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Abstract
Purpose – Reynolds-averaged Navier–Stokes (RANS) models often perform poorly in shock/
turbulence interaction regions, resulting in excessive wall heat load and incorrect representation of the
separation length in shockwave/turbulent boundary layer interactions. The authors suggest that this
can be traced back to inadequate numerical treatment of the inviscid fluxes. The purpose of this study is
an extension to the well-known Harten, Lax, van Leer, Einfeldt (HLLE) Riemann solver to overcome this
issue.
Design/methodology/approach – It explicitly takes into account the broadening of waves due to the
averaging procedure, which adds numerical dissipation and reduces excessive turbulence production across
shocks. The scheme is derived based on the HLLE equations, and it is tested against three numerical
experiments.
Findings – Sod’s shock tube case shows that the scheme succeeds in reducing turbulence amplification
across shocks. A shock-free turbulent flat plate boundary layer indicates that smooth flow at moderate
turbulence intensity is largely unaffected by the scheme. A shock/turbulent boundary layer interaction case
with higher turbulence intensity shows that the added numerical dissipation can, however, impair the wall
heat flux distribution.
Originality/value – The proposed scheme is motivated by implicit large eddy simulations that use
numerical dissipation as subgrid-scale model. Introducing physical aspects of turbulence into the numerical
treatment for RANS simulations is a novel approach.

Keywords Riemann solver, RANS, Shock/turbulence interaction

Paper type Research paper

Nomenclature

cs ¼wave speed factor [�];
F ¼mean flux vector;
k ¼ turbulence kinetic energy [m2/s2];
P ¼ turbulence production [m2/s3];
q ¼ heat flux [w/m2];
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S ¼wave speed [m/s];
t ¼ time [s];
Tu ¼ turbulence intensity [�];
ui ¼ velocity components [m/s];
W ¼mean state vector;
xi ¼ spacial coordinates [m];
r ¼ density [kg/mm/3];
� ¼ Favre average; and
00 ¼ Favre fluctuation.

Subscripts

L, R ¼ Left and right value;
T ¼ turbulent; and
W ¼wall.

1. Introduction
Most real-world flows are in the turbulent regime, so treating the effects of turbulence
correctly is critical for obtaining accurate results. Reynolds-averaged Navier–Stokes (RANS)
turbulence models have a persisting relevance for engineering applications due to their
efficiency compared with higher order approaches such as large eddy simulations (LES) and
direct numerical simulations (DNS). Furthermore, engineers are often only interested in
time-averaged solutions, rather than resolving the turbulent fluctuations in time, so
computing the mean solution directly is practical.

Turbulence and shock/turbulence interaction (STI) is a critical phenomenon for many
aerospace vehicles such as launchers, airplanes and hypersonic vehicles. While RANS
models perform robustly in certain flow conditions, some physical aspects, such as STI, are
usually not captured properly. Turbulence production in STI is generally over-predicted
compared to DNS data. Sinha et al. (2003) showed that post-shock turbulence kinetic energy
is excessive with standard two equation models. The result of this depends on the chosen
turbulence model formulation with some models producing excessive heat load and
decreased separation length (Knight et al., 2002), whereas separation length increases with
other models (Brown, 2013). For compressible flows, a combination of Reynolds
decomposition f ¼ f þ f

0
with f ¼ lim

t!11=t
Ð tþt
t f x!; t

� �
dt for the pressure and density,

and Favre decomposition f ¼ ~f þ f
00
with ~f ¼ rf=r for the velocities yields the most

compact set of equations. Note that r is the Reynolds-averaged density. The exact
production term P for the turbulence kinetic energy (TKE) in the RANS equations can then
be written as:

P ¼ �ru00
i u

00
j
@~ui

@xj
: (1)

This is modeled in RANS eddy-viscosity models as (Einstein notation is applied):

PEVM ¼ mT
@~ui

@xj
þ @~uj

@xi
� 2
3
@~uk

@xk
dij

 !
� 2
3
rk

" #
@~ui

@xj
; (2)
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where ui is the velocity in xi direction, dij is the Dirac delta, k ¼ 1=2u00
i u

00
i is the turbulence

kinetic energy. mT is the eddy viscosity, which must be determined by the turbulence model.
For a 1D case, we find:

PEVM;1D ¼ mT
4
3

@~u
@x

� �2

/ @~u
@x

� �2

: (3)

In shocks, the magnitude of the mean velocity gradient @~u=@x is large and so is the
turbulence production. Turbulent flows are inherently unsteady, i.e. they are characterized
by small-scale fluctuations, which also affect the location of shock waves. RANS solutions
are statistical averages, and while shocks are instantaneously discontinuous, in a time-
averaged solution they appear spread out in space (Sinha et al., 2003). Because of that, the
mean velocity gradients are reduced compared with laminar or inviscid flows, which also
decreases the turbulence production.

To improve existing turbulence models, Sinha et al. adapted the production term to
account for shock unsteadiness, arguing that the Boussinesq hypothesis breaks down near
shock waves (Sinha et al., 2003). While this proved to be effective in their test cases, it is a
fundamental change in the model. The production term in equation (1), is exact and, given
that the Boussinesq hypothesis is correct, equation (2) is an exact extension.We suggest that
the shortcomings of existing models can also be interpreted as the result of excessively steep
mean flow gradients in the numerical solution of RANSmodels. We propose that the current
production term can give acceptable results when paired with adequate numerical methods
that take into account the statistical nature of RANS solutions, i.e. spread shocks in space
sufficiently.

For LES, the idea of combining the effect of shock-capturing numerics and subgrid-scale
models has been around for a while. It was realized that methods for capturing steep
gradients and subgrid-scale models both add dissipative fluxes, so it seemed reasonable to
combine the two. Boris et al. (1992) were early proponents of the implicit LES (ILES)
approach that aims to eliminate the need for an explicit subgrid-scale model by applying a
numerical scheme that dissipates energy on the small scales. Adams and Stolz (2002) further
added to the method of combining the effects of subgrid-scale modeling and shock-capturing
by means of approximate deconvolution. More recently, Sousa and Scalo (2022) proposed to
unify the artificial viscosity of shock-capturing schemes with the subgrid-scale model using
their quasi-spectral viscosity method.

