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Abstract
Purpose – In recent years, increased awareness on global warming effects led to a renewed interest in all kinds of green technologies. Among them, some
attention has been devoted to hybrid-electric aircraft – aircraft where the propulsion system contains power systems driven by electricity and power systems
driven by hydrocarbon-based fuel. Examples of these systems include electric motors and gas turbines, respectively. Despite the fact that several research
groups have tried to design such aircraft, in a way, it can actually save fuel with respect to conventional designs, the results hardly approach the required fuel
savings to justify a new design. One possible path to improve these designs is to optimize the onboard energy management, in other words, when to use fuel
and when to use stored electricity during a mission. The purpose of this paper is to address the topic of energy management applied to hybrid-electric aircraft,
including its relevance for the conceptual design of aircraft and present a practical example of optimal energy management.
Design/methodology/approach – To address this problem the dynamic programming (DP) method for optimal control problems was used and, together
with an aircraft performance model, an optimal energy management was obtained for a given aircraft flying a given trajectory.
Findings – The results show how the energy onboard a hybrid fuel-battery aircraft can be optimally managed during the mission. The optimal
results were compared with non-optimal result, and small differences were found. A large sensitivity of the results to the battery charging efficiency
was also found.
Originality/value – The novelty of this work comes from the application of DP for energy management to a variable weight system which includes
energy recovery via a propeller.
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Nomenclature

Symbols
SoC = state of charge (�);
W = weight (N);
_mf = fuel mass flow rate (kg s�1);
g = gravitational acceleration (�9.81 m s�2);
Ibat = battery current (A);
Ubat = battery voltage (V);
Q0 = nominal battery charge (C = A s);
h c = battery charging efficiency (�);
CL = coefficient of lift (�);
CD = coefficient of drag (�);
L = lift (N);
D = drag (N);
T = thrust (N);
g = flight path angle (rad);
Pflight = flight power (W);
Pbat = battery electric power (W);
Pgen = generator electric power (W);

PIC = IC engine shaft power (W);
PICmax = IC engine max. shaft power (W);
Pinv =motor inverters DC power (W);
Pmax =max.rotor power (W);
hprop = propeller efficiency (�);
hGB = gear box efficiency (�);
hM =motor efficiency (�);
h inv = invertors efficiency (�);
h gen = generator efficiency (�);
Cf = generator throttle setting (�);
SFC = specific fuel consumption (kg W�1 s�1);
r = air density (kg m�3);
A = rotor area (m2);
V = true air speed (m s�1); and
CP = rotor power coefficient (�).
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Definitions, acronyms and abbreviations
DP = dynamic programming;
IC = internal combustion;
SoC = state of charge;
W = weight;
MTOW =maximum take-off weight;
ISA = international standard atmosphere;
TAS = true air speed;
EAS = equivalent air speed;
APU = auxiliary power unit; and
SFC = specific fuel consumption.

Introduction

In the past decades, the trend towards “More Electric Aircraft”
has materialized in new airliners such as the Boeing 787. This
trend is powered by the high reliability and low maintenance
requirements of modern mechatronic systems (Rosero et al.,
2007; Sarlioglu and Morris, 2015; Mavris et al., 2010) and, so
far, has targeted only non-propulsive systems such as the ice
protection system. One possible future evolution for this trend
is electric propulsion: the use of electricity available onboard to
power the propulsion system. This opens new possibilities for
aircraft design, such as distributed electric propulsion or
radically new aircraft configurations (Sehra and Whitlow,
2004; Gohardani et al., 2011). This trend maybe accelerated in
the near future by several factors: higher oil prices, carbon
taxes, changes in politics, etc.
Several research groups around the world are doing design

exercises on hybrid aircraft with different configurations
(Pornet et al., 2013; Pornet and Isikveren, 2015; Harmon
et al., 2006; Voskuijl et al., 2017). Unfortunately, the results
of these exercises indicate only marginal improvements in
fuel efficiency when hybrid electric designs are compared
against conventional propulsion designs. Besides, these
marginal improvements are conditionally dependent on the
future evolution of battery energy density. To improve these
results, it has been proposed to integrate onboard energy
management in the aircraft design methodology (Perullo and
Mavris, 2014).
In the context of hybrid vehicles, onboard energy

management is defined as the management of the different
energy sources available onboard during a mission (Serrao
et al., 2011). In other words, it is the selection of the rate of
energy consumption from each available source at each
moment. This management can be done in real-time or pre-
defined before a mission, depending on the selected control
methodology. When optimization techniques are used to
optimize the onboard energy management, it becomes
optimal and can be referred to as optimal energy
management.
When integrated in the aircraft design methodology, the

optimal energy management is used in each step of the aircraft
sizing loop, minimizing the block fuel for the entire mission.
This will lead, owing to synergies, to a fuel efficiency
improvement of the final hybrid aircraft design, potentially
making hybrid aircraft a more attractive option to decrease fuel
consumption and emissions in aviation (Perullo and Mavris,

2014; Perullo et al., 2014; Ficarella et al., 2018; Donateo et al.,
2018b, 2019).
Despite the theoretical advantages, the integration of

onboard energy management in the design exercise is not yet in
wide spread use. Most of the design exercises involving hybrid
aircraft published so far fix, a priori, the power split between the
fuel power and electric power and not changing these values
during the optimization run. A notable exception is the work of
Donateo et al. (2018b), where a rule-based controller
regulating the power split is active during the simulation. The
conclusions of supra point that “[. . .], more advanced energy
management strategies need to be developed.” In a second
research study by the same authors (Donateo et al., 2018a),
dynamic programming (DP) algorithms were used to optimize
the energy management of an aircraft in an approach very
similar to the one in the present work, although with relevant
differences (e.g. the effect of variable weight in performance
was not taken into account).
In this work, no attempt will be made in integrating optimal

energy management in the design exercise. Instead, another
step towards this goal is taken: an improved method to
determine the optimal energy management for hybrid aircraft
is presented and studied. Similar methods were presented in
previous works (Bradley et al., 2009; Bongermino et al., 2017;
Donateo et al., 2018a), but the models used in these studies
include neither the effect of weight reduction during the
mission nor energy recovery. The weight reduction detail in
particular becomes very relevant when considering long
missions (Hepperle, 2012). The present work will also
attempt to investigate which are the main factors influencing
optimal energy management for a fixed-wