Index

Abaca, 22	Method (BREEAM),
Absorption systems, 44	155–156
Adiabatic compressed air energy	Building energy, 68–69
storage (ACAES) (see also	
Compressed air energy	Carbon emission, 10–11
storage (CAES)), 172	Central business districts (CBDs), 5
Adsorption, 42–43	Classic Trombe walls, 62–64
adsorption-based systems, 40-41	Coefficients of performance (COP),
cooling chiller, 51	50–51, 57
2030 Agenda for Sustainable	Coir, 22
Development, 2–3	Collector efficiency, 43
Air changes per hour (ACH), 68–69	Commercial fisheries in Malaysia, 191
Air conditioning systems (AC systems),	Commercial fishing, 191
40–41	Commercial mechanized trawlers, 191
disadvantages of conventional air	Commercial trawl fishing, 191
conditioning systems, 41–42	Community waste recycling, 121–123
need and demand of, 39-42	Complimentary strategies, 207–209
Air pollution control (APC), 143	Composite products, 21–22
Air storage, 175	Composite Trombe walls, 62–63
Analytical Hierarchy Process (AHP),	Compound parabolic collector (CPC),
26	50–51
favorability, 26	Comprehensive Assessment System for
stages, 29	Built Environment
Analyzed fibers, 26–28	Efficiency (CASBEE),
Aquaculture, 208–209	155–156
Augmented Dickey-Fuller tests (ADF	Compressed air energy storage
tests), 104	(CAES), 172
	assumption of parameters
Bamboo, 22	considered for calculation of
Banana, 22	system status, 178
Billionaire's Row, 7	efficiency, 177
Biodegradable waste, 120	governing equations of
Biogas, 126	mathematical model,
Biomass, 22	174–177
Bird collision, 12	main system components, 175–177
Bird-glass collisions, 12	results, 177–185
Bottom-up planning, 121	technology description, 173-174
British Research Establishment	transient status of system, 179-181
Environmental Assessment	Compressor, 176–177

Conservation, 190	Elevator malfunction, 6–7
Construction, 9–10	Energy efficiency, 163
Conventional air conditioning systems,	Energy efficiency ratio (EER), 55–56
disadvantages of, 41–42	Energy intensity (EI), 40–41
Cooling load during summer for	Energy Plus software
different water-based	model configuration in, 75–76
trombe wall configurations,	model options, 76
78–79	Energy storage, 66
Coral reefs, 201	technologies, 172
Cotton, 22	Environmental efficiency, 94
Council on Tall Buildings and Urban	Equality, economics, and ecology
Habitat (CTBUH), 8–9	(3Es), 3
	European Economic Area (EEA), 94
Data Envelopment Analysis (DEA),	European Union (EU), 92
92–96	environmental policy, 92
Daylight desorption, 42–43	Evacuated tube collectors (ETCs), 44
Decision-Making Units (DMUs),	Evaporative cooling, 62
92–93	Evaporator-adsorption process, 51
Decision-support systems, 35	Excess capacity reduction measures,
Deep-sea fishing, 207–208	197–198
Demolition and construction waste,	Exclusive economic zone (EEZ), 190
144–145	Expander, 176–177
Department of fisheries (DOF), 199	Explanatory Data Analytics (EDA), 94
Department of Fisheries, Malaysia	
(DOFM), 190–191, 193	Family-owned trawlers, 191
Department of marine park (DOMP),	FAO Agreement on Fishing Vessels on
199	the High Seas (1993),
Desiccant cooling units, 42–43	192–193
Desiccant technologies, 42–43	FAO Code of Conduct for Responsible
system performance of LDAC	Fisheries (1995), 192–193
systems, 43	FAO International Plan of Action for
Desiccant units, 42–43	the Management of Fishing
Design Builder software, 68	Capacity (IPOA-capacity),
description of building simulated in,	198
68–70	FAO International Plan of Actions for
Desorption-condensation process, 51	the Management of Fishing
Directional Distance Function (DDF),	Capacity (1999), 192–193
94	Fisheries Act of 1985, 192–193
Discharge energy efficiency (DEE), 177	Fisheries Development Authority of
Drainage, 162	Malaysia (FDAM), 193
-	Fisheries regulation to promote
Ecologically preferable materials, 26	sustainability, 192–194
Ecotourism, 203	Fishing gears and mesh size, 194–195
Electrical COP, 43	Flex, 22
Electricity, 62	Floor, 71
Electrochromic Trombe walls, 62–63	Fluidized Trombe walls, 62–63