For RANS simulations, this consolidation of turbulence modeling and numerical
treatment is not common, usually the two are treated separately. Compared to LES, where
the subgrid-scale model is primarily required to dissipate kinetic energy, RANS models are
supposed to emulate the effect of all turbulent scales. Therefore, the same level of inclusion
of turbulence model and numerics seems challenging for RANS simulations. However, there
has been some work adapting existing numerical schemes for the application in RANS
simulations to improve accuracy and stability. Chuvakhov (2014) extended the Roe scheme
for two-dimensional 2-eq q-v models. The author derived Roe matrices for the convective
fluxes of q-v and k-vmodels, resulting in better convergence and stability.

The RANS equations can be derived from the Navier–Stokes equations by decomposing
the field variables into a mean and a fluctuating part, and then averaging the equations.
Inviscid and viscous fluxes can be distinguished in the resulting set of equations. Generally,
these are discretized using different methods; flux-difference splitting methods (Riemann
solvers) are popular for the inviscid fluxes. These methods were developed for the Euler
equations and not for the statistical representation of RANS solutions. Because the
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unsteadiness of turbulent flows is not a viscous effect, it should also be included in the
treatment of the inviscid fluxes. Furthermore, with existing shock-capturing schemes, shock
waves are captured over a fixed number of cells. Because of that, mesh independence cannot
be achieved: as the mesh is refined, shocks become sharper and turbulence production is
increased (Lacombe et al., 2021).

In this publication, we extend the popular Harten, Lax, van Leer, Einfeldt (HLLE)
Riemann solver (Harten et al., 1983) to better represent the averaged solution in turbulent
flows, which should result in a more physical representation of the flow features in RANS
solutions. Due to the incoming turbulent fluctuations, the positions of all waves are
unsteady. The time-averaged result of the waves are therefore spread out in space. Their
size depends on the local turbulence intensity. By treating the waves as fans with finite
width in the Riemann solver, additional numerical dissipation is added to the solution. This
decreases mean flow gradients and hence reduces turbulence production across steep
gradients, such as shocks.

This publication is structured as follows:
In Section 2, we give an introduction to Riemann solvers and derive the proposed

alterations for RANS models, before showing the governing equations and numerical
methods of the implementation in Section 3. The cases that are used to investigate the
scheme and the results are presented in Section 4.

2. Riemann solvers
When using the finite-volume method to discretize any conservation equation in space,
approximations for the flux between cells must be found. See Figure 1 for an illustration of
the location of known values of the state vector W and the required flux vector F in cell-
centered finite-volume schemes. Following the method originally proposed by Godunov and
Bohachevsky (1959), this inter-cell flux can be found by solving the local Riemann problem,
where the adjacent cell values represent the left and right initial conditions. In addition to
finite-volume schemes, the proposed Riemann solver may also be used with other types of
spacial discretization, such as finite-difference and discontinuous Galerkin schemes.

Exact solutions of the Riemann problem exist, but due to the nonlinearity of the Euler
equations, they must be found iteratively. A more efficient alternative are approximate
Riemann solvers, such as the HLLE (Harten et al., 1983), or Harten, Lax, van Leer, Contact
(HLLC) (Toro et al., 1994) schemes. Instead of solving the exact Riemann problem iteratively,
an approximate solution is computed directly.

Figure 1.
Inter-cell flux in cell-
centered finite-
volume schemes Source: Created by the authors
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2.1 Standard Riemann solvers
Riemann solvers are a numerical method to solve the Riemann problem. They are generally
used for systems of hyperbolic conservation laws to correctly represent shock waves in the
solution. A generic 1D conservation lawmay be written in conservative form:

@W
@t

þ @F Wð Þ
@x

¼ 0: (4)

As the solutionWmay be discontinuous, the integral form of equation (4) over a closed area
X bounded by @X in x � t space is more useful. Using the divergence theorem it can be
written as: ðð

X

@W
@t

þ @F Wð Þ
@x

� �
dtdx ¼

þ
@X

Wdx� Fdtð Þ ¼ 0: (5)

The local Riemann problem is constructed by placing the cell interface at x ¼ 0. We now
want to find the solution W* ¼ W(x ¼ 0, t > 0) and F* ¼ F(x ¼ 0, t > 0) of the local
Riemann problem for the initial distribution:

W x; t ¼ 0ð Þ ¼ fW L; for x < 0

W R; for x > 0:
(6)

Without any further assumptions, the integral in equation (5) can only be solved for the
inter-cell flux F* iteratively. Approximate Riemann solvers, such as the HLLE scheme, are
derived by first assuming that the solution consists of one left-running and one right-
running wave with corresponding wave speeds SL and SR. Because it forms the basis of the
proposed scheme, its main equations shall be presented briefly. Two cases must be treated
separately: left and right supersonic flow and subsonic flow. The solution for the supersonic
cases is simple:

W � ¼ W L andF
� ¼ FL if SL > 0; (7)

W � ¼ W R andF
� ¼ FR if SR < 0: (8)

Figure 2(a) shows the wave pattern for the subsonic case, where the dashed line shows the
integration domain in the x � t space and the solid lines represent the left and right
characteristic waves. Because the state vector is piecewise constant along quadrilateral
ABCD, integration simply yields:

W � ¼ SRW R � SLW L � FR � FLð Þ
SR � SL

: (9)

The inter-cell flux F* can either be determined as F(W*), or directly by integrating equation
(5) over one the quadrilaterals AEFD or EBCF, which gives:

F� ¼ SRFL � SLFR þ SLSR W R �W Lð Þ
SR � SL

: (10)
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2.2 Proposed Riemann solver for turbulent flows
To enhance the capability of the HLLE scheme to capture the mean flow gradients in
statistically averaged turbulent flows, both waves are treated as compression or expansion
fans. Figure 2(b) shows the wave pattern in an averaged turbulent flow, where the inherent
unsteadiness spreads all waves in space. Instead of discontinuous jumps, the fans represent
gradual changes in W and F. The left and right fans have the respective limiting mean
wave speeds Sj,min and Sj,max with the mean wave speed variance DSj ¼ Sj,max � Sj,min (for
j¼ L or R). The states outside the fans are still denoted as:

W ¼ W L andF ¼ FL for x < tSL;min (11)

and:

W ¼ W R andF ¼ FR for x > tSR;max: (12)

Similar to inviscid Riemann solvers, multiple flow cases must be distinguished. Left and
right supersonic cases are treated analogously:

W � ¼ W L andF
� ¼ FL if SL;min > 0; (13)

W � ¼ W R andF
� ¼ FR if SR;max < 0: (14)

The subsonic case is shown in Figure 2(b), where SL,max < 0 and SR,min > 0. To find an
explicit solution to the Riemann problem in this case, we assume that W varies linearly in
the fans along t¼ const:

W x; tð Þ ¼ W tSj;min; t
� �þW tSj;max; t

� ��W tSj;min; t
� �

tSj;max � tSj;min
x� tSj;min
� �

for tSj;min < x < tSj;max; (15)

Figure 2.
Wave diagram for the
derivation of
Riemann solvers for
inviscid andmean
turbulent flows

Notes: (a) Inviscid; (b) turbulent
Source: Created by the authors

(a) (b)
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where j ¼ L, R. The result of the integration with this assumption is also correct for all
distributions that are symmetric about the center of the fans. More complex, nonsymmetric
distributions could be investigated in future studies. IntegratingW on a line with t ¼ const
across a fan gives:ðtSj;max

tSj;min

W x; tð Þdx ¼ 1
2

W tSj;min; t
� �þW tSj;max; t

� �� �
tSj;max � tSj;min
� �

: (16)

We can now integrate equation (5) over quadrilateral ABCD to find the inter-cell state
analogously to the HLLE scheme:

W � ¼ �2FL þ 2FR þW L SL;max þ SL;min
� ��W R SR;max þ SR;min

� �
SL;max þ SL;min � SR;max � SR;min

: (17)

We find the inter-cell flux by integrating over AEFD:

F� ¼ 1
2

2FL þ W � �W Lð Þ SL;max þ SL;min
� �� �

(18)

and inserting equation (17):

F� ¼ 2FR SL;max þ SL;min
� �� SR;max þ SR;min

� �
2FL � SL;max þ SL;min

� �
W L �W Rð Þ� �

2 SL;max þ SL;min � SR;max � SR;min
� � :

(19)

Note that equation (19) reduces to equation (10) as intended, when SL,min ¼ SL,max ¼ SL and
SR,min ¼ SR,max ¼ SR. The integration in the x � t space is equivalent for both cases except
for the sections DD’ and C’C.

In addition to subsonic and supersonic cases, a right transonic case with SL,min < 0 and
SL,max > 0 and a left transonic case with SR,min < 0 and SR,max> 0 exist for turbulent flows.
Figure 3 shows the wave pattern for the two cases. For the sake of brevity, we use W* for
the state between the fans and F* ¼ F(0, t > 0) for the flux along the positive t-axis.W* in
the transonic case is equivalent to the one in the subsonic case. The inter-cell flux in the right
transonic case is found by integrating over quadrilateral ABCD. As we assume that the state
vector varies linearly along DC, see equation (15), this gives:ð0

DtSL;min

W x;Dtð Þdx ¼ W � �W L

SL;max � SL;min

S2
L;min

2
Dt �W LSL;minDt: (20)

After performing the integration over ABCD, the inter-cell flux is:

F� ¼ 2FLSL;max � 2FLSL;min � S2
L;minW

� þ S2
L;minW L

2 SL;max � SL;min
� � : (21)

Inserting equation (17) results in:

F � ¼
2FL S2

L;max þ SL;min � SL;max
� �

SR;max þ SR;min
� �� 	

þ S2
L;min �2FR � SR;max þ SR;min

� �
W L �W Rð Þ� �

2 SL;max � SL;min
� �

SL;max þ SL;min � SR;max � SR;min
� � :

(22)
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We can treat the left transonic case in the same way by integrating over A’B’C’D’, where the
integral over section D’C’ is:ðDtSR;max

0
W x;Dtð Þdx ¼ W � þW R

SR;max � SR;min

S2
R;max

2
Dt � SR;maxSR;minW R

SR;max � SR;min
Dt: (23)

The integral over the quadrilateral gives the inter-cell flux:

F � ¼ 2FRSR;max � 2FRSR;min þ S2
R;maxW

� � S2
R;maxW R

2 SR;max � SR;min
� �

¼
�2FR S2

R;min þ SL;min þ SL;max
� �

SR;max � SR;min
� �� 	

þ S2
R;max 2FL � SL;max þ SL;min

� �
W L �W Rð Þ� �

2 SR;max � SR;min
� �

SR;max þ SR;min � SL;min � SL;max
� � :

(24)

After determining the limiting wave speeds, the inter-cell flux can directly be computed
from equations (13), (14), (19), (22) and (24). In the remainder of this publication, we will refer
to the proposed scheme as Harten, Lax, van Leer, Einfeldt Shock Unsteadiness (HLLESU).

2.3 Wave speed estimates
Toro et al. (1994) gave multiple possible estimates for the left and right wave speeds. The
estimates that are implemented in the applied code follow Einfeldt (1988). Based on the
velocity u and speed of sound a, we use:

SL ¼ min uL � aL; u� � a�ð Þ (25)

SR ¼ max uR þ aR; u� þ a�ð Þ; (26)

With a*¼max (aL, aR) and:

Figure 3.
Transonic cases for
turbulent flows: the
width of the transonic
fans is increased to
improve readability

Notes: (a) Right transonic; (b) left transonic
Source: Created by the authors

(a) (b)
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u� ¼ uL
ffiffiffiffiffi
rL

p þ uR
ffiffiffiffiffi
rR

pffiffiffiffiffi
rL

p þ ffiffiffiffiffi
rR

p : (27)

The apparent thickness of the shock is generally a function of the mean flow upstream and the
intensity of the turbulent fluctuations. Lacombe et al. derived a relation for the turbulent shock
thickness from the Rankine–Hugoniot conditions (Lacombe et al., 2021), a simpler estimate
relates the thickness to the magnitude of the turbulent velocity fluctuations DS / u

00 /
ffiffiffi
k

p
.

