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Abstract

Purpose – This paper aims to investigate whether professional data analysts’ trust of black-box systems is
increased by explainability artifacts.
Design/methodology/approach – The study was developed in two phases. First a black-box prediction
model was estimated using artificial neural networks, and local explainability artifacts were estimated using
local interpretable model-agnostic explanations (LIME) algorithms. In the second phase, the model and
explainability outcomeswere presented to a sample of data analysts from the financialmarket and their trust of
the models was measured. Finally, interviews were conducted in order to understand their perceptions
regarding black-box models.
Findings – The data suggest that users’ trust of black-box systems is high and explainability artifacts do not
influence this behavior. The interviews reveal that the nature and complexity of the problem a black-boxmodel
addresses influences the users’ perceptions, trust being reduced in situations that represent a threat (e.g.
autonomous cars). Concerns about the models’ ethics were also mentioned by the interviewees.
Research limitations/implications – The study considered a small sample of professional analysts from
the financial market, which traditionally employs data analysis techniques for credit and risk analysis.
Research with personnel in other sectors might reveal different perceptions.
Originality/value – Other studies regarding trust in black-box models and explainability artifacts have
focused on ordinary users, with little or no knowledge of data analysis. The present research focuses on expert
users, which provides a different perspective and shows that, for them, trust is related to the quality of data and
the nature of the problem being solved, as well as the practical consequences. Explanation of the algorithm
mechanics itself is not significantly relevant.
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Introduction
Artificial intelligence (AI) is increasingly present in everyday life, as the fast development of
machine learning (ML) techniques has made it possible to create applications such as
recommendations for financial products (Farquad, Ravi, & Raju, 2012), algorithms for
detecting credit card fraud, personal virtual assistants (Lu, Li, Chen, Hyoungseop, &
Serikawa, 2018) and autonomous driving vehicles, among other relevant daily applications.
However, how an ML algorithm achieves the result presented to the decision-maker is
frequently not disclosed in the case of black-box algorithms, whose processing takes place in
a closed environment. For example, it does not allow the identification of which variables
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impacted a credit forecast or, in other words, why a certain customer had their loan
application denied, while another had theirs approved.

Compared to classical statistical models, in which it is possible to clearly explain how the
model’s decision rules were created and for which there were discussions with stakeholders
and regulators about the reasonableness of the results found, AI models do not allow any
detailing of the rules created (Hoffman, Mueller, Klein, & Litman, 2018). The generation of
explanations for AI systems is a key issue for both developers, who need tools for debugging
and checking the level of accuracy of the sequences of rules that lead to a conclusion aswell as
for users, who seek to trust the answers provided by the AI by inspecting the chain of
decisions made to support a given conclusion (Preece, 2018). The term “math destruction
algorithms” has become synonymous, even among the general population, with the work of
the same name by Cathy O’Neil. It presents the potential biases that can be embedded in AI
algorithms and the social consequences of these biases (O’Neil, 2017). The regulation
authorities for data protection in several countries have expanded this discussion, raising
questions about the adequacy of decisions made by these systems, especially regarding
issues with a real impact on people’s lives (Kenny, Ford, Quinn, & Keane, 2021). In short, the
consequences of errors made by a model trained on ML can be severe; for example, if an
algorithm classifies an x-ray image as normal, whereas in fact there is a tumor that might
threaten the patient’s life (Narwaria, 2022).

Brynjolfsson and McAfee (2017) described the problems associated with the opacity of
black-box algorithms, bringing this discussion to the nonacademic user. There are, in their
view, three risks associated with the opacity of AI systems. The first is the hidden bias,
derived from the data used for training the models that cannot be explicitly stated as a rule;
for example, a credit-granting system that may take into account factors such as ethnicity,
race or gender for its final decision. The second risk is associated with the difficulty of
extracting explicit rules from a complex model. For example, a system of neural networks
that uses hundreds of thousands of connections, in which each connection has a small
contribution to the final decision, means that it is extremely difficult or even impossible to
recognize its internal rules. The latter is associated with the difficulty of diagnosing and
correcting possible, and sometimes unavoidable, errors in an AI system. Hence, the
underlying structures created during the system training can lead to incorrect decisions that
are far from the ideal.

AI systems using black-box algorithms are powerful tools in terms of results and
predictions, but there is a direct relationship between results (i.e. accuracy) and opacity,
which makes it difficult to gain insights into the internal processing (Chen, Yang, Pan, Xu, &
Zhou, 2015). The neural network algorithms that are the focus of this research exemplify the
opacity in AI systems. To address the opacity issues in ML and, consequently, in AI systems,
the term explainable artificial intelligence (XAI) was proposed by van Lent, Fisher, and
Mancuso (2004). This can be defined as a system in which the user can not only see, but also
understand how the inputs (independent variables) are mathematically mapped in order to
generate the outputs (dependent variables) (Adadi & Berrada, 2018). Thus, it seeks to ensure
that algorithmic decisions can be explained to final users and other stakeholders in
nontechnical terms (Barocas et al., 2018), so that possible biases can be identified and
corrected.

Hoffman et al. (2018) posed an interesting definition about the function of XAI
mechanisms. In their view, explainability artifacts should clarify the mental models behind
the analytical model, making it possible to differentiate positive and negative aspects and
“shields” that limit the development of new and richer mental models. However, these
mechanisms of explainability are not yet widely applied, although AI systems have been
increasingly used by organizations. Thus, the following research question was posed: Do
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explainability mechanisms for black-box AI systems increase user confidence in system
results?

This study aimed to analyze whether the methods of interpretability for the black-box AI
algorithms increase user trust in the system results. To reach the objective, a neural network
model was developed as well as the explainability mechanisms for their results. In a quasi-
experimental design, users’ trust was measured when they analyzed the results of the neural
network model with and without explainability solutions.

Explainability in AI systems
The implementation of explainability mechanisms, known as XAI, is fundamental to
guarantee the practical viability of AImodels. However, its adoption has been predominantly
post hoc; that is, adopted as an additional analysis after model training, when it should
actually be part of the design of the model itself (Narwaria, 2022). It is possible to sort the
interpretabilitymodels into two groups: global interpretation and local interpretation (Pereira
et al., 2017). The goal of global interpretation is to understand how independent variables
without transformation have influenced the predictions of the model, generating a general
explanation and not a specific solution (explanation by each dataset observation). This type
of interpretation does not identify the influence of each independent variable on the prediction
but aims to identify general factors influencing the training. Local interpretation, in turn,
seeks to understand why certain decisions were made by the model after its estimation,
considering the results of the predictions per case of the sample (Adadi & Berrada, 2018). In
this study, themechanisms of local explainability were considered, as theymake it possible to
understand the results generated by the black-box algorithms on a case-by-case basis.

In addition to global or local level, methods of interpretability can be classified as agnostic or
model specific. Agnosticmethods allow the generation of explainability solutions independently
of themathematical algorithmused to create the originalmodel. This feature offers the flexibility
to explain black-box models. Specific methods have been developed for application to specific
algorithms. One of the methods of agnostic local interpretation was proposed by Ribeiro, Singh,
and Guestrin (2016). It is called local interpretable model-agnostic explanations (LIME) and is a
linear proxy model that proposes the creation of explanations for predictions of any classifier
that are interpretable and faithful to the original model prediction. The LIMEmethod was used
in the present research but has also been used in other studies regarding explanation of opaque
systems (Narwaria, 2022). Other XAI methods are reported in the literature; for example, the
contributions oriented local explanations–Hadamard product (COLE-HP) used by Kenny et al.
(2021) for generating local explanations for a convolutional neural setworks model; the GLocalX
agnostic method proposed by Setzu et al. (2021), which generates local explanations that, when
aggregated, can provide a global explanation for the opaquemodel; and theLocal interpretation-
driven abstract Bayesian network (LINDA-BN) method based on Bayesian networks for
generating local explanations about conditional dependencies proposed byMoreira et al. (2021).
Confalonieri,Weyde, Besold, andMoscoso del PradoMart�ın (2021) proposed the trepan reloaded
global explanationmodel, which considers the ontologies of the dominant knowledge and builds
decision trees from black-box models, thus, making it easier to understand the results.

To assess themodels, accuracymetrics can be applied to a test dataset. However, this type
of assessment may not be an indication that the model is reliable. Inspection of individual
forecasts and their explanations is a complementary solution to these metrics, but it is
important to suggest which instances should be inspected, especially for large datasets. The
LIME method, applied in this research, proposes to provide explanations for single
predictions as a solution to “confidence in a forecast” and selects several of these predictions
(and explanations) as a solution to the “model confidence” problem.

Users’ trust in
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The explanation is defined as a g∈Gmodel, whereG is a class of potentially interpretable
models, such as linear models, decision trees or descending rule lists (Wang & Rudin, 2015).
A g ∈ Gmodel can be presented to a user along with visual or textual artifacts. As not every
g ∈ G model can be simple enough to be interpretable, this study used Ω(g) as a measure of
complexity (as opposed to the interpretation) of the explanation g ∈ G. For example, for
decision trees, Ω(g) can be the tree depth, while for linear models, Ω(g) can be the number of
nonzero weights.

Themodel being explained can be denoted as : Rd
→ R . In classificationmodels, f(x) is the

probability (or a binary indicator) that x belongs to a certain class. Furthermore, this study
used πxðzÞ as a measure of proximity between an instance z to x, in order to define the locality
around x. Finally, L ðf ; g; πxÞwas a measure of how unfaithful g is in approximating f in the
locality defined by πx. To ensure interpretation and local fidelity, it was necessary tominimize
L ðf ; g; πxÞ by having Ω(g) sufficiently low to be interpretable by humans. The explanation
produced by LIME (Ribeiro et al., 2016) is obtained by equation (1):

ξðxÞ ¼ argmingeG Lðf ; g; πxÞ þ Ω ðgÞ (1)

Source(s): Ribeiro et al. (2016, p. 3).
For the explanations to be model agnostic, LIME proposes a loss minimization with

locality recognitionL ðf ; g; πxÞwithout making any assumptions about f :Therefore, to learn
the local behavior of f according to the input variables, the approximation of L ðf ; g; πxÞ is
made, creating samples, weighted by πx. The sample instance is created around x0 by drawing
random nonzero elements of x0.

Given a perturbed sample z0 ∈ f0; 1gd0, containing a fraction of the nonzero elements of x0,
the original data sample z0 ∈Rd is recovered obtaining f ðzÞ, which will be used as a label for
the explanation model. Given this dataset Z of perturbed samples with the associated labels,
equation (1) is applied to obtain an explanation ξ (x).

Trust in AI systems
The adoption of new technologies leads to changes in human behavior, in some cases
with loss of control over some functions that were essentially human, sometimes with
loss of power of acting over the object. In this sense, the user’s confidence in the new
technology or system is fundamental so that the feeling of well-being given the loss of
control can be restored. If, on the one hand, reliable systems tend to be more frequently
used, especially in situations involving risk, on the other hand, the factors that increase
trust in a system still need to be explored in depth (Cahour & Forzy, 2009). Trust results
from efforts that human beings make to overcome their fears, which are not a rational
reaction to uncertainty, but a reaction to the fear generated by such uncertainty
(Gl�eonnec, 2004).

The representation of trust can be summarized as a real relationship between risk and
delegation of control to an object. Hence, the emotional comfort of the subjects depends on
their level of trust or distrust in the object. When they consider it to be trustworthy (or not
risky for them) and predictable, both complexity and uncertainty are reduced by increasing
their emotional comfort (Cahour & Forzy, 2009).

The study of trust in AI systems is important because, in order to delegate to the algorithm
a task that was originally performed by humans (e.g. credit analysis, performance assessment
for a promotion at work, image analysis for disease diagnosis, autonomous driving vehicles,
among others), it is necessary to establish a relationship of trust with the algorithm. Since the
algorithm studied in this research is that of black box, the difficulty in understanding the
reasons that lead to the output can generate emotional discomfort in the user and compromise
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confidence in the result presented by the model. Dikmen and Burns (2022) made a
counterpoint, arguing that XAImechanisms help in the interpretation of opaquemodel results
but, at the current stage, theymay not yet be human-centered and therefore do not adequately
support human decision-making. They carried out a study with AI systems for investment
recommendation and found out that even models with explainability were passed over by the
users surveyed when there was an investment recommendation made by human experts.
Thus, they concluded that the knowledge of human experts, translated into advice, is more
decisive for decision-making than the recommendations of an AI system, even those
supported by explainability artifacts (Dikmen & Burns, 2022).

In his study, Shin (2021) conducted an experiment with users, presenting them with an AI
system for product recommendation; for some of them, an XAI artifact was presented
allowing them to identify why a certain recommendation was made by the system. The
results showed that the explanation increased the users’ confidence, as it allowed them to
understand how the recommendation was built by the system; however, their ability to
understand the explanation is an important point, as it impacts their emotional trust. In this
way, the ability to understand the explanation of the result is as relevant as the explanation
itself.

Lewis and Marsh (2022) argued that trust is a kind of human heuristic for decision-
making. They then proposed a model in which human judgment about the reliability of the
object is fed by subjective and situational factors, and this process is what leads to the
behavior of trusting or not trusting the object. Thus, in their view, trust is a complex construct
that cannot be achieved by tools such as guides or explainability artifacts, the latter
applicable to AI systems.

Tomeasure the trust in a XAI system, Hoffman et al. (2018) andAdams, Bruyn, andHoude
(2003) proposed twomain research questions: Do you trust themachine’s outputs?Would you
follow the machine’s advice? In this current research, the confidence scale proposed by
Cahour and Forzy (2009), described below in the methodological procedures, was adapted
and applied.

There is still a lack of consensus in the literature on the effectiveness of explainability
artifacts in increasing user confidence in AI systems. Additionally, the studies reviewed
addressed common user trust inAI systems. However, they do not specifically address skilled
users, that is, those professionals involved with ML modeling, for example, data scientists
and business intelligence professionals. The present research focused on the study of the
trust of thesemodeling professionals inAI algorithms, as they are responsible for creating the
models and for the consequences of possible biases in the results. Thus, the hypothesis tested
in the research is:

Ha. Explainability artifacts increase user confidence in a black-box AI system.

Method
Considering the study’s aim, the research can be classified as exploratory and descriptive, as
it verified whether the explanation artifacts increase a skilled user’s trust in black-box
models. The research was developed in two phases: 1) creation of the model; 2) assessment of
users’ trust in the AI system.

In phase one, an open dataset available on the Kaggle website was selected. This dataset
related to the retail banking sector and contained information from a telemarketing campaign
to offer and sell a financial product (long-term deposits) to bank customers. The artificial
neural networks algorithm (multilayer perceptron classifier) was applied to this database in
order to predict the customers who would buy the banking product offered in the campaign.
The response variable was binary (0 5 sale not made, 1 5 sale made). After creating the
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predictive model, the XAI LIME algorithm was applied to create an explanation for some
cases of the test sample, allowing identification of which variables actually influenced the
classification of the potential customer into the categories 0 or 1. The characteristics of the
dataset and analyzes performed in this step are detailed in the results.

After the estimation of the predictive and explainability models, phase two of the research
was performed, which consisted of the assessment of users’ trust in the proposed AI system.
This phase aimed to test the research hypothesis, evaluating whether offering the
explanation about the prediction result increased user trust in the neural networks system.
For this, a survey was applied, in a quasi-experimental design, with two groups: an
experimental group, which received the explanation artifact along with the neural network
results, and a control group, which received only the neural network prediction results. This
methodological option met the objective of the research, since it enabled verification of
whether there was a difference in the perception of trust between users who have access and
those who do not have access to the mechanisms of explanation, making it possible to assess
whether XAI has a significant effect on the users’ mental model.

