularly varying. That is

F∈RV −1=γ1ð Þ andG∈RV −1=γ2ð Þ; with γ1; γ2 > 0: (1.6)

Under this assumption, [4] showed that

F
*
∈RV −1=γ1ð Þ andG*

∈RV −1=γð Þ; (1.7)
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where

γd
γ1γ2

γ1 þ γ2
: (1.8)

For further details on the proof of this statement one refers to Ref. [7] (Lemma A1). The
estimation of the tail index γ1 was recently addressed for the first time in Ref. [4] where the
authors used equation 1:8ð Þ to propose an estimator to γ1 as a ratio of Hill estimators [8] of the
tail indices γ and γ2. These estimators are based on the top order statistics Xn�k:n≤ . . .≤Xn:n

and Yn�k:n ≤ . . . ≤ Yn:n pertaining to the samples X 1; . . . ;Xnð Þ and Y 1; . . . ;Ynð Þ
respectively. The sample fraction k5 kn being a sequence of integers such that, kn→∞ and
kn/n→ 0 as n→∞. The asymptotic normality of the given estimator is established in Ref. [9].
By using a Lynden-Bell integral, [10] proposed the following estimator for the tail index γ1:

bγ Wð Þ
1 uð Þd 1

F
1ð Þ
n uð Þ

Xn
i¼1

1 Xi > uð ÞF
1ð Þ
n X ið Þ
Cn Xið Þ log

Xi

u
;

for a given deterministic threshold u > 0, where

F 1ð Þ
n xð Þd

Y
Xi>x

1� 1

nCn Xið Þ
� �

;

is the popular nonparametric maximum likelihood estimator of cdf F introduced in the well-
known work [11]; with

Cn xð Þd1

n

Xn
i¼1

1 Xi ≤ x≤Y ið Þ:

Independently, [7] used aWoodroofe integral with a random threshold, to derive the following
estimator

bγ BMNð Þ
1 d

1

F
2ð Þ
n Xn−k:nð Þ

Xk
i¼1

F 2ð Þ
n Xn−iþ1:nð Þ
Cn Xn−iþ1:nð Þ log

Xn−iþ1:n

Xn−k:n

; (1.9)

where

F 2ð Þ
n xð Þd

Y
Xi>x

exp −
1

nCn Xið Þ
� �

;

is the so-called Woodroofe’s nonparametric estimator [12] of df F. To improve the

performance ofbγ BMNð Þ
1 , [13, 14], respectively, proposed a Kernel-smoothed and a reduced-bias

versions of this estimator and established their consistency and asymptotic normality. It is

worth mentioning that Lynden-Bell integral estimator bγ Wð Þ
1 uð Þ with a random threshold

u 5 Xn�k:n becomes

bγ Wð Þ
1 d

1

F
1ð Þ
n Xn−k:nð Þ

Xk
i¼1

F 1ð Þ
n Xn−iþ1:nð Þ
Cn Xn−iþ1:nð Þ log

Xn−iþ1:n

Xn−k:n

: (1.10)

In a simulation study, [15] compared this estimator with bγ BMNð Þ
1 . They pointed out that both

estimators have similar behaviors in terms of biases and mean squared errors.

Recall that the nonparametric Lynden-Bell estimator F 1ð Þ
n was constructed on the basis of

the fact thatF andG are both unknown. In this paper, we are dealing with the situation when
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F is unknown butG is parametrized by a knownmodelGθ, θ∈Θ⊂Rd, d≥ 1 having a density
gθ with respect to Lebesgue measure. [2] considered this assumption and introduced a
semiparametric estimator for df F defined by

Fn x;bθn� �
dPn

bθn� � 1
n

Xn
i¼1

1 Xi ≤ xð Þ
Gbθn X ið Þ ; (1.11)

where 1=Pn
bθn� �

dn−1
Pn

i¼11=Gbθn X ið Þ and

bθndarg max
θ∈Θ

Yn
i¼1

gθ Y ið Þ=Gθ Xið Þ; (1.12)

denoting the conditional maximum likelihood estimator (CMLE) of θ, which is consistent and

asymptotically normal, see for instance Ref. [16]. On the other hand, [2] showed thatFn x;bθn� �
is an uniformly consistent estimator over the x-axis and established, under suitable regularity
assumptions, its asymptotic normality. [2, 17] pointed out that the semiparametric estimate
has greater efficiency uniformly over the x-axis. In the light of a simulation study, the authors
suggest that the semiparametric estimate is a better choice when parametric information of
the truncation distribution is available. Since the apparition of this estimation method
many papers are devoted to the statistical inference with truncation data, see for instance
Refs. [18–22] and [23].

Motivated by the features of the semiparametric estimation, we next propose a new

estimator for γ1 by means of a suitable functional of Fn x;bθn� �
. We start our construction by

noting that from Theorem 1.2.2 in de [5]; the first-order condition 1:6ð Þ (for F) implies that

lim
t→∞

1

F tð Þ

Z
∞

t

log x=tð ÞdF xð Þ ¼ γ1: (1.13)

In other words, γ1 may viewed as a functional ψ t Fð Þ, for a large t, where
ψ t Fð Þd 1

F tð Þ

Z
∞

t

log x=tð ÞdF xð Þ:

Replacing F by Fn $;bθn� �
and letting t 5 Xn�k:n yieldbγ1 ¼ ψXn�k:n

Fn $;bθn� �� �
¼ 1

Fn Xn−k:n;bθn� �Z ∞

Xn−k:n

log x=Xn−k:nð ÞdFn x;bθn� �
;

(1.14)

as new estimator for γ1. Observe thatZ
∞

t

log x=tð ÞdFn x;bθn� �
¼ Pn

bθ� �Z ∞

Xn−k:n

log x=Xn−k:nð Þ1 x≥Xn−kð ÞdFn x;bθn� �
;

which may be rewritten into
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Pn
bθn� �

1

n

Xn
i¼1

Z
∞

Xn−k:n

log x=Xn−k:nð Þ1 x≥Xn−kð Þ
Gbθn X ið Þ d1 Xi ≤ xð Þ

¼ Pn
bθn� � 1

n

Xk
i¼1

log Xn−iþ1=Xn−k:nð Þ
Gbθn Xn−iþ1:nð Þ :

On the other hand, F Xn−k:n;bθn� �
equals

Pn
bθn� � 1

n

Xn
i¼1

1 Xi:n ≤Xn−k:nð Þ
Gbθn X i:nð Þ ¼ Pn

bθn� � 1
n

Xn−k
i¼1

1=Gbθn X i:nð Þ:

Hence,

F Xn−k:n;bθn� �
¼

1

n

Xn
i¼1

1=Gbθn X i:nð Þ � 1

n

Xn−k
i¼1

1=Gbθn X i:nð Þ

1n
Pn
i¼1

1=Gbθn X i:nð Þ

¼ Pn
bθn� � 1

n

Xk
i¼1

1=Gbθn Xn−iþ1:nð Þ:

Thereby, the form of our new estimator is

bγ1 ¼
Pk
i¼1

Gbθn Xn�iþ1:nð Þ
� �−1

log Xn−iþ1=Xn−k:nð Þ
Pk
i¼1

Gbθn Xn�iþ1:nð Þ
� �−1 : (1.15)

The asymptotic behavior of bγ1 will be established by means of the following tail empirical
process

Dn x;bθn; γ1� �
d

ffiffiffi
k

p Fn xXn−k:n;bθn� �
Fn Xn−k:n;bθn� � � x−1=γ1

0@ 1A; for x > 1:

This method was already used to establish the asymptotic behavior of Hill’s estimator for
complete data [5]; page 162) that we will adapt to the truncation case. Indeed, by using an
integration by parts and a change of variables of the integral 1:14ð Þ, one gets

bγ1 ¼ Z ∞

1

x−1
Fn xXn−k:n;bθn� �
Fn Xn−k:n;bθn� � dx;

and therefore ffiffiffi
k

p bγ1 � γ1ð Þ ¼
Z

∞

1

x−1Dn x;bθn; γ1� �
dx: (1.16)
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Thus, for a suitable weightedweak approximation toDn $;bθn; γ1� �
, wemay easily deduce the

consistency and asymptotic normality of bγ1. This process may also contribute to the
goodness-of-fit test to fitting heavy-tailed distributions via, among others, the Kolmogorov–
Smirnov and Cram�er–von Mises type statistics

sup
x>1

Dn x;bθn;bγ1� �


 


 and Z ∞

1

D2
n x;bθn;bγ1� �

dx−1=bγ1 :
More precisely, these statistics are used when testing the null hypothesisH0: “bothF andG are
heavy-tailed” versus the alternative oneH1: “at least one ofF andG is not heavy-tailed”, that is
H0: “ 1:6ð Þholds” versusH1: “ 1:6ð Þdoes not hold”. This problem has been already addressed by
Refs. [24, 25] in the case of complete data. The (uniform) weighted weak convergence of

Dn x;bθn; γ1� �
and the asymptotic normality of bγ1, stated below, will be of great interest to

establish the limit distributions of the aforementioned test statistics. This is out of the scope of
this paper whose remainder is structured as follows. In Section 2, we present our main results
which consist in the consistency and asymptotic normality of estimatorbγ1. The performance of
the proposed estimator is checked by simulation in Section 3. An application to a real dataset
composed of induction times of AIDS diseases is given in Section 4. The proofs are gathered in
Section 5. A useful lemma and its proof are postponed to Appendix.

2. Main results
The regularity assumptions, denoted A0½ �, concerning the existence, consistency and

asymptotic normality of the CLME estimator bθn, given in 1:12ð Þ, are discussed in Ref. [16].
Here, we only state additional conditions on dfGθ corresponding to Pareto-typemodelswhich
are required to establish the asymptotic behavior of our newly estimator bγ1.

(1) A1½ �For each fixed y, the function θ→Gθ yð Þ is continuously differentiable of partial
derivatives G

jð Þ
θ ¼: vGθ=vθj, j 5 1, . . ., d.

(2) A2½ � G jð Þ
θ ∈RV −1=γ2ð Þ.

(3) A3½ � y−eG jð Þ
θ yð Þ=Gθ yð Þ→ 0, as y → ∞, for any e > 0.

For common Pareto-type models, one may easily check that there exist some constants aj≥ 0,

cj and dj, such that G
jð Þ

θ yð Þ∼ cj y
−1=γ2 þ dj

� �
log y, for all large x. Then one may consider that

the assumptions A1½ �− A3½ � are not very restrictive and they may be acceptable in the
extreme value theory.

Theorem 2.1. Assume that F∈RV2 −1=γ1; ρ1;Að Þ and Gθ ∈RV −1=γ2ð Þ satisfying the
assumptions A0½ �− A3½ �, and suppose that γ1 < γ2. Then on the probability space Ω;A;Pð Þ, there
exists a standard Wiener process W sð Þ; 0≤ s≤ 1f g such that, for any small 0 < e < 1/2, we have

sup
x>1

xe Dn x;bθn; γ1� �
� Γ x;Wð Þ � x−1=γ1

xρ1=γ1 � 1

ρ1γ1

ffiffiffi
k

p
A akð Þ





 



→P 0;

provided that
ffiffiffi
k

p
A akð Þ ¼ O 1ð Þ, where

Γ x;Wð Þd γ

γ1
x−1=γ1 x1=γW x−1=γ

� ��W 1ð Þ
 �
þ γ

γ1 þ γ2
x−1=γ1

Z 1

0

s−γ=γ2−1 x1=γW x−1=γs
� ��W sð Þ
 �

ds;
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is a centered Gaussian process and akdF*← 1− k=nð Þ, where
F*← sð Þdinf x : F* xð Þ≥ sf g; 0 < s < 1;

denotes the quantile (or the generalized inverse) function pertaining to df F*.

Applying this weak approximation, we establish both consistency and asymptotic normality
of our new estimator bγ1, that we state in the following Theorem.

Theorem 2.2. Under the assumptions of Theorem 2.1, we have

bγ1 � γ1

¼ k
−1=2

Z
∞

1

x−1Γ x;Wð ÞdxþA akð Þ
Z

∞

1

x−1=γ1−1
xρ1=γ1 � 1

ρ1γ1
dxþ oP k

−1=2
� �

;

this implies that bγ1 →P γ1. Whenever
ffiffiffi
k

p
A akð Þ→ λ < ∞, we getffiffiffi

k
p bγ1 � γ1ð Þ→D N λ

1� ρ1
; σ2

� �
;

where σ2dγ2 1þ γ1=γ2ð Þ 1þ γ1=γ2ð Þ2
� �

1− γ1=γ2ð Þ3, and 1 Að Þ stands for the indicator

function pertaining to a set A.

3. Simulation study
In this section, we will perform a simulation study in order to compare the finite sample
behavior of our new semiparametric estimator bγ1, given in 1:15ð Þ, with Woodrofee and

Lynden-Bell integral estimators bγ BMNð Þ
1 andbγ Wð Þ

1 , given respectively in 1:9ð Þ and 1:10ð Þ. The
truncation and truncated distributions functionsF andGwill be chosen among the following
two models:

(1) Burr γ; δð Þ distribution with right-tail function:

H xð Þ ¼ 1þ x1=δ
� �−δ=γ

; x≥ 0; δ > 0; γ > 0;

(2) Fr�echet γð Þ distribution with right-tail function:

H xð Þ ¼ 1� exp −x−1=γ
� �

; x > 0; γ > 0:

The simulation study is being made in fours scenarios following to the choice of the
underlying df’s F and Gθ:

(3) S1½ � Burr γ1; δð Þ truncated by Burr γ2; δð Þ; with θ ¼ γ2; δð Þ
(4) S2½ � Fr�echet γ1ð Þ truncated by Fr�echet γ2ð Þ; with θ 5 γ2

(5) S3½ � Fr�echet γ1ð Þ truncated by Burr γ2; δð Þ; with θ ¼ γ2; δð Þ
(6) S4½ � Burr γ1; δð Þ truncated by Fr�echet γ2ð Þ; with θ 5 γ2

To this end, we fix δ5 1/4 and choose the values 0.6 and 0.8 for γ1 and 55% and 90% for the
portions of observed truncated data given in 1:1ð Þ so that the assumption γ1 < γ2 stated in
Theorem 2.1 holds. In other words, the values of p have to be greater than 50%. For each
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couple γ1; pð Þ, we solve the equation 1:1ð Þ to get the pertaining γ2-value, which we summarize
as follows:

p; γ1; γ2ð Þ ¼ 55%; 0:6; 1:4ð Þ; 90%; 0:6; 5:4ð Þ; 55%; 0:8; 1:9ð Þ; 90%; 0:8; 7:2ð Þ: (3.17)

For each scenario, we simulate 1000 random samples of size N 5 300 and compute the root
mean squared error (RMSE) and the absolute bias (ABIAS) corresponding to each estimatorbγ1, bγ BMNð Þ

1 and bγ Wð Þ
1 . The comparison is done by plotting the ABIAS and RMSE as functions

of the sample fraction kwhich varies from 2 to 120. This range is chosen so that it contains the
optimal number of upper extremes k* used in the computation of the tail index estimate.
There are many heuristic methods to select k*, see for instance Ref. [26]; here we use the
algorithm proposed by Ref. [27] in page 137, which is incorporated in the R software
“Xtremes” package. Note that the computation the CMLE of θ is made bymeans of the syntax
”maxLik” of the MaxLik R software package. The optimal sample fraction k* is defined, in
this procedure, by

k*darg min
1<k<n

1

k

Xk
i¼1

i
ω bγ ið Þ �median bγ 1ð Þ; . . . ;bγ kð Þf gj j;

for suitable constant 0≤ω≤ 1/2, wherebγ ið Þ corresponds to an estimator of tail index γ, based
on the i upper order statistics, of a Pareto-type model. We observed, in our simulation study,
thatω5 0.3 allows better results both in terms of bias and RMSE. It is worthmentioning that
makingN vary did not provide notable findings; therefore, we kept the sizeN fixed. The finite
sample behaviors of the above-mentioned estimators are illustrated in Figures 1–8. The
overall conclusion is that the biases of three estimators are almost equal, however, in the case
of medium truncation p≈ 50%ð Þ, the RMSE of our new semiparametric bγ1 is clearly the

smallest compared that of bγ BMNð Þ
1 and bγ Wð Þ

1 . Actually, the medium truncation situation is the
most frequently encountered in real data, while the strong truncation p � 50%ð Þ remains, up
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Figure 1.
Absolute bias (left two
panels) and RMSE
(right two panels) of bγ1
(black) andbγ BMNð Þ

1 (red)

and bγ Wð Þ
1 (blue),

corresponding to two
situations of scenario
S1 : γ1 ¼ 0:6;ð
p ¼ 55%Þ (top two
panels) and γ1 ¼ 0:6;ð
p ¼ 90%Þ (bottom two
panels) based on 1000
samples of size 300
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to our knowledge, theoretical. In this sense, we may consider that the semiparametric
estimator is more efficient than the two other ones. We point out that the two estimatorsbγ BMNð Þ
1 andbγ Wð Þ

1 have almost the same behavior which actually was noticed before by Ref. [15].
The optimal sample fractions and estimate values of the tail index obtained through the three
estimators are given in Tables 1–4.
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Figure 2.
Absolute bias (left two

panels) and RMSE
(right two panels) of bγ1
(black) andbγ BMNð Þ

1 (red)

and bγ Wð Þ
1 (blue),

corresponding to two
situations of scenario

S1 : γ1 ¼ 0:8;ð
p ¼ 55%Þ (top two

panels) and γ1 ¼ 0:8;ð
p ¼ 90%Þ (bottom two
panels) based on 1000

samples of size 300

Figure 3.
Absolute bias (left two

panels) and RMSE
(right two panels) of bγ1
(black) andbγ BMNð Þ

1 (red)

and bγ Wð Þ
1 (blue),

corresponding to two
situations of scenario

S2 : γ1 ¼ 0:6;ð
p ¼ 55%Þ (top two

panels) and γ1 ¼ 0:6;ð
p ¼ 90%Þ (bottom two
panels) based on 1000

samples of size 300
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4. Real data example
In this section, we give an application to the AIDS data set, available in the “DTDA” R
package and the textbook of [28] (page 19) and already used by Ref. [1]. The data present the
infection and induction times for n 5 258 adults who were infected with HIV virus and
developedAIDS by June 30, 1986. The variable of interest here is the time of inductionT of the
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Figure 4.
Absolute bias (left two
panels) and RMSE
(right two panels) of bγ1
(black) andbγ BMNð Þ

1 (red)

and bγ Wð Þ
1 (blue),

corresponding to two
situations of scenario
S2 : γ1 ¼ 0:8;ð
p ¼ 55%Þ (top two
panels) and γ1 ¼ 0:8;ð
p ¼ 90%Þ (bottom two
panels) based on 1000
samples of size 300

Figure 5.
Absolute bias (left two
panels) and RMSE
(right two panels) of bγ1
(black) andbγ MBNð Þ

1 (red)

and bγ Wð Þ
1 (blue),

corresponding to two
situations of scenario
S3 : γ1 ¼ 0:6;ð
p ¼ 55%Þ (top two
panels) and γ1 ¼ 0:6;ð
p ¼ 90%Þ (bottom two
panels) based on 1000
samples of size 300
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disease duration which elapses between the date of infection M and the date M þ T of the
declaration of the disease. The sample (T1, M1), . . ., (Tn, Mn) are taken between two fixed
dates: “0” and “8”, i.e. betweenApril 1, 1978, and June 30, 1986. The initial date “0” denotes an
infection occurring in the three months: from April 1, 1978, to June 30, 1978. Let us assume
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Figure 7.
Absolute bias (left two

panels) and RMSE
(right two panels) of bγ1
(black) andbγ BMNð Þ

1 (red)

and bγ Wð Þ
1 (blue),

corresponding to two
situations of scenario

S4 : γ1 ¼ 0:6;ð
p ¼ 55%Þ (top two

panels) and γ1 ¼ 0:6;ð
p ¼ 90%Þ (bottom two
panels) based on 1000

samples of size 300

Figure 6.
Absolute bias (left two

panels) and RMSE
(right two panels) of bγ1
(black) andbγ BMNð Þ

1 (red)

and bγ Wð Þ
1 (blue),

corresponding to two
situations of scenario

S3 : γ1 ¼ 0:8;ð
p ¼ 55%Þ (top two

panels) and γ1 ¼ 0:8;ð
p ¼ 90%Þ (bottom two
panels) based on 1000

samples of size 300
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thatM and T are the observed rv’s, corresponding to the underlying rv’sM andT, given by
the truncation scheme 0 ≤ M þ T ≤ 8, which in turn may be rewritten into

0≤M ≤ S; (4.18)
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k* bγ1 k* bγ BMNð Þ
1 k* bγ Wð Þ

1

S1 59 0.799 57 0.800 54 0.799
S2 21 0.803 21 0.803 20 0.799
S3 24 0.802 22 0.798 22 0.801
S4 51 0.799 52 0.800 50 0.801

k* bγ1 k* bγ BMNð Þ
1 k* bγ Wð Þ

1

S1 82 0.610 82 0.611 82 0.611
S2 37 0.640 37 0.640 37 0.640
S3 46 0.633 37 0.625 37 0.625
S4 52 0.610 52 0.610 52 0.610

k* bγ1 k* bγ BMNð Þ
1 k* bγ Wð Þ

1

S1 44 0.600 41 0.599 40 0.600
S2 18 0.601 17 0.600 16 0.597
S3 21 0.601 20 0.601 19 0.599
S4 30 0.603 27 0.600 25 0.598

Figure 8.
Absolute bias (left two
panels) and RMSE
(right two panels) of bγ1
(black) andbγ BMNð Þ

1 (red)

and bγ Wð Þ
1 (blue),

corresponding to two
situations of scenario
S4 : γ1 ¼ 0:8;ð
p ¼ 55%Þ (top two
panels) and γ1 ¼ 0:8;ð
p ¼ 90%Þ (bottom two
panels) based on 1000
samples of size 300

Table 3.
Optimal sample
fractions and estimate
values of the tail index
γ15 0.8 based on 1,000
samples of size 300 for
the four scenarios
with p 5 0.55

Table 2.
Optimal sample
fractions and estimate
values of the tail index
γ15 0.6 based on 1,000
samples of size 300 for
the four scenarios
with p 5 0.9

Table 1.
Optimal sample
fractions and estimate
values of the tail index
γ15 0.6 based on 1,000
samples of size 300 for
the four scenarios
with p 5 0.55
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where Sd8 � T. To work within the framework of the present paper, let us make the
following transformations:

Xd
1

S þ e
andYd

1

M þ e
; (4.19)

where e 5 0.05 so that the two denominators be non-null. Thus, in view of 4:18ð Þ, we have
X ≤ Y, which means that X is randomly right-truncated by Y. Thereby, for the given sample
(T1,M1), . . ., (Tn,Mn), from T;Mð Þ, the previous transformations produce a new one (X1,Y1),
. . ., (Xn, Yn) from X ;Yð Þ.

Let us now denote by F andG the df’s of the underling rv’sX andY corresponding to the
truncated rv’s X and Y, respectively. By using parametric likelihood methods, [29] fits both
df’s ofM and S by the two-parameter Weibull model, this implies that the df’s of F andG by
may be fitted by two-parameter Fr�echet model, namelyH a:rð Þ xð Þ ¼ exp −arx−rð Þ, x> 0, a> 0,
r > 0, hence both F and G are heavy-tailed. The estimated parameters corresponding to the
fitting of dfG are a05 0.004 and r05 2.1, see also [1] page 520. Thus, onemay consider that df
G is known and equals Gθ ¼ H a0;r0ð Þ, where θ ¼ a0; r0ð Þ. By using the Thomas and Reiss
algorithm, given above, we compute the optimal sample fraction k* corresponds to the tail
index estimator bγ1 of df F is γ1. We find

k* ¼ 19; Xn−k:n ¼ 0:356 andbγ1 ¼ 0:917: (4.20)

The well-known Weissman estimator [30] of the high quantile, qvdF−1 1− vnð Þ,
corresponding to the underling df F is given by

bqvdXn−k:n

v

Fn Xn�k:nð Þ

 !−bγ1
;

where v ¼ 1= 2nð Þ andFn is the semiparametric estimator of dfF ofX given in 1:11ð Þ. From the
values 4:20ð Þ, we get bqv ¼ 0:061. Let us now compute the high quantile of T based on the
original data, T1, . . ., Tn. Recall that P X≥ qvð Þ ¼ v and X ¼ 1= 8−Tþ eð Þ, this implies that
P T≥ 1=qv − 8þ eð Þ ¼ v, this means that 1/qv � 8 þ e is the high quantile of T, which

corresponds to the end-time tend that we want to estimate. Thereby btend ¼ 1=bqv − 8þ 10−2 ¼
1=0:061− 8þ 10−2 ¼ 8:40, the value the end time of induction of AIDS is: 8 years, 4 months and
24 days.

5. Proofs
5.1 Proof of Theorem 2.1
Let us first notice that the semiparametric estimator of df F given in 1:12ð Þmay be rewritten
into

Fn x;bθn� �
¼ Pn

bθn� �Z x

0

dF*
n wð Þ

Gbθn wð Þ; (5.21)

k* bγ1 k* bγ BMNð Þ
1 k* bγ Wð Þ

1

S1 90 0.804 90 0.806 90 0.807
S2 34 0.845 34 0.846 34 0.846
S3 40 0.831 40 0.831 40 0.831
S4 71 0.814 71 0.814 71 0.815

Table 4.
Optimal sample

fractions and estimate
values of the tail index
γ15 0.8 based on 1,000
samples of size 300 for

the four scenarios
with p 5 0.9
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and 1=Pn
bθ� � ¼ R∞

0
dF*n wð Þ=Gbθn wð Þ, where F*n wð Þdn−1

Pn

i¼11 Xi ≤wð Þ denotes the usual
empirical df pertaining to the observed sample X1, . . ., Xn. It is worth mentioning that by

using the strong law of large numbers Pn
bθn� �

→P θð Þ (almost surely) as n → ∞, where

P θð Þ ¼ 1=
R
∞

0
dF* wð Þ=Gθ wð Þ (see e.g. Lemma 3.2 in Ref. [2]. On the other hand from equation

1:2ð Þ, we deduce that p ¼ 1=
R
∞

0
dF* wð Þ=G wð Þ, it follows that p≡P θð Þ because we already

assumed that G ≡ Gθ. Next we use the distribution tail

F xð Þ ¼ P θð Þ
Z

∞

x

dF* wð Þ
Gθ wð Þ ; (5.22)

and its empirical counterpart

Fn x;bθn� �
¼ Pn

bθn� �Z ∞

x

dF*
n wð Þ

Gbθn wð Þ:

We begin by decomposing k−1=2Dn x;bθn� �
, for x > 1, into the sum of

Mn1 xð Þdx−1=γ1
Fn xXn−k:n;bθn� �

� Fn xXn−k:n; θð Þ
F xXn−k:nð Þ ;

Mn2 xð Þdx−1=γ1
Fn xXn−k:n; θð Þ � F xXn−k:nð Þ

F xXn−k:nð Þ ;

Mn3 xð Þd� F xXn−k:nð Þ
Fn Xn−k:n; θð Þ

Fn Xn−k:n; θð Þ � F Xn−k:nð Þ
F Xn−k:nð Þ ;

Mn4 xð Þd F xXn−k:nð Þ
Fn Xn−k:n; θð Þ � x−1=γ1

 !
Fn xXn−k:n; θð Þ � F xXn−k:nð Þ

F xXn−k:nð Þ

and

Mn5 xð ÞdF xXn−k:nð Þ
F Xn−k:nð Þ � x−1=γ1 :

Our goal is to provide a weighted weak approximation to the tail empirical process

Dn x;bθn; γ1� �
. Let ξidF * Xið Þ, i 5 1, . . ., n be a sequence of independent and identically

distributed rv’s. Recall that both df’s F and Gθ are assumed to be continuous, this implies
that F* is continuous as well, therefore P ξi ≤ uð Þ ¼ u, this means that ξið Þi¼1;n are

uniformly distributed on 0; 1ð Þ. Let us now define the corresponding uniform tail empirical
process

αn sð Þd
ffiffiffi
k

p
Un sð Þ � sð Þ; for 0≤ s≤ 1; (5.23)

where

Un sð Þdk−1
Xn
i¼1

1 ξi < ks=nð Þ; (5.24)

denotes the tail empirical df pertaining to the sample ξið Þi¼1;n. In view of Proposition 3.1 of [31],

there exists a Wiener process W such that for every 0 ≤ e < 1/2,
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sup
0≤s<1

s−e αn sð Þ �W sð Þj j→P 0; as n→∞: (5.25)

Let us fix a sufficiently small 0 < e< 1/2.Wewill successively show that, under the first-order
conditions of regular variation 1:6ð Þ, we have, uniformly on x ≥ 1, for all large n:ffiffiffi

k
p

Mn2 xð Þ ¼ γ

γ1
x1=γ2W t−1=γ

� �þ γ

γ1

Z
∞

x1=γ2

W t−γ2=γ
� �

dt þ oP x
1
2

1
γ2
−

1
γ1

� �
þe

 !
(5.26)

and ffiffiffi
k

p
Mn3 xð Þ ¼ −x−1=γ1

γ

γ1
W 1ð Þ þ γ

γ1

Z
∞

1

W t−γ2=γ
� �

dt

� �
þ oP x−1=γ1þe

� �
; (5.27)

while ffiffiffi
k

p
Mn1 xð Þ ¼ oP x−1=γ1þe

� �
;
ffiffiffi
k

p
Mn4 xð Þ ¼ oP x

1
2

1
γ2
−

1
γ1

� �
þe

 !
; (5.28)

and ffiffiffi
k

p
Mn5 xð Þ ¼ x−1=γ1

xρ1=γ1 � 1

ρ1γ1

ffiffiffi
k

p
A akð Þ þ oP x−1=γ1

� �
: (5.29)

Throughout the proof, without loss of generality, we assume that ae ≡ e, for any constant
a > 0. We point out that all the rest terms of the previous approximations are negligible
in probability, uniformly on x > 1. Let us begin by the term Mn1 xð Þwhich may be made
into

x−1=γ1

F xXn−k:nð ÞPn
bθn� � Z

∞

x

dF*
n Xn−k:nwð Þ

Gbθ Xn−k:nwð Þ �
Z

∞

x

dF*
n Xn−k:nwð Þ

Gθ Xn−k:nwð Þ

 !

¼ x−1=γ1

F xXn−k:nð ÞPn
bθn� �Z ∞

x

1

Gbθ Xn−k:nwð Þ �
1

Gθ Xn−k:nwð Þ

 !
dF*

n Xn−k:nwð Þ:

Applying the mean value theorem (for several variables) to function θ→ 1=Gθ $ð Þ, yields
1

Gbθ zð Þ �
1

Gθ zð Þ ¼
Xd
i¼1

bθi;n � θi
� �G ið Þ

~θ zð Þ
G

2
~θ zð Þ

; for any z > 1;

where ~θn is such that ~θi;n is between θi and bθi;n, for i 5 1, . . ., d, therefore

Mn1 xð Þ ¼ x−1=γ1

F xXn−k:nð ÞPn
bθn� �Xd

i¼1

bθi � θi
� �Z ∞

x

G
ið Þ
~θ Xn−k:nwð Þ

G
2
~θ Xn−k:nwð Þ

dF*
n Xn−k:nwð Þ:

Recall that by assumptions 1:6ð Þ and A2½ � both Gθ and G
ið Þ
θ are regularly varying with the

same index −1=γ2ð Þ and, on the other hand, Xn−k:n →
P
∞ and w > 1 imply that Xn−k:nw→

P
∞.

Applying Pooter’s inequalities 1:4ð Þ, we get
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G~θ Xn−k:nwð Þ
G~θ Xn−k:nð Þ ¼ 1þ oP 1ð Þð Þw−1=γ2þe ¼ G

ið Þ
~θ Xn−k:nwð Þ
G

ið Þ
~θ Xn−k:nð Þ

;

it follows that

Mn1 xð Þ ¼ 1þ oP 1ð Þð ÞPn
bθn� � x−1=γ1

G~θ Xn−k:nð ÞF xXn−k:nð Þ

3
Xd
i¼1

G
ið Þ
~θ Xn−k:nð Þ

G~θ Xn−k:nð Þ
bθi;n � θi



 


 Z ∞

x

w1=γ2−edF*
n Xn−k:nwð Þ:

Under some regularity assumptions, [16] stated that
ffiffiffi
n

p bθn − θ
� �

is asymptotically a

centered multivariate normal rv, which implies that bθi;n − θi ¼ OP n−1=2
� �

and thus bθn →P θ.

On the other hand, by the law of large numbers Pn θð Þ→P P θð Þ as n→∞, then wemay readily

show that Pn
bθn� �

→
P
P θð Þ as n→∞ as well. Note that since bθn is a consistent estimator of θ

then ~θn is too. Then by using the fact that Xn−k:n →
P
∞ and both conditions A1½ � and A3½ �, we

show readily that

Xn�k:nð Þ−e G
ið Þ
~θn

Xn−k:nð Þ
G~θn Xn−k:nð Þ →

P
0; as n→∞;

and Gθ Xn−k:nð Þ=G~θn Xn−k:nð Þ→P 1. In view of Lemma A1 in Ref. [7], we infer that Xn−k:n ¼
1þ oP 1ð Þð Þ k=nð Þ−γ, thus

Mn1 xð Þ ¼ k=nð Þ−eγoP n−1=2
� �

~Mn1 xð Þ;

where

~Mn1 xð Þd x−1=γ1P θð Þ
Gθ Xn−k:nð ÞF xXn−k:nð Þ

Z
∞

x

w1=γ2−edF*
n Xn−k:nwð Þ:

Making use of representation 5:22ð Þ, we write

~Mn1 xð Þ ¼ x−1=γ1
Z

∞

x

Gθ Xn�k:nð Þ
Gθ Xn�k:nwð Þ d

F* Xn�k:nwð Þ
F

*
Xn�k:nð Þ

 !−1

3

Z
∞

x

w1=γ2−ed
F*

n Xn−k:nwð Þ
F

*
Xn−k:nð Þ

 !
:

(5.30)

Once again by using the routine manipulations of Potter’s inequalities, we show that the first
integral in 5:30ð Þ is equal to

1þ oP 1ð Þð Þ
Z

∞

x

w1=γ2þe=2d
F* Xn−k:nwð Þ
F

*
Xn−k:nð Þ :
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An integration by parts to the previous integral yields

x1=γ2þe=2 F
*
Xn−k:nxð Þ

F
*
Xn−k:nð Þ þ 1=γ2 þ e=2ð Þ

Z
∞

x

w1=γ2þe=2−1F
*
Xn−k:nwð Þ

F
*
Xn−k:nð Þ dw:

Recall that from 1:7ð Þ,we have F*
∈RV −1=γð Þ, then

F
*
Xn−k:nwð Þ

F
*
Xn−k:nð Þ ¼ 1þ oP 1ð Þð Þw−1=γþe=2;

uniformly on w > 1. Therefore, the previous quantity reduces into

1þ oP 1ð Þð Þ 1þ 1=γ2 þ e=2

−1=γ1 þ e

� �
x−1=γ1þe:

Thereby the first expression between two brackets in (5.30) equals OP x1=γ1−e
� �

. Let us
consider the second factor in (5.30). By similar arguments as used for the first factor, we show
that

x1=γ2þe=2 F
*

n Xn−k:nxð Þ
F

*
Xn−k:nð Þ þ 1=γ2 þ e=2ð Þ

Z
∞

x

w1=γ2þe=2F
*

n Xn−k:nwð Þ
F

*
Xn−k:nð Þ dw;

multiplied by 1þ oP 1ð Þð Þ, uniformly on x > 1. From Lemma 7.1, we have

F
*

n Xn−k:nwð Þ
F

*
Xn−k:nð Þ ¼ OP w−1=γþe=2

� �
;

which implies that the previous expression equals OP x−1=γ1þe
� �

, thus ~Mn1 xð Þ ¼ OP x−1=γþe
� �

and therefore ffiffiffi
k

p
Mn1 xð Þ ¼ k=nð Þ1=2−eγOP x−1=γ1þe

� �
:

By assumption k/n → 0, it follows that
ffiffiffi
k

p
Mn1 xð Þ ¼ oP x−1=γ1þe

� �
which meets the result of

(5.30). Let now consider the second term Mn2 xð Þwhich may be rewritten into

�x−1=γ1
k=n

F
*
Xn−k:nð Þ

F Xn−k:nð Þ
F xXn−k:nð Þ

Gθ Xn−k:nð Þ=F*
Xn−k:nð Þ

F Xn−k:nð Þ

3

Z
∞

x

Gθ Xn−k:nð Þ
Gθ Xn−k:nwð Þ d

F
*

n Xn−k:nwð Þ � F
*
Xn−k:nwð Þ

k=n
:

In view of Potter’s inequalities, it is clear that

F Xn−k:nð Þ
F

*
Xn−k:nð Þ=Gθ Xn−k:nð Þ →

P γ1
γ
P θð Þ

and

F Xn−k:nð Þ
F xXn−k:nð Þ →

P
x1=γ1 :
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Smirnov’s lemma (see, e.g. Lemma 2.2.3 in Ref. [5] with the fact that F
*
Xn−k:nð Þ¼d ξkþ1:n imply

that n
k
ξkþ1:n →

P
1, hence n

k
F
*
Xn−k:nð Þ ¼ 1þ oP 1ð Þ. Therefore,

Mn2 xð Þ ¼ − 1þ oP 1ð Þð Þ γ
γ1

Z
∞

x

Gθ Xn−k:nð Þ
Gθ Xn−k:nwð Þ d

F
*

n Xn−k:nwð Þ � F
*
Xn−k:nwð Þ

k=n
:

On the other hand, using an integration by parts yields

Mn2 xð Þ ¼ 1þ oP 1ð Þð Þ γ1
γ

M
1ð Þ
n2 xð Þ þM

2ð Þ
n2 xð Þ

� �
;

where

M
1ð Þ
n2 xð Þd

Z
∞

x

F
*

n Xn−k:nwð Þ � F
*
Xn−k:nwð Þ

k=n
d

Gθ Xn−k:nð Þ
Gθ Xn−k:nwð Þ

and

M
2ð Þ
n2 xð Þd Gθ Xn−k:nð Þ

Gθ Xn−k:nxð Þ
F

*

n Xn−k:nxð Þ � F
*
xXn−k:nð Þ

k=n
:

By using the change of variables t ¼ Gθ Xn−k:nð Þ=Gθ Xn−k:nwð Þ, it is easy to verify that

M
1ð Þ
n2 xð Þ ¼

Z
∞

Gθ Xn−k:nð Þ
Gθ Xn−k:nxð Þ

n

k
F

*

n G
←

θ 1�Gθ Xn−k:nð Þt−1� �� �� F
*
G

←

θ 1�Gθ Xn−k:nð Þt−1� �� �n o
dt:

Observe that

M
1ð Þ
n2 xð Þ ¼

Z
∞

Gθ Xn−k:nð Þ
Gθ Xn−k:nxð Þ

Un ϑn t; θð Þð Þ � ϑn t; θð Þð Þdt;

where ϑn t; θð Þdn
k
F

*
G

←

θ 1−Gθ Xn−k:nð Þt−1� �� �
andUn are the tail empirical df given in (5.24).

Thereby, ffiffiffi
k

p
M

1ð Þ
n2 xð Þ ¼

Z
∞

Gθ Xn−k:nð Þ
Gθ Xn−k:nxð Þ

αn ϑn t; θð Þð Þdt;

with αn being the tail empirical process defined in (5.23). Let us decompose the previous
integral into Z

∞

Gθ Xn−k:nð Þ
Gθ Xn−k:nxð Þ

αn ϑn t; θð Þð Þ �W ϑn t; θð Þð Þð Þdt þ
Z

∞

Gθ Xn−k:nð Þ
Gθ Xn−k:nxð Þ

W ϑn t; θð Þð Þdt

¼ Sn þ Rn:

By applying weak approximation (5.25), we get

Sn ¼ oP 1ð Þ
Z

∞

Gθ Xn−k:nð Þ
Gθ Xn−k:nxð Þ

ϑn t; θð Þð Þ1=2−edt:
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Observe that F
*
G←

θ 1−Gθ Xn−k:nð Þ� �� � ¼ F
*
Xn−k:nð Þ, thereby

ϑn t; θð Þ ¼ n

k
F

*
Xn−k:nð ÞF

*
G←

θ 1�Gθ Xn−k:nð Þt−1� �� �
F

*
G←

θ 1�Gθ Xn−k:nð Þ� �� � :

It is easy to check that F
*
G←

θ 1− $ð Þ� �
∈RV γ2=γð Þ, then once again by means of Pooter’s

inequality, we show that ϑn t; θð Þ ¼ 1þ oP 1ð Þð Þt−γ2=γþe, therefore

Sn ¼ oP 1ð Þ
Z

∞

Gθ Xn−k:nð Þ
Gθ Xn−k:nxð Þ

t−γ2=γþe
� �1=2−e

dt:

By using an elementary integration, we get

Sn ¼ oP 1ð Þ Gθ Xn�k:nð Þ
Gθ Xn�k:nxð Þ

 ! −γ2=γþeð Þ 1=2−eð Þþ1

¼ oP x
1
γ2
−

1
2γþe

� �
:

By replacing γ by its by its expression given in (1.8), we end up with

Sn ¼ oP x
1
2

1
γ2
−

1
γ1

� �
þe

 !
:

The term Rn may be decomposed intoZ x1=γ2

Gθ Xn−k:nð Þ
Gθ Xn−k:nxð Þ

W ϑn t; θð Þð Þdt þ
Z

∞

x1=γ2

W ϑn t; θð Þð Þdt ¼ Rn1 þ Rn2:

It is clear that

Rn1j j < sup

t>
Gθ Xn�k:nð Þ
Gθ Xn�k:nxð Þ

W ϑn t; θð Þð Þj j
ϑn t; θð Þð Þe

8>><>>:
9>>=>>;
Z x1=γ2

Gθ Xn−k:nð Þ
Gθ Xn−k:nxð Þ

ϑn t; θð Þð Þedt:

It is ready to check, by using the change of variables ϑn t; θð Þ ¼ s, that the previous first factor
between the curly brackets equals

sup
0<s<n

k
F
*
Xn�k:nx;θð Þ

W sð Þj j
se

< sup
0<s<n

k
F
*
Xn�k:n ;θð Þ

W sð Þj j
se

:

From Lemma 3.2 in Ref. [31] sup0<s≤1s
−δ W sð Þj j ¼ OP 1ð Þ, for any 0 < δ < 1/2, then since

nF
*
Xn−k:n; θð Þ=k→P 1, as n → ∞, we infer that

sup
0<s<n

k
F
*
Xn�k:n ;θð Þ

s−e W sð Þj j ¼ OP 1ð Þ:

for all large n. On the other hand, we already pointed out above that

ϑn t; θð Þ ¼ 1þ oP 1ð Þð Þt−γ2=γþe;
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which implies that the second factor is equal to

OP 1ð Þ
Z x1=γ2

Gθ Xn−k:nð Þ
Gθ Xn−k:nxð Þ

t−γ2=γþe
� �e

dt ¼ OP 1ð Þ
Z x1=γ2

Gθ Xn−k:nð Þ
Gθ Xn−k:nxð Þ

t−eγ2=γþedt;

which after integration yields

OP 1ð Þ Gθ Xn�k:nð Þ
Gθ Xn�k:nxð Þ

 !−eγ2=γþeþ1

� x−1=γ
� �−eγ2=γþeþ1

8<:
9=;:

Recall that from formula (1.8), we have γ2/γ > 1, then by using the mean value theorem and
Pooter’s inequalities, we get Rn1 ¼ oP x−eð Þ. The second term Rn2 may be decomposed into

Rn2 ¼
Z

∞

x1=γ2

W ϑn t; θð Þð Þ �W t−γ2=γ
� �� �

dt þ
Z

∞

x1=γ2

W t−γ2=γ
� �

dt:

From Proposition B.1.10 in Ref. [5], we have with high probability,

cn t; θð Þ :¼ ϑn t; θð Þ � t−γ2=γ


 

≤ et−γ2=γ−e; as n→∞; (5.31)

this means that supx>1supt>x1=γ2cn t; θð Þ→P 0, as n→∞. This implies by using Levy’s modulus
of continuity of the Wiener process (see, e.g. Theorem 1.1.1 in Ref. [32]) that

W ϑn t; θð Þð Þ �W t−γ2=γ
� �

 

≤ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cn t; θð Þlog 1=cn t; θð Þð Þ

p
;

with high probability. By using the fact that log s < es�e, for s ↓ 0 together with inequality
(5.31), we show that

W ϑn t; θð Þð Þ �W t−γ2=γ
� �

 

 < 2et− γ2=γ−eð Þ=2;

uniformly on t > x1=γ2, it follows thatZ
∞

x1=γ2

W ϑn t; θð Þð Þ �W t−γ2=γ
� �� �

dt





 



 ¼ oP 1ð Þ
Z

∞

x1=γ2

t− γ2=γ−eð Þ=2dt





 



:
Recall that the assumption γ1 < γ2 together with equation 1/γ 5 1/γ1 þ 1/γ2, imply that

γ2= 2γð Þ > 1, thus− γ2=γ − eð Þ=2þ 1 < 0, therefore
R
∞

x1=γ2
t− γ2=γ−eð Þ=2dt



 

 ¼ oP x−1=γ1−e
� �

. Then
we showed that

Rn1 ¼ oP x−eð Þ andRn2 ¼
Z

∞

x1=γ2

W t−γ2=γ
� �

dt þ oP x−1=γ1−e
� �

;

hence ffiffiffi
k

p
M

1ð Þ
n2 xð Þ ¼ Rn þ Sn ¼

Z
∞

x1=γ2

W t−γ2=γ
� �

dt þ oP x−1=γ1−e
� �þ oP x

1
2

1
γ2
−

1
γ1

� �
þe

 !
:

It is clear that

−
1

γ1
� e

� �
� 1

2

1

γ2
� 1

γ1

� �
þ e

� �
¼ −

γ1 þ γ2 þ 4eγ1γ2
2γ1γ2

< 0:
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then ffiffiffi
k

p
M

1ð Þ
n2 xð Þ ¼

Z
∞

x1=γ2

W t−γ2=γ
� �

dt þ oP x
1
2

1
γ2
−

1
γ1

� �
þe

 !
:

By using similar arguments, we end up withffiffiffi
k

p
M

2ð Þ
n2 xð Þ ¼ x1=γ2W t−1=γ

� �þ oP x
−

1
γ1
þe

� �
;

therefore, we omit further details. Finally, we haveffiffiffi
k

p
Mn2 xð Þ ¼ γ

γ1
x1=γ2W t−1=γ

� �þ γ

γ1

Z
∞

x1=γ2

W t−γ2=γ
� �

dt þ oP x
1
2

1
γ2
−

1
γ1

� �
þe

 !
:

Let us now focus on the term Mn3 xð Þ. From the latter approximation, we infer thatffiffiffi
k

p
Mn2 1ð Þ ¼ ffiffiffi

k
p Fn Xn−k:n; θð Þ � F Xn−k:nð Þ

F Xn−k:nð Þ

¼ γ

γ1
W 1ð Þ þ γ

γ1

Z
∞

1

W t−γ2=γ
� �

dt þ oP 1ð Þ;
(5.32)

which implies that ffiffiffi
k

p Fn Xn−k:n; θð Þ � F Xn−k:nð Þ
F Xn−k:nð Þ ¼ OP 1ð Þ:

In other words, we have

Fn Xn−k:n; θð Þ
F Xn−k:nð Þ ¼ 1þ OP k

−1=2
� �

: (5.33)

The regular variation of F $ð Þ and (5.33) together imply that

F xXn−k:nð Þ
Fn Xn−k:n; θð Þ ¼ x−1=γ1 þ oP x−1=γ1þe

� �
: (5.34)

By combining the results (5.32) and (5.34), we getffiffiffi
k

p
Mn3 xð Þ ¼ −x−1=γ2

γ

γ1
W 1ð Þ þ γ

γ1

Z
∞

1

W t−γ2=γ
� �

dt

� �
þ oP x−1=γ1þe

� �
:

For the fourth term Mn4 xð Þ, we writeffiffiffi
k

p
Mn4 xð Þ ¼ F xXn−k:nð Þ

Fn Xn−k:n; θð Þ � x−1=γ1

 ! ffiffiffi
k

p Fn xXn−k:n; θð Þ � F xXn−k:nð Þ
F xXn−k:nð Þ

 !
:

From (5.34) the first factor of the previous equation equals oP x−1=γ1þe
� �

. On the other hand,

the change of variables s ¼ t−γ2=γ yieldsZ
∞

x1=γ2

W t−γ2=γ
� �

dt ¼ γ

γ2

Z x−1=γ

0

s−γ=γ2−1W sð Þds:
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Since sup0<s<1s
−1=2þe W sð Þj j ¼ OP 1ð Þ, then we easily show thatZ

∞

x1=γ2

W t−γ2=γ
� �

dt ¼ OP x
1
2

1
γ2
−

1
γ1

� �
þe

 !
;

it follows that
ffiffiffi
k

p
Mn2 xð Þ ¼ OP x

1
2

1
γ2
−

1
γ1

� �
þe

 !
as well. Therefore,

ffiffiffi
k

p Fn xXn−k:n; θð Þ � F xXn−k:nð Þ
F xXn−k:nð Þ ¼ x1=γ1OP x

1
2

1
γ2
−

1
γ1

� �
þe

 !
¼ OP x

1
2γþe

� �
:

Hence, we have

ffiffiffi
k

p
Mn4 xð Þ ¼ oP x−1=γ1þe

� �
OP x

1
2γþe

� �
¼ oP x

1
2

1
γ2
−

1
γ1

� �
þe

 !
:

By assumption, F satisfies the second-order condition of regular variation (1.5), this means
that for

lim
t→∞

F txð Þ=F tð Þ � x−1=γ1

A tð Þ ¼ x−1=γ1
xρ1=γ1 � 1

ρ1γ1
; (5.35)

for any x > 0, where ρ1 < 0 is the second-order parameter and A is RV ρ1=γ1ð Þ. The
uniform inequality corresponding to 5:35ð Þ says: there exist t0 > 0, such that for any t > t0,
we have

F txð Þ=F tð Þ � x−1=γ1

A tð Þ � x−1=γ1
xρ1=γ1 � 1

ρ1γ1





 



 < ex−1=γ1þρ1=γ1þe;

see for instance assertion (2.3.23) of Theorem 2.3.9 in Ref. [5]. It is easy to check that the latter
inequality implies that

ffiffiffi
k

p
Mn5 xð Þ ¼ ffiffiffi

k
p F xXn−k:nð Þ

F Xn−k:nð Þ � x−1=γ1

 !