Food and Agriculture Organization	Hemp, 22
(FAO), 192–193	High-Density Polyethylene (HDPE),
Foraminifera Stress Index (FSI), 204	125
Fuzzy c-Means algorithm, 94	High-rise developments, 1–2
	construction, repair, and
Geological considerations, 11–12	maintenance, 7–8
German Sustainable Building Council	economic dimension, 8-10
DGNB, 155–156	environmental dimension, 10-12
Global Environment Facility (GEF),	family, community living, and well-
2–3	being, 4–5
Global Platform for Sustainable Cities	future research, 17
(GPSC), 2–3	human scale, placelessness, and
Global warming, 61–62	public realm, 5–6
Granger causality model, 95	people's choice, fit, and comfort,
Green building (GB), 154–155	6–7
analyzed fibers, 26–28	purpose of study, 2
awareness of green building	searching for remedies to problems
concepts, 159	13–15
comparison scale, 31	social dimension, 4-8
components, 26	sustainability as framework, 2-3
decision matrix, 32	tall building construction boom, 1–2
extent of adoption of green building	tapping potential of, 15–17
concepts, 159–167	High-temperature Kalina cycle system
focus areas, 154	172–173
methodology, 29-33	Hong Kong Building Environmental
Green Building Council of Australia	Assessment Method (HK
Green Star (GBCA),	BEAM), 155–156
155–156	Humidity adsorption, 25–26
Green Building Index, 155–156	Huntorf CAES plant, 172–173
Green HFC-free refrigerant, 43	
Green Mark Scheme, 155–156	Ideal waste hierarchy, 121
Green supply chain management	Incineration, 137
(GSCM), 140	Indian Ocean Tuna Commission
Greenhouse gas emissions (GHG	(IOTC), 208
emissions), 62, 98, 172	Indoor air quality, 166–167
Gross Capital Formation (GCF),	Indoor environmental quality (IEQ),
93–94	155–156
Gross Domestic Product (GDP), 93–94	International Energy Agency (IEA),
Ground floor, 71	62
Heat exchangers, 176	Jarque-Bera normality tests, 104
Heat recovery, 173	Jute, 22
Heated water, 62	Juvenile and Trash Excluder Devices
Heating load during winter for	(JTED), 195
different Trombe wall	
configurations, 76–78	Kakamega municipality, 156

awareness of green building	Malaysian Acetes (shrimp) Efficiency
concepts, 159	Device (MAED), 195
demographics, 159	Malaysian Maritime Enforcement
ethical considerations, 158–159	Agency (MMEA), 199
extent of adoption of green building	Malaysian Maritime Enforcement
concepts, 159–167	Agency Act 2004, 199
methodology, 156-159	Maleic anhydride polypropylene,
reliability and validity, 158	25–26
research design, data collection, and analysis, 157–158	Marine ecosystem conservation policy, 200–205
study area, 156	conservation of natural habitats and
Kenaf, 22	ecosystem, 200–201
Kenya, 156	law enforcement, 203-204
	MPAs and ecotourism, 203
Landfill, 134	pollution and environmental policy,
Landfill gas (LFG), 138	201–203
Landscaping, 162	recommendations to improve
Law enforcement, 203–204	marine ecosystem
LDAC systems, system performance	conservation plan, 204–205
of, 43	Marine Park Department Malaysia
Leadership in Energy and	(MPDM), 203
Environmental Design	Marine Protected Areas (MPAs), 203
(LEED), 155–156 Leaf fibers, 22–24	Maximum sustainable yield (MSY), 192
Legal framework, 192	Mekong Region Waste Refinery
Lembaga Kemajuan Perikanan	International Partnership
Malaysia (LKIM), 208	Project, 114
Life cycle assessment (LCA), 138	Ministry of Natural Resources and
benefits, 138–139	Environment (MNRE), 203
framework for methodology,	Monitoring, Control, and Surveillance
137–139	(MCS), 199
Life-Cycle Saving, 50–51	Mudflats, 201
Local Government for Sustainability	Multicriteria decision-making
(ICLEI), 2–3	methodologies, 29
Logarithmic polynomial function,	Multiple objective genetic algorithm
174–175	(MOGA), 45–46
Low impact development (LID), 162	Multiple OLS approaches, 97
Low-Density Polyethylene (LDPE),	Municipal solid garbage, 132–133
125	Municipal solid waste (MSW),
	132–133
Malacca Straits, 189–190	Municipal Solid Waste Management
Malaysia, Singapore, and Indonesia	(MSWM), 132
(MALSINDO), 199	incidences on policy and future
Malaysia's Exclusive Economic Zone	directions, 139–140
Act of 1984, 192–193	international attention, 139–140

Municipal solid waste management (MWSM), 125	Pineapple, 22 Plant fibers, 22
National Plan of Action for the Management of Fishing	classification, 25 Polycyclic aromatic hydrocarbons (PAHs), 201
Capacity 1 2007–2010, 192–193	Polyethylene Terephthalate (PET), 125 Polypropylene (PP), 125
Natural fibers, 22	Porosity, 25
chemical composition, 28	Priority values, 31–33
classification, 25	Problem modeling, 29
mechanical features, 30	Process reengineering approaches,
physical features, 29	133–134
primary differences, 23–24 priority values, 34	Prohibitive zoning system and licensing requirements, 195–197
yearly production of sources and, 27	Purposive sampling method, 157–158
Natural gas, 62	
Natural-based materials, 26	Radiative cooling, 62
Nonprobability sampling technique, 158	Recuperator-equipped organic Rakine cycle, 172–173
Normal distribution, 31	Regional Fishing Vessels Record (RFVR), 199
Offshore fisheries, 207–208	Research & Development (R&D), 95
Ordinary Least Square (OLS), 92–93,	Resource efficiency strategies, 133–134
97 Organic Rankine cycle, 172–173	Restrictive input control approach, 194–200
Overfishing, 205–207 government subsidies, 206–207	excess capacity reduction measures, 197–198
recommendations for socioeconomic problems,	illegal, unreported, and unregulated fishing, 198–199
207	prohibitive zoning system and
socioeconomic factors, 205-206	licensing requirements, 195–197
Palmyra, 22	remedies for weaknesses in input
Paris Agreement, 61-62	control approach, 199-200
Partnerships in Environmental Management for the Seas of	strict rules on fishing gears and mesh size, 194–195
East Asia (PEMSEA), 202–203	Return on investment (ROI), 13–14 Roof, 71
Passive design strategies, 62	Rosslyn-Ballston Corridor (R-B
Payback Period, 50-51	Corridor), 16
Pearl Rating System for Estidama,	
155–156	SAPO-34 zeolite system, 52
Pedestrians, 5	Seed fibers, 22–24
People, profit, and planet (3Ps), 3	Sensitivity analysis, 29
Phase change materials (PCMs), 62–63	Simple OLS approaches, 97
Photovoltaic cells (PV cells), 65	Simulations, 71–72

Single-species MSY approach, 193–194	solar air conditioning/cooling
Sisal, 22	systems, 43–57
Sky living, 4	Solar-powered heating systems, 40–41
Skyscrapers, 8, 10	Solar-powered refrigeration systems,
Slack Based Measure (SBM), 92-93,	40–41
95, 97	Solid waste, 135
Snowball sampling method, 158	hierarchy, 134
Social well-being, 13	sources, types, and composition,
Society-based waste management	135
toward zero waste, 121–127	South East Asia region (SEA region),
community's waste recycling,	189–190
122–123	Southeast Asian Fisheries
waste bank, 123-125	Development Center
waste composting, 125–126	(SEAFDEC), 198
waste digesters, 126–127	Space efficiency, 8–9
waste valorization, 122	Speculative investment, 9
Solar absorption systems, 43–44	Stochastic Frontier Analysis (SFA), 94
Solar adsorption air conditioning	Stress–strain curve, 31
system (SADCS), 43, 45, 47	Super-SBM model, 92–93, 95, 97
optimization process, 48	Sustainability, 94, 115, 133, 190
Solar adsorption systems, 44	as framework, 2–3
Solar air conditioning/cooling systems,	Sustainable construction, 154–155
43–57	Sustainable design, 154–155
effect of adsorption time on	Sustainable development, 154–155
refrigeration performance,	Sustainable Development Goals
49	(SDGs), 2–3, 133
effect of adsorption time on SCP,	Sustainable waste management,
49–57	114–115
existing, 44–49	Synthetic fibers, 22 (see also Natural
solar absorption systems, 43–44	fibers)
solar adsorption systems, 44	mechanical features, 30
Solar chimneys, 62	primary differences, 23–24
Solar collector efficiency, 43	primary differences, 23-21
Solar collectors, 40–41	Talipot, 22
Solar energy, 40–41, 62–63, 163, 165	Tall building construction boom, 1–2
Solar fraction, 43	Tensile strength, 31
Solar heat gain coefficient (SHGC),	Thermal Coefficient of Performance
71	(COP), 43
Solar heating, 62	Thermal energy storage, 62
Solar photovoltaic cell efficiency,	medium, 71–73
40–41	Thermal energy stored and water
Solar roofs, 62	temperature during summer
Solar-driven air conditioning systems	for different water-based
desiccant technologies, 42–43	trombe wall configurations,
need and demand of air	83–87
conditioning systems, 39-42	Thermal pollution, 172