The literature reviewed in this research contained results from the assessment of trust in
AI systems by nonspecialist users. For this reason, the present research chose to assess the
trust of professional users (data scientists, business intelligence professionals) who develop
this type of model within real organizations and whose impacts can actually affect their
customers’ lives and the reputation of their companies. In order to maintain the homogeneity
of the experimental and control groups, professional data analysts from Brazilian banking
institutions were invited to participate in the survey, given that this sector traditionally
makes use of analytical techniques, including black-box models, for financial and risk
analysis. Consequently, they were qualified to evaluate the results obtained by the neural
network model and by LIME, making it unnecessary for the researcher to offer prior training
for the task. In this way, the problem raised by Shin (2021) about the user’s ability to
understand the result of the model and of the explainability was eliminated. The survey form
was composed as follows:

(1) Experimental group: consent form, homepage with information on the management
problem being modeled, measurement of user trust in AI systems, presentation of the
forecast results’ tables without the explanation obtained by XAI and without any
report of the meaning of the results, measurement of user trust after exposure to the
model.

(2) Control group: consent form, homepage with information on the management
problem being modeled, measurement of user trust in AI systems, presentation of
forecast results tables with the explanation obtained by XAI and without any report
of the meaning of the results, measurement of user trust after exposure to the model.

The trust scale was adapted from the work of Cahour and Forzy (2009), whose items were
classified on a five-point Likert scale ranging from strongly agree to strongly disagree. The
methodology developed by Cahour and Forzy (2009) emphasizes natural activity, as it is
experienced by subjects, as trust is defined as a feeling, and therefore highly subjective and
barely observable through the subject’s behavior. The scale items can be seen in Table 1.

Datawere collected online through theQualtrics platform. A pilot test was carried outwith
three professionals from the target audience in order to identify inconsistencies in the
questionnaire; however, only minor text corrections were required after the pilot. The
potential respondents (banking sector professionals, experienced users with three or more
years of experience in the field of data science) totaled 45 people who were individually
contacted and invited to participate in the study. Consent was obtained from 17 of them. This
sample was then randomly divided into two groups (experimental with nine respondents and

REGE



control with eight respondents) and each one was sent the corresponding questionnaire in
July 2020. Finally, after data collection and analysis, interviews were undertaken with four
participants in the sample, two in the control group and two in the experimental group. This
step aimed to understand in greater depth the perceptions of professionals about the
reliability of black-box algorithms. The interviews were conducted through video
conferences using Skype software and were recorded with the participants’ consent and
transcribed for analysis.

Results
Estimation of the black-box neural network model and LIME explainability
This research addressed the problem of classifying customers who, through telemarketing
calls, could buy long-term deposits. Telemarketing agents couldmake contact in twoways: (i)
through phone calls to a list of clients; or (ii) by approaching the customer while they were
contacting the company for another reason. The contact result had only two possible
outcomes – unsuccessful or successful contact.

The dataset was available in the Kaggle repository. It had 41,118 observations (only 6,557
of them classified as successful), 20 independent variables were available, and the data were
collected fromMay 2008 to November 2010. Python libraries were used to estimate the neural
network, with the following steps: (1) screening and descriptive analysis of data; (2) data
preparation; (3) training of neural networks; (4) assessment of model metrics and (5) creation
of explainability artifacts.

For the first step (reading and descriptive analysis), pandas and pandas_profiling library
were used to read the data source file and to create a report containing the description of the
variables and their descriptive statistics (for continuous variables, minimum values,
averages and maximums were calculated; for categorical variables, the distribution graphs
were developed).

For the second step (data preparation), the pandas library was used to rename the
variables to Portuguese. Transformation of categorical variables into dummy variables was
also performed. After this step, the training and test data were split using the sklearn library,
following the proportion of 80% for training data and 20% for test data. This separation was
necessary to respect the proportion of the dependent variable (positive and negative) in both
sets (training and test) and was performed without replacement and randomly. It should be
noted that the test data were used only to validate the metrics and were not used at any time
during the training stage.