¼ x−1=γ1
xρ1=γ1 � 1

ρ1γ1

ffiffiffi
k

p
A Xn−k:nð Þ þ oP x−1=γ1

xρ1=γ1 � 1

ρ1γ1

ffiffiffi
k

p
A Xn−k:nð Þ

� �
:

Recall that ak ¼ F* ← 1− k=nð Þ and notice that Xn−k:n=ak →
P
1 as n → ∞, then in view of the

regular variation of A, we infer that A Xn−k:nð Þ ¼ 1þ oP 1ð Þð ÞA akð Þ. On the other hand, by

assumption
ffiffiffi
k

p
A akð Þ is asymptotically bounded, thereforeffiffiffi

k
p

Mn5 xð Þ ¼ x−1=γ1
xρ1=γ1 � 1

ρ1γ1

ffiffiffi
k

p
A akð Þ þ oP x−1=γ1

� �
:
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To summarize, at this stage, we showed that

Dn x;bθ� �
¼ γ

γ1
x1=γ2W t−1=γ

� �þ γ

γ1

Z
∞

x1=γ2

W t−γ2=γ
� �

dt

�x−1=γ2
γ

γ1
W 1ð Þ þ γ

γ1

Z
∞

1

W t−γ2=γ
� �

dt

� �
þx−1=γ1

xρ1=γ1 � 1

ρ1γ1

ffiffiffi
k

p
A akð Þ þ ς xð Þ;

where ς xð ÞdoP x−1=γ1þe
� �þ oP x−1=γ1

� �þ oP x
1
2

1
γ2
−

1
γ1

� �
þe

 !
. By using a change of variables,

we show that sum of the first three terms equals the Gaussian process Γ x;Wð Þ stated in
Theorem 2.1. Recall that γ1 < γ2 and

1

2

1

γ2
� 1

γ1

� �
þ e < 0;

then it is easy to verify that ς xð Þ ¼ oP x
1
2

1
γ2
−

1
γ1

� �
þe

 !
. It follows that

xe Dn x;bθ� �
� Γ x;Wð Þ � x−1=γ1

xρ1=γ1 � 1

ρ1γ1

ffiffiffi
k

p
A akð Þ

� �

¼ oP x
1
2

1
γ2
−

1
γ1

� �
þ2e

 !
¼ oP 1ð Þ;

uniformly on x > 1, therefore

sup
x>1

xe Dn x;bθ� �
� Γ x;Wð Þ � x−1=γ1

xρ1=γ1 � 1

ρ1γ1

ffiffiffi
k

p
A akð Þ





 



 ¼ oP 1ð Þ;

for any sample 0 < e < 1/2, which completes the proof of Theorem 2.1.

5.2 Proof of Theorem 2.2
From the representation 1:16ð Þ, we writebγ1 � γ1 ¼ Tn1 þ Tn2 þ Tn3;

where

Tn1dk
−1=2

Z
∞

1

x−1 Dn x;bθ; γ1� �
� Γ x;Wð Þ � x−1=γ1

xρ1=γ1 � 1

ρ1γ1

ffiffiffi
k

p
A akð Þ

� �
dx

Tn2dk
−1=2

Z
∞

1

x−1Γ x;Wð Þdx

and

Tn3d�A akð Þ
Z

∞

1

x−1=γ1−1
xρ1=γ1 � 1

ρ1γ1
dx:
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Using Theorem 2.1 yields Tn1 ¼ oP k−1=2
� � R

∞

1 x−1þedx ¼ oP k−1=2
� �

¼ oP 1ð Þ. SinceE Wj
sð Þj≤ s1=2, then it is easy to show that

R
∞

1 x−1Γ x;Wð Þdx ¼ OP 1ð Þ, it follows that Tn2 ¼
OP k−1=2
� �

¼ oP 1ð Þ. Using an elementary integration, we get Tn3 ¼ A akð Þ= 1− ρ1ð Þ which
tends to zero as n → ∞, because ak → ∞ and Aj j is regularly varying with negative index.

Therefore, bγ1 →P γ1, as n → ∞ which gives the first result of Theorem. To establish the
asymptotic normality, we writeffiffiffi

k
p bγ1 � γ1ð Þ ¼

ffiffiffi
k

p
Tn1 þ

ffiffiffi
k

p
Tn2 þ

ffiffiffi
k

p
Tn3;

where ffiffiffi
k

p
Tn1 ¼ oP 1ð Þ;

ffiffiffi
k

p
Tn2 ¼

Z
∞

1

x−1Γ x;Wð Þdx

and ffiffiffi
k

p
Tn3 ¼

ffiffiffi
k

p
A akð Þ

1� ρ1
:

Note that Γ x;Wð Þ is a centered Gaussian process and by using the assumptionffiffiffi
k

p
A akð Þ→ λ < ∞, we end up withffiffiffi

k
p bγ1 � γ1ð Þ→D N λ

1� ρ1
;E

Z
∞

1

x−1Γ x;Wð Þdx
� �2 !

:

By elementary calculations (we omit the details), we show that

E

Z
∞

1

x−1Γ x;Wð Þdx
� �2

¼ σ2:

6. Conclusion
On the basis of a semiparametric estimator of the underlying distribution function,we proposed a
new estimationmethod to the tail index of Pareto-type distributions for randomly right-truncated
data. Compared with the existing ones, this estimator behaves well both in terms of bias and
RMSE. A useful weak approximation of the corresponding tail empirical process allowed us to
establish both the consistency and asymptotic normality of the proposed estimator.
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0, we haveF¯n*Xn−k:nwF¯*Xn−k:n=OPw−1/γ+ϵ/2,uniformly on w≥1.Proof. Let
Vnt≔n−1∑i=1n1ξi ...",5,1,1,0>Appendix

Lemma 7.1. For any small e > 0, we have

F
*

n Xn−k:nwð Þ
F

*
Xn−k:nð Þ ¼ OP w−1=γþe=2

� �
; uniformly onw≥ 1:

Proof. Let Vn tð Þdn−1
Pn

i¼11 ξi ≤ tð Þ be the uniform empirical df pertaining to the sample

ξidF
*
Xið Þ, i 5 1, . . ., n, of independent and identically distributed uniform 0; 1ð Þ rv’s. It is clear that,

for an arbitrary x, we haveVn F
*
xð Þ

� �
¼ F

*
n xð Þalmost surely. FromAssertion 7 in Ref. [33] (page 415),

Vn tð Þ=t ¼ OP 1ð Þ uniformly on 1/n ≤ t ≤ 1, this implies that

F
*

n Xn−k:nwð Þ
F

*
Xn−k:nwð Þ ¼ OP 1ð Þ; uniformly onw≥ 1: (7.36)

On the other hand, by applying Potter’s inequalities (1.4) to F
*
, we get

F
*
Xn−k:nwð Þ

F
*
Xn−k:nð Þ ¼ OP w−1=γþe=2

� �
; uniformly onw≥ 1: (7.37)

Combining the two statements, (7.36) and (7.37), gives the desired result. ,
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