Wemay therefore give estimates for the left and right wave speed variance as:

DSL ¼ c
0
ffiffiffiffiffiffiffiffiffiffiffiffi
u00u00

L

q
¼ cS

ffiffiffiffiffiffiffiffi
2
3
kL

r
(28)

DSR ¼ c
0
ffiffiffiffiffiffiffiffiffiffiffiffi
u00u00

R

q
¼ cS

ffiffiffiffiffiffiffiffi
2
3
kR

r
: (29)

Note that the turbulence is assumed to be isotropic, where u00u00 :¼ u00
1u

00
1 ¼ u00

2u
00
2 ¼ u00

3u
00
3 and

k ¼ 3
2 u

00u00 . The parameter cs has been added to tune the scheme.
Two main options exist for applying the wave speed variance to the left and right mean

wave speeds. We can either choose the outer limits of the fans as the left and right wave
speeds:

SL;min ¼ SL; SL;max ¼ SL þ DSL

SR;max ¼ SR; SR;min ¼ SR � DSR;
(30)

or the inner limits:

SL;min ¼ SL � DSL; SL;max ¼ SL

SR;max ¼ SR þ DSR; SR;min ¼ SR;
(31)

See Figure 4 for a schematic representation. When using equation (30), there may be
cases with overlapping fans. If we want to treat these correctly, the integration becomes
more complicated. For this publication, the overlapping cases were neglected. When
equation (31) is used, this problem is avoided because overlapping fans are impossible.
There is also a third, centered option:

Sj;min ¼ Sj �
DSj
2

(32)

Sj;max ¼ Sj þ DSj
2

: (33)

This form reduces exactly to the HLLE scheme and is therefore not investigated further.

2.4 Numerical dissipation
To reduce mean flow gradients, the proposed scheme must add a component to the flux
vector, which has the type:
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F add / � @W
@x

: (34)

Three terms can be distinguished in the enumerator of the subsonic flux equation (19). The
first term 2FR(SL,max þ SL,min) only depends on the left wave speeds and the second term
�2FL(SR,max þ SR,min) only depends on the right wave speeds. The third term (�SR,max �
SR,min) (�SL,max � SL,min)(WL � WR) is proportional to the product of the left and right
wave speeds. Hence, the magnitude of the third term increases when the limiting left and
right wave speeds SL,min and SR,max are chosen as described in equation (31). In the subsonic
case, SL,min< SL,max< 0 and the additional flux is:

F add > 0 ifW L > W R and (35)

F add < 0 ifW L < W R; (36)

which satisfies equation (34).
The enumerator in the transonic cases equations (24) and (22) has a similar structure.

There are two terms proportional to the left and right flux and the square of the left or right
wave speeds. The third term is proportional to (WL �WR) and the third power of left/right
wave speeds. Again, this term increases in magnitude compared with the other two when
equation (31) is used. In the right transonic case, the last term is:

�S2
L;min SR;max þ SR;min

� �
2 SL;max � SL;min
� �

SL;max þ SL;min � SR;max � SR;min
� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
A

W L �W Rð Þ: (37)

Figure 4.
Selection of the
possible estimates for
the minimum/
maximumwave
speed based on the
wave speed variance
DS

Notes: The dotted lines correspond to equation (30), the dashed 
lines to equation (31)
Source: Created by the authors
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Since SL,min< 0, SL,max> 0 and SL,max< SR,min,A> 0. Equation (34) is therefore fulfilled. In
the left transonic case, the last term is:

�S2
R;max SL;max þ SL;min

� �
2 SR;max � SR;min
� �

SR;max þ SR;min � SL;min � SL;max
� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
A

W L �W Rð Þ: (38)

Again, since SR,min< 0, SR,max> 0 and SR,min> SL,max,A> 0 and equation (34) is fulfilled.
This shows that by using equation (31) for the wave speed limits, an additional diffusive

flux is introduced. Using equation (30), the additional flux component may have either sign,
depending on the magnitude of the wave speeds. This results in unpredictable behavior and
can even introduce an anti-diffusive flux component.

3. Numerical implementation
The scheme was implemented in Navier–Stokes multi-block (Leyland et al., 1995; Hoarau
et al., 2016); Goebel et al., 2012), which is a cell-centered finite volume solver that uses block-
structured meshes with hexagonal cells. It solves the compressible RANS equations, which,
using Einstein summation, can be written as (Wilcox, 2006):

@r

@t
þ @

@xi
r~uið Þ ¼ 0; (39)

@

@t
r~uið Þ þ @

@xj
r~uj~ui þ dijp
� � ¼ @

@xj
tji þ rtji
� �

; (40)

@

@t
r~E
� �

þ @

@xj
r~uj

~E þ ~ujp
� 	

¼ @

@xj
�qj � qT;j þ tjiu

00
i � ru00

j 1=2u
00
i u

00
i

h i
þ @

@xj
~ui t ij þ rtji
� �� �

; (41)

p is the mean pressure, ~E ¼ ~e þ 1=2~ui~ui þ k is the mean total energy,

t ij ¼ m @~ui
@xj

þ @~uj

@xi
� 2

3
@~uk
@xk

dij

h i
is the mean laminar shear stress tensor and rtij ¼ �ru00

i u
00
j

denotes the Reynolds stress tensor. The components of the laminar and turbulent heat flux
qi and qi,T are proportional to the gradient of the mean temperature ~T :
q T;ð Þj ¼ �l Tð Þ@ ~T=@xj. An eddy diffusivity model with constant turbulent Prandtl number
PrT ¼ (cpmT)/lT ¼ 0.9 was used. Note that the second terms on the left-hand side of
equations (39)–(41) represent the inviscid fluxes that are treated with the proposed scheme.

The system of equations is closed with the thermodynamic equation of state:

p
r
¼ R~T (42)

and caloric equation of state:

~e ¼ cv ~T ; (43)
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where R is the specific gas constant. With the ratio of specific heats g, the specific heat
capacity at constant volume cv¼ R/(g� 1) can be defined.

To keep the influence of the turbulence model consistent between schemes, the Wilcox k-
v 2-equation model (Wilcox, 2006) without compressibility correction was used for all tests.
This model has previously shown good performance in attached flows, even for hypersonic
flows (Buck and Mundt, 2021); its equations for the turbulence kinetic energy and specific
dissipation can be written as (Wilcox, 2006):

@rk
@t

þ ~uj
@rk
@xj

¼ rtij
@~uj

@xj
� b�rkvþ @

@xj
mþ s�mTð Þ @k

@xj

" #
; (44)

@rv

@t
þ ~uj

@rv

@xj
¼ g

v

k
tij

@~uj

@xj
� brv2 þ @

@xj
mþ smTð Þ @v

@xj

� 

: (45)

The eddy viscosity can then be computed as mT ¼ a� rkð Þ=v. The model parameters b*, s*,
g, b, s anda* can be found inWilcox (2006).

An implicit scheme was used to generate steady-state solutions, where the system of
equations is solved with an lower-upper symmetric Gauss–Seidel method each timestep.
Unsteady simulations were integrated in time with an explicit five-stage Runge–Kutta
scheme. Before the Riemann solver is applied to compute the inter-cell fluxes, the primitive
variables are extrapolated to the left and right side of the cell interface using MUSCL
extrapolation (Monotonic Upstream-centered Scheme for Conservation Laws) with the van
Leer limiter (van Leer, 1974), or the van Albada limiter (van Albada et al., 1982), which
results in second order accuracy in space for smooth regions.

4. Results
To investigate the performance of the proposed scheme, three test cases were chosen that
should examine the scheme in shock/turbulence interaction cases. The simplest STI case is
the steady interaction of a statistically planar shock wave with homogenous isotropic
turbulence, which can be simulated on an orthogonal mesh. However, this case is
numerically difficult because the shock is not geometrically fixed in space, so the outlet
conditions must be chosen iteratively to achieve a stationary shock. To remedy this, Sod’s
unsteady shock tube problem (Sod, 1978) was chosen. This case is equivalent to the steady
planar STI in a nonmoving reference frame. To suppress the dissipation of pre-shock
turbulence, sustaining terms (Spalart and Rumsey, 2007) are added to the turbulent
governing equations (44) and (45). The standard Sod problem with a shock Mach number of
Mshock � 1.66 and one with Mshock ¼ 3 were investigated. An exact solution exists for the
inviscid Sod problem.

While the proposed scheme should add numerical dissipation near shocks, the performance
in viscous cases should not be impaired. A second test case was therefore chosen to examine
the performance in the simplest viscosity-dominated case: a flat plate boundary layer.
Supersonic conditions were chosen because of the intended use cases for the scheme. They are
also more demanding because of the large velocity gradient near the wall. The M1 ¼ 2 and
M1¼ 5 cases by Jespersen et al. (2016) were used.

Finally, the goal of the new scheme is to improve the prediction in realistic STI cases, so
the shock/turbulent boundary layer interaction case by Schülein et al. (1996) was chosen. It
consists of an oblique shock wave that impinges on a flat plate boundary layer atM1¼ 5.
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4.1 Viscous shock tube problem
Sod’s shock tube test case consists of a 1-m tube that initially has a membrane at x ¼ l/2,
see Figure 5. The initial conditions for the left (L) and right (R) half of the tube are given in
Table 1; the standard conditions produce a shock Mach number of around 1.66. Upon
initialization, the membrane is removed instantaneously resulting in a right-running shock
wave and contact discontinuity and a left-running expansion fan. Because the low pressure
results in unrealistic flow properties for the standard case, it was run with synthetic
constant wave speed variances DS, whereas the Mshock ¼ 3 case produces relevant
conditions, soDS /

ffiffiffi
k

p
was used.

The tube was discretized with 1,000 cells in axial direction and all walls were modeled
with the slip condition. Both cases were run until the inviscid shock reached a similar final
position, resulting in tmax ¼ 0.25 s for the standard case and tmax ¼ 0.00044 s for the
Mshock¼ 3 conditions. For the second case, the initial pressure in the right section of the tube
was chosen to be the atmospheric pressure, which necessitates the high initial pressure in
the left section.

Because the initial velocity is zero in the shock tube, initial turbulence must be added
artificially. The initial turbulence kinetic energy was set to kinitial ¼ Tu u2max with a
turbulence intensity of Tu¼ 1%, where umax is the maximum velocity at tmax in the inviscid
case. The gas was air with R ¼ 287 J/kgK and g ¼ 1.4. Using turbulence models also
requires the inclusion of the laminar viscous terms, so the laminar dynamic viscosity was
set to the sea level value of air atT¼ 0°C:m¼ 1.736� 10�5 Pas¼ const for both cases.

The velocity distribution and shock dilatation for Sod’s problem with standard initial
conditions are shown in Figure 6. The first option, equation (30), of choosing the wave
speeds is referred to as Souter, the second option, equation (31), as Sinner. As the velocity
distribution on the left shows, the proposed scheme does not affect the overall accuracy of
the solution. The position of all waves is nearly identical to the exact and HLLE solutions.
The shock dilatation on the right shows that choosing the outer definition of equation (30)
results in a slight increase in shock speed and shock strength (dashed lines). Furthermore,
solutions with DS � 0.5 m/s show spurious oscillations and DS ¼ 2 m/s results in entirely
nonphysical behavior (not shown). The reason might be the overlap of waves in subsonic
and transonic cases, which is not accounted for. The inner wave speed definition equation
(31), however, does not impair the shock speed and succeeds in reducing the shock dilatation
(solid lines).