For the third stage of neural networks training, the sklearn library was used to estimate
the parameters and train the neural network model. To obtain the training parameters of the
model, the random search strategy with cross validation was used. In this way, the training
dataset was resampled and trained with different parameters in order to obtain the best
result. In the case of this study, the model with the best receiver operating characteristic

Variables I trust in AI systems Likert
scale

5 Strongly agree
4 Slightly agree
3 Indifferent
2 Slightly
disagree
1 Strongly
disagree

I consider the AI systems work well
The outputs from the AI systems are predictable
AI is trustworthy. I can trust it to be correct all the time
I am sure that when I trust AI systems, I will get the correct
answers
AI systems can do the task better than a human user

Source(s): Adapted from Cahour and Forzy (2009)

Table 1.
Trust in AI

systems scale
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(ROC) curve metric in the training data was used. The technique used was the multilayer
perceptron classifier.

For the fourth step (assessment of the model metrics), the sklearn library was used to
generate the classification performance report for the model trained in the previous step. As
this was a black-box model, in this step, a comparison of the metrics of accuracy and area
under the ROC curve in the training and test data was performed. These were the only
possible measures for evaluating the quality of the model. The precision indicator deals with
the percentage of successful cases (code 1) correctly classified among the total of cases
classified as positive in the sample and can be obtained by equation (2), in which TP are the
true positives (successful cases classified as success) and FP are the false positives (failure
cases classified as success).

Precision ¼ TP

TP þ FP
(2)

The recall deals with the percentage of successful cases correctly classified in relation to the
total of caseswith code 1 in the sample and can be obtained by equation (3), where FN are false
negatives (success cases classified as failure).

Recall ¼ TP

TP þ FN
(3)

The F1 considers both recall and precision and is obtained by the harmonic mean of the two
measurements multiplied by two; being obtained by equation (4).

F1 ¼ 23
recall3 precision

recall þ precision
(4)

Finally, the area under the ROC curve varies between zero and one and consists of a
performance measure of the binary classification model. In this way, when the threshold
approaches zero, there is greater confidence that the case is classified as a failure. Similarly,
the closer to one, the greater the confidence, that the case is classified as a success. All the
neural network performance measures described are better when they are of a larger type.
For the model created in the research, the accuracy results are shown in Table 2. Fair
goodness of fit was observed, inwhich code 0was the lowest result. However, as its valuewas
close to 50% it can be considered reasonable. Close results on the training and test datasets
also suggest the absence of an overfitting problem.

For the fifth and final step (creating the explainability artifacts), the LIME library was
used. To create the explanation artifacts, it was necessary to predict the test dataset sorting
data from the highest to the lowest value. Then, three observations with the highest
probability of success classified as 1 and three observations with the lowest probability of
failure classified as zero were selected. Figure 1 illustrates the explainability artifact obtained

Class
Training Test

Precision Recall F1 ROC Precision Recall F1 ROC

Success
Code 1
Successful sale

0.975 0.896 0.934 0.934 0.967 0.890 0.927 0.931

Failure
Code 0
Unsuccessful sale

0.497 0.815 0.617 0.499 0.784 0.610
Table 2.
Neural networks’
results for the training
and test datasets
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by the LIME algorithm for a case that had code zero in the dataset andwas correctly predicted
with code zero; that is, a case in which the sale was not performed. On the left side of the
artifact are the data of the case being explained (case ID 36589 from the database), including
its age, occupation, marital status and other corresponding variables. The blue lines on the
left side (prediction and target) refer to how the case was predicted by the neural network
(prediction) and its real value in the database (target), so this case was correctly predicted
with code 0. On the right side of the artifact, the effective explanation of the XAI is observed,
the blue lines indicate which variables had an impact and determined the classification of the
case as failure; in this case, the last month in which the customer had been contacted by the
sales team (dummy variable for months of March and July), the customer’s occupation as a
student, and the duration in seconds of the last telephone contact made with the customer.
Thus, it can be seen that of the vast set of 20 predictor variables inserted in the network, only
three were decisive in the classification. The orange lines represent the variables that would
indicate the classification of the case as a success, but their weight in the algorithm decision
was much lower, so that the classification occurred as a failure. The graphic illustrated in the
upper right corner of the artifact shows the strength of the variable’s influence and, in this
case, it can be seen that the variables in blue were the determining factors.

In managerial terms, one can think of the following implications of the adoption of the
neural network created as a tool for classifying potential customers who are likely to buy
banking products. Based on the goodness of fit found by the model, it would make a useful
tool to find potential customers. However, some possible problems should also be considered;
for example, bothering customerswho are not likely to buy banking products, since themodel
has a percentage of misclassification. Nevertheless, being used together with other possible
tools in the sales area, the network can add value to the organization, even without the
explanation artifact. From a different perspective, this model could be used to evaluate the
performance of employees in the sales team; for example, by filtering the data by individual
employee and verifying the probability of conversion of each salesperson, eventually
rewarding those with the highest probability of success or punishing those less likely to
succeed. From this perspective, the use of this model could be harmful, and there may be a
bias in the evaluation. When considering only probabilities of success and failure, without

Figure 1.
Example of the LIME
explainability artifact
for cases of success
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evaluating the determinants of these results, the manager would be ignoring a possible
sample bias (some salespeople may have been allocated to a more resistant customer
database, for example). The explanation artifact, by opening the classifications of each
customer, allows evaluation of the reasons for success and failure and the establishment of
different and perhaps more effective approach strategies for the sales team. Poor sales
performance does not necessarily imply poor salesperson performance, but perhaps an
inadequate customer approach strategy. The explanation artifact allows a very objective
assessment of each case individually in a business intelligence action.

Trust in black-box systems
The experimental and control groups, as described in the methodological procedures,
completed the trust scale questionnaire before and after observing the neural network results.
To assess the difference between the groups, before and after, nonparametric tests of
significance were applied, considering the ordinal nature of the Likert scale and the small
sample size. Table 3 presents the descriptive statistics for both experimental and control
groups, before and after the presentation of the model results. The value of the means
demonstrates higher scores in general trust and on the AI systems’ functioning.

Wilcoxon’s nonparametric test for paired samples was applied to assess the difference in
perception before and after seeing the model results. There was no significant difference
between bothmoments (before and after receiving themodel results) in both the experimental
and control groups (Table 4). These results corroborate the results found in the research
carried out by Cahour and Forzy (2009) and Lewis and Marsh (2022).

After the survey, four participants were invited for in-depth interviews, two from each
research group. Respondents, when asked directly about trusting AI systems, reported
things that exceeded explanation artifacts, such as the dataset quality and the absence of bias
in the input data as critical aspects to the reliability of predictions generated by black-box
systems. In addition to the concern regarding the methodology applied to the data used in the
construction of the model, aspects such as the nature and complexity of the problem, as well
as the maturity of the areas that use AI systems for decision-making, were pointed out. When
asked about the proper functioning ofAI systems, respondents emphasized the importance of
applying algorithms to good quality databases. Regarding the predictability of the outputs of
AI systems, the creator’s knowledge and the ability to adjust the algorithm were raised as

Variable

Control group Experimental group

Before
explanation (T0)

After
explanation

(T1)
Before

explanation (T0)

After
explanation

(T1)

I trust in AI systems 4.13 4.13 4.00 4.11
I consider the AI systems work
well

4.25 4.13 4.00 4.00

The outputs from theAI systems
are predictable

3.25 3.38 2.33 2.44

AI is trustworthy. I can trust it to
be correct all the time

3.13 3.25 2.44 2.67

I am sure that when I trust AI
systems, I will get the correct
answers

3.13 3.50 3.22 3.00

AI systems can do the task
better than a human user

3.38 3.75 3.56 3.44
Table 3.
Average values
for trust
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influential. On the other hand, the perceptions regarding the predictability and trust in the
outputs of AI systems did not appear to be directly related.

The application of AI systems in the financial area was also mentioned as a reliability
factor, as financial is an area that has been using analytical methods for a long time. When
asked whether the outputs of the systems would always be correct, respondents cited human
intervention in the creation of an AI system as a factor that negatively impacts trust, as
human bias can be transferred to themodel. The error rates of the systemswere also cited as a
factor that limits trust, but some error is intrinsic to the models; however, if error is high, it
undermines trust. On the other hand, a model with great accuracy does not inspire trust,
generating suspicion of an estimation problem such as overfitting. Regarding the application
of the models to different real contexts, the interviewees showed concern about the adequacy
of these models in different situations, emphasizing the need to monitor the system’s
performance. Another point considered was the comparison of the performance of the AI
system against an a priori expectation, and that by confirming the user’s expectations the
model manages to arouse their trust.

Regarding the ability of an AI system to execute a task performed by a human, the
interviewees observed that the computational capacity for information processing and the
ability to identify and replicate behaviorwere advantages of AI in performing tasks. The type
of task to be performed by the AI system was cited as an important aspect affecting trust; for
example, for punctual and routine tasks, respondents reported trust in the system, but
recognized potential problems. Summarizing the data collected in the interviews, it was
possible to identify the trust factors highlighted in Table 5.

Group Variables compared P-value

Experimental P1(T0) – P1(T1) 0.317
P2(T0) – P2(T1) 1.000
P3(T0) – P3(T1) 0.564
P4(T0) – P4(T1) 0.157
P5(T0) – P5(T1) 0.577
P6(T0) – P6(T1) 0.564

Control P1(T0) – P1(T1) 1.000
P2(T0) – P2(T1) 0.317
P3(T0) – P3(T1) 0.317
P4(T0) – P4(T1) 0.655
P5(T0) – P5(T1) 0.257
P6(T0) – P6(T1) 0.083

Trust factors Information obtained from the interviews

Data Concern about the quality of input data for estimating AI systems
Method Estimation steps, choice of the audiences, data and risk mitigation
Maturity Experience in creating and solving problems using AI
AI system development Trust in the developers of AI systems
AI system usage Human intervention during the use of AI systems
Algorithm limitation Errors associated with the outputs of the algorithms used to create the AI

systems
Application context
volatility

Changing the application context of AI systems after their estimation

Table 4.
Non-parametric tests

results

Table 5.
Trust factors based on

the interviewees’
points of view

Users’ trust in
black-box
algorithms



Conclusions
The research hypothesis, which evaluated the positive influence of trust in black-box models
supported by explainability artifacts, was not supported, given the nonsignificance of
nonparametric tests. This result, together with the results of the interviews, demonstrates a
high level of trust in AI systems, with or without explanation artifacts. The interviews
suggested some factors that influence user trust, and explanation artifacts were just one of
these factors. It is noteworthy, however, that the sample studied was composed of
professionals from financial institutions, working in the area of data analysis and, therefore,
theyweremature connoisseurs of AImodels withwell-establishedmental models about these
systems.

The explanation artifacts shown to the research participants did not influence the
change in the existing mental model, corroborating Cahour and Forzy’s (2009) claim that
trust in AI systems is linked to predictability and expectations about the outputs of the
systems. The maturity of the financial area participating in this study proved to be a
potential factor, so that the difference in trust was not significant, but for other application
areas the results may be different. Factors related to the methods used to create an AI
system and the representativeness of the data was cited as determinants by the
interviewees.

The survey results, in light of the reviewed literature, show that there are different
audiences affected byAI. a) Themodel developers, studied in this research, who have a broad
view of modeling from the assessment of data quality, to the objectives of forecasting and its
results. For this audience, the artifacts of explanation are just anothermeasure to be observed
in the assessment of the model. b) Managers who receive the results of the models to support
their decision-making. This audience was not studied in this research, but has a great
potential to benefit from the artifacts of explanation, if able to understand the information
brought by these tools. c) The final consumer, who is classified by the forecast models,
possibly the most vulnerable people of those mentioned, since sometimes they may not even
be aware that their demand was classified by an AI algorithm.

From a practical point of view, the research results demonstrate the concern of the
professionals who generate the models with the quality of the model and reduction of bias,
but when considering managers and final consumers, there is still scope for additional
research, which can support regulation policies for the use of this type of system.

It is concluded that the literature on trust factors in AI systems is still in an initial phase
when observed from the quantitative aspect. The different applications of these systems
affect trust in multiple dimensions. Finally, the study of only one type of audience, the
developers of AI systems and only one economic sector, retail banking, in addition to the
sample size, are pointed out as limitations of the research. However, due to the high
specialization and experience of these professionals, who work in large Brazilian banks, and
the homogeneity of the banking sector, a good representation of the results obtained is
assumed.
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