Thermodynamic cycle method, 174 3BL (<i>see</i> Triple bottom line (TBL))	United Nations Convention on the Law of the Sea (UNCLOS).
Three-dimensional model (3D model), 68	192 Urban Heat Island effect (UHI effect).
Tobit regression, 94–95	11
Traditional vapor-compression	Urban sustainability, 2–3
machines, 41–42	Urbanization, 1–2, 11
*	Orbanization, 1–2, 11
Transient mathematical model, 47–48	V
Transwall, 66	Vanity height, 8–9
Trawl fisheries, 189–190	Vapor absorption systems, 40–41
complimentary strategies,	Vapor compression system (VCS), 43
207–209	Vessel monitoring system (VMS),
fisheries regulation to promote sustainability, 192–194	203–204
historical background of trawl fleets	Walls, 71
in Straits of Malacca,	Waste bank, 121, 123, 125
190–192	Waste composting, 121, 125–126
marine ecosystem conservation	Waste digesters, 121, 126–127
policy, 200–205	Waste efficiency measurement, 92
overfishing, 205–207	Waste Framework Directive, 92
restrictive input control approach,	Waste hierarchy, 92, 120-121
194–200	Waste management (WM) (see also
Trawlers, 189–190	Municipal Solid Waste
Triple bottom line (TBL), 3	Management (MSWM)), 12,
Trombe walls, 62, 68, 71	92, 132, 136–137
methods, 68–76	analysis results, 101–104
model configuration in Energy Plus	data and variables, 99–100
software, 75–76	empirical analysis, 99–104
with PCMs, 62–63	literature review, 93–95
properties of materials, 70, 72–74	overview of EU countries, 97–99
results, 76–87	research methodology, 95–97
thermal properties of sand, water,	results, 105–106
tinted acrylic, and aerogel	Waste recycling activities, 121
insulation, 75	Waste valorization, 121–122
with translucent insulation	Waste-to-energy (WtE), 138
materials, 62–63	project in Indonesia, 120
	Water-based Trombe walls, 62–63
weather conditions used to perform	
simulations, 75	Weather conditions used to perform simulations, 75
Uncompleted buildings, 9–10	Weibull distribution, 31
United Nations (UN), 2-3, 133	Weight aggregation, 29
United Nations Agreement on	Weight valuation, 29
Conservation and	Wind and natural ventilation, 11
Management of Straddling	World Bank, 2–3
Fish and Migratory Fish	World Health Organization (WHO),
Stocks (1995) 192–193	202

World Trade Organization (WTO), 207 World Urban Forum (WUF), 2–3

Young's modulus, 31

Zeolite-water adsorption chiller, 55–56
Zero landfill (ZL), 134
Zero waste (ZW)
concept, 140–141
construction of zero-waste
buildings, 144–145
implementing zero-waste
philosophy, 142–145
to landfill site, 118

plan method, 134
present development of waste
management, 118–121
society-based waste management
toward zero waste, 121–127
strategies to improve waste
management and recycling,
143
strategy for reducing energy
consumption, 140–145
and zero landfills, 141–142
Zero waste management (ZWM),
143–144
strategy for industrial sector,
143–144