Figure 5.
Sod’s shock tube

problemSource: Created by the authors

Table 1.
Initial conditions for
the shock tube test

cases

Case pL [Pa] pR [Pa] pL [kg/m
3] pR [kg/m

3] uL [m/s] uR [m/s]

Standard 1 0.1 1 0.125 0 0
Mshock¼ 3 64 100 968 101 325 817.676 1.293 0 0

Source: Created by the authors
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This shows the impact of the observations in Section 2.4. Using the inner wave speed
definition of equation (31) increases the wave speeds and adds numerical dissipation. Mean
flow gradients are decreased, resulting in lower shock dilatation. The outer choice of wave
speeds in equation (30), on the contrary, introduces a counter-gradient flux that can produce
spurious oscillations.

The diffusive component of the flux is:

F add ¼
SR;max þ SR;min
� �

SL;max þ SL;min
� �

2 SL;max þ SL;min � SR;max � SR;min
� � W L �W Rð Þ (46)

in the subsonic case and:

F add ¼ � S2
L;min SR;max þ SR;min

� �
2 SL;max � SL;min
� �

SL;max þ SL;min � SR;max � SR;min
� � W L �W Rð Þ (47)

in the right transonic case. The three components of the flux vector as a function of DS for
the standard Sod case at the right-running shock wave are shown in Figure 7 for the inner
and outer wave speed definitions. For the inner wave speed definition, the additional flux is
positive for all DS, resulting in a diffusive property and stable behavior. Using the outer
wave speed definition, the additional flux decreases as DS is increased, making the
simulation less stable. At DS ¼ SR,max � SL,min � 2.528m/s, the flux function is undefined.
When DS> SR,max� SL,min, the additional flux component is negative, resulting in counter-
gradient flux, which is unstable. To achieve the desired level of numerical dissipation, the
inner wave speed definition equation (31) must therefore be used. It was applied for the rest
of this publication. Using equation (30) highlights numerical issues near strong gradients
and does not appear useful.

Figure 6.
Velocity distribution
and dilatation across
the shock for Sod’s
problem at standard
conditions at tmax Source: Created by the authors
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Figure 8 shows the velocity distribution and shock dilatation for the Mshock ¼ 3 case.
Compared with the standard conditions, the turbulent distributions differ more from the
exact inviscid results. The higher turbulence kinetic energy appears to increase the impact
of the turbulent terms in the momentum equation and energy equation, which results in a
faster and stronger shock wave in the turbulent case. The post-shock velocity in the
turbulent case is therefore higher than the exact solution. Both the standard HLLE and the
proposed scheme give similar results.

The shock dilatation in Figure 8 also shows that the shock position moves further to the
right with the proposed scheme, an effect that is amplified when cs is increased. The graph
also shows a reduced dilatation for cs ¼ 100; the stronger dilatation with cs ¼ 10 might be a
result of the position of the shock wave in the cs¼ 1 case.

To investigate the impact of the lower shock dilatation on the evolution of turbulence, the
TKE amplification across the shock wave is shown in Figure 9. Figure 9(a) shows the data
for the standard conditions over the wave speed variance DS. As the wave speed increases,
the turbulence amplification decreases. The distribution appears close to linear, with
beginning saturation at DS > 5 m/s. Figure 9(b) shows the same data for the M ¼ 3 case
over different values of the scaling factor cs, where DS was treated as a function of the
turbulence kinetic energy. Similar to the standard case, a larger wave speed variance
decreases the turbulence amplification across the shock. Interestingly, the shock-induced
turbulence amplification is much smaller in the M ¼ 3 case compared to the standard
conditions. These results indicate that the proposed scheme can reduce the steep velocity
gradients across shock waves and limit the resulting turbulence production.

4.2 Supersonic flat plate boundary layer
The previous results show that the proposed scheme can reduce the impact of shock waves
on turbulence. The supersonic flat plate boundary layer case is used to determine whether
the added numerical dissipation affects the performance in cases that are not dominated by
shock/turbulence interaction. A supersonic flat plate with a length of 2m was chosen, see
Figure 10. The boundary conditions from Jespersen et al. (2016) are given in Table 2. The
chosen wall temperatures are approximately equal to the respective recovery temperatures.

Figure 7.
Diffusive component
of the flux vectorFadd

at the right-running
shock wave in the
standard Sod case,
units on the vertical
axis are omitted for

clarity
Notes: (a) Sinner; (b) Souter

Source: Created by the authors

(a) (b)
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Based on recommendations from the NASA Langley turbulence modeling resources,
the plate was discretized with 544� 384 cells, with 448 cells along the solid wall and 96
cells in the freestream. The first grid point has a wall distance of 5� 10�4 mm, which
results in a maximum nondimensional wall distance of yþ � 0.1 near the leading edge of
the plate. The fluid was air with g ¼ 1.4 and R ¼ 287 J/kg K. Sutherland’s model was
used for the viscosity, and the conductivity was determined with a constant Prandtl
number Pr¼ 0.72.

The top row of Figure 11 shows the skin friction cf ¼ tw= 1=2r1U2
1

� �
over the

momentum thickness Reynolds number ReH ¼ (r1U1H)/m1, where H is the momentum
thickness:

Figure 8.
Velocity distribution
and shock dilatation
for Sod’s problem at
Mshock¼ 3 conditions
at tmax, wave speeds
with the inner limits
from equation (31) Source: Created by the authors

Figure 9.
Turbulence
amplification across
the shock for Sod’s
problem, equation
(31) was used for the
wave speeds

Notes: (a) Standard case; (b) M = 3 case, ΔS = cS√⅔ k  
Source: Created by the authors

(a) (b)

HFF



H ¼
ðd99:5
0

r

r1

u
U1

1� u
U1

� �
dy: (48)

Note that the 99.5% velocity boundary layer edge d99.5, rather than the maximum extent of
the domain, was chosen as the upper limit of the integral. Because the flow state downstream
of the shock differs slightly from the freestream conditions, the numerical integration would
otherwise produce large errors (Jespersen et al. (2016). The theoretical compressible skin
friction distribution is obtained from the incompressible Karman-Schoenherr relation (Huang
et al., 1993), to which the van Driest II transformation (Gatski, 2013) is applied.

For M1 ¼ 2 all skin friction profiles are similar, only the one computed with HLLESU
and cs ¼ 100 is slightly increased. The skin friction predicted by theory is lower than the
numerical data. It seems that the added numerical dissipation has a small impact on the
boundary layer. TheM ¼ 5 case also shows nearly identical skin friction for the numerical
results. Again, the theory predicts lower skin friction.

Finally, the bottom row of Figure 11 shows the nondimensional boundary layer profiles
at ReH ¼ 10,000 compared to theoretical data from Jespersen et al. (2016). The
nondimensional velocity uþ ¼ u/ut is shown over the nondimensional wall distance yþ ¼
(yut)/v, where ut ¼

ffiffiffiffiffiffiffiffiffiffi
tw=r

p
. The simulation results for both cases show a favorable

performance of all applied schemes. The agreement to theory is satisfactory. These results
indicate that the added numerical dissipation in the proposed scheme does not impair the
performance in attached, shock-free boundary layers.

4.3 Shock/turbulent boundary layer interaction
To investigate the performance of the proposed scheme in a shock/turbulence boundary
layer interaction (STBLI) case, the experiment by Schülein et al. (1996) was simulated. This

Figure 10.
Domain of supersonic

flat plate cases

Notes: The size of the domain in y-direction is 
sufficient to avoid reflection of the leading-edge 
shock
Source: Created by the authors

Table 2.
Boundary conditions

for the supersonic
flat plate boundary

layer

Case M1 [�] T1 [K] Tw [K] Re1,1 [1/m] Tu1 [%] mT/m [�]

1 2 300 513.6 15� 106 0.004 0.009
2 5 1,635 0.002

Source: Created by the authors
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case has proven challenging for RANS models in previous studies (Roy et al., 2018), which
failed to reproduce the interaction of the shock with the incoming turbulence and
consequently over-predicted the wall heating. Because the wall heat flux is significantly
lower in laminar simulations of this case, it is reasonable to assume that excessive
turbulence levels are the root cause of the problem. The proposed scheme should reduce
turbulence amplification across the shock, resulting in lower post-shock turbulence levels
and lower wall heat flux.

Figure 12 shows the numerical domain, the operating conditions are given in Table 3.
The fluid is air with g ¼ 1.4 and R ¼ 287 J/kg K, the resulting unit Reynolds number is
Re1,1 ¼ 40� 106 1/m. A 10° shock generator creates an oblique shock wave that interacts
with a flat plate boundary layer. The shock generator is positioned, so that the shock
impinges on the bottom wall 0.35m downstream of the leading edge for an inviscid flow.
The rarefaction fan generated by the end of the shock generator impinges on the lower wall

Figure 11.
Supersonic flat plate
boundary layer flow

Notes: Top row: skin friction cf over momentum thickness Reynolds number ReΘ; Bottom
row: nondimensional boundary layer profiles at ReΘ = 10,000
Source: Created by the authors
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downstream of x ¼ 0.44 after interacting with the reflected shock. Experimental heat flux
and shear stress data were measured by Schülein et al. (1996) and Schülein (2006).

Other studies of this case, e.g. Wallin and Johansson (2000), often limit the computational
domain to a rectangular region where the effect of the incident shock and the rarefaction fan
are represented by defining boundary profiles. In this study, the entire plate and the shock
generator were simulated, which removes the need for precursor simulations and accurate
interpolation of boundary profiles.

Five grids were compared in a grid convergence study, their properties are shown in
Table 4. Grids 1, 2 and 3, all have the same cell distribution along the channel with varying
cell counts in wall normal direction. Grids 4 and 5 are refined in the interaction region (IR)
(0.34m < x < 0.37m). This also required a minor change in the number of axial nodes
outside the IR. Grid 5 was created by refining grid 4 by a factor of 2 in x and y direction. The
first node in the IR has a wall distance of 0.77mm for grids 1 to 4, which results in a
nondimensional wall distance of yþmax < 0:3 in the IR. The lower wall distance of grid 5
results in yþmax < 0:15. Because the exact distance between the shock generator and the
lower wall were not specified in the original paper by Schülein et al. (1996), the shock
generator was modeled as a slip wall with some minor clustering to better resolve the
attached shock wave.

The grid convergence study was conducted with the HLLE scheme. Unlike for the other
cases, the modified van Albada limiter (van Albada et al., 1982) was used, which does not
clip the solution near smooth extrema and alleviates known convergence problems in
regions with near-uniform flow.

Figure 13 shows the mesh convergence of the wall heat flux and skin friction in the IR.
The Stanton number St ¼ q/(r1U1cp(T0 � Tw)) reported in Schülein (2006) was made
dimensional with the data given in Table 3.

As the grid resolution increases, the peak heat flux and skin friction decrease. The
solutions with grid 4 and grid 5 are very similar even though grid 5 doubles the number of
cells. Therefore, the grid convergence with grid 4 seems satisfactory and grid 4 will be used
for the rest of the simulations.

Figure 12.
Domain of the STBLI

case by Schülein
(2006)Source: Created by the authors

Table 3.
Environmental

conditions for the
STBLI case by

Schülein et al. (1996)

M1 [�] p0 [Pa] T0 [K] Tw [K]

5 2.12� 106 410 300

Source: Created by the authors
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Figure 14(a) shows the heat flux distribution along the wall for the different schemes
compared to experimental data by Schülein (2006). Upstream of the shock interaction, the
agreement to the experiment is good. The experimental data show a more upstream position
of the separation shock in both the heat flux and skin friction distributions. Downstream of
the reattachment, the numerical results strongly overpredict the wall heat flux, whereas the
skin friction data lie within the experimental margin of error, see Figure 14(b).

Comparing the HLLESU scheme with different values of cs shows an increase in wall heat
flux for increasing cs. While cs ¼ 1 and cs ¼ 10 are overall very similar to the HLLE result,
cs¼ 100 and especially cs¼ 1,000 overpredict the heat flux even more strongly than the HLLE
result. Similarly, increasing cs also increases the skin friction, but the difference between
schemes is smaller and the cs¼ 1,000 case even improves the prediction at x> 0.4 m.

Investigating the numerical Schlieren images in Figure 15 shows that the HLLESU
scheme indeed adds numerical dissipation resulting in wider shock waves. This effect is
especially noticeably at cs ¼ 1,000, but can also be observed at lower cs, where the
oscillations around the reflected shock are reduced. The maximum value of the turbulence

Table 4.
Mesh properties for
the grid convergence
study

Grid Nodes IR cells Description

1 100� 435 24 Baseline mesh
2 150� 435 24 Fine wall normal
3 200� 435 24 Finer wall normal
4 200� 696 300 Refined in IR
5 399� 1,389 600 Refinement level 2

Source: Created by the authors

Figure 13.
Mesh convergence of
the STBLI case

Notes: (a) Heat flux; (b) skin friction
Source: Created by the authors

(a) (b)
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Figure 14.
Wall heat flux and
shear stress for the

shock/boundary layer
interaction case with

different schemes

Notes: (a) Heat flux; (b) Skin friction; Numerical results compared to experimental data 
by Schülein (2006)
Source: Created by the authors

(a) (b)

Figure 15.
Numerical Schlieren

images of the
interaction region in

the STBLI case:
@r/@x is shown

Notes: The cross × marks the location of the maximum turbulence kinetic energy kmax

Source: Created by the authors
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kinetic energy and its location are also given in Figure 15. Interestingly, the maximum TKE
does not change drastically for cs ¼ 1 and cs ¼ 100 and even decreases appreciably for cs ¼
1,000. This indicates that the scheme successfully reduces the mean flow gradients and
turbulence amplification across shocks also for STBLI flows given appropriate scaling of cs.

The increased wall heat flux can therefore not be explained by excessive turbulence
amplification alone and appears to be a result of the added numerical diffusion of the
scheme. A first-order solution with the HLLE scheme, which also adds numerical
dissipation, similarly over-predicts the heat flux significantly, albeit at even higher levels.
These diffusive terms effectively increase the viscous momentum and energy transfer,
which results in higher wall heat flux and wall shear stress. The fact that this effect is not
visible for the attached flat plate boundary layer is likely a result of the much higher
turbulence intensity Tumax � 7,700 in the IR of the STBLI case compared to Tumax � 0.075
in the flat plate case. These results seem to indicate that a fixed value of parameter cs may be
inadequate. Future studies should also consider a variable cs that could, e.g. be a function of
the local pressure gradient, reducing the added dissipation in smooth regions.

It should also be noted that the axial Mach numberMx¼ ux/a is greater than one across the
incident shock. Because the supersonic fluxes are not changed from the HLLE scheme, no
numerical dissipation is added in x-direction. In y-direction, the flow is subsonic in the entire
domain and the HLLESU flux function are active. Numerical dissipation is therefore only added
inwall-normal direction, which appears to affect the boundary layer profiles significantly.

5. Conclusion and outlook
The aim of this publication was to show the derivation and performance of an extended
Riemann solver for RANS simulations. The concept is based on the observation that time-
averaged solutions of instantaneously discontinuous waves in turbulent flows are
continuous in space. With that, we can derive equations for the inter-cell flux based on the
left and right mean flow and the velocity variance computed from the turbulence kinetic
energy. A mathematical analysis of the resulting flux functions shows that the new scheme
adds numerical dissipation in the subsonic and transonic cases.

The shock tube test case indicates that the proposed extension of the HLLE scheme
decreases turbulence amplification in shock turbulence interaction given an appropriate
choice of the limiting wave speeds. The results show that the wave speed variance must be
applied to the outside of the wave pattern to introduce an additional dissipative flux. Based
on the observation that RANS simulations overpredict turbulence amplification across
shocks, the results generated with the proposed HLLESU scheme, which show lower
postshock turbulence levels and are an improvement over the ones generated with the HLLE
scheme. It is also revealed that the scheme must be calibrated thoroughly to find ideal
relations for the scaling parameter cs.

The flat plate test case gives very similar results for the standard HLLE scheme and the
proposed extension. This demonstrates that the added numerical dissipation does not
impair the results in cases without strong shock waves. Recalibration of existing models
should not be necessary.

The shock/turbulent boundary layer interaction case shows that the scheme may add
numerical dissipation excessively in cases with locally high turbulence intensity. While the
more dissipative numerical scheme reduces the velocity gradients and therefore the
postshock turbulence, the required numerical dissipation impairs the results further
downstream. Because of that the wall heat flux and wall shear stress are increased.
Switching to a less dissipative scheme in regions without strong gradients could be a
possible solution to the problem. This might reduce the shock-induced turbulence
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amplification without deteriorating the boundary layer. Additional numerical experiments
have to be performed to investigate the performance of the proposed scheme in different test
cases.

While this study succeeded in proving the effectiveness of the proposed scheme in
reducing mean flow gradients, it also shows that the performance of the scheme depends
strongly on the free parameter cs. Choosing an appropriate value for this parameter
introduces additional complexity and additional work is required to determine an
appropriate value. It may be difficult to find a single value that is satisfactory for all cases,
so cs = const may also be investigated. A practical implementation of this could scale the
parameter cs by the magnitude of some mean flow gradient, e.g. the pressure gradient jrpj,
which results in cs¼ 0 in smooth regions, recovering the HLLE scheme. As the different test
cases seem to show different sensitivities to the value of cs, a different definition of the wave
speed variance withDS kð Þ 6/

ffiffiffi
k

p
could also be investigated.

To further improve the performance of the scheme, the contact wave could be included in
the wave pattern, extending the method to a complete Riemann solver, such as HLLC (Toro
et al., 1994). If the idea of combining turbulence modeling and numerical treatment should be
applied to Riemann-solver-free schemes, additional artificial viscosity terms, based on some
turbulent property, e.g. the TKE, could be included in other numerical methods as well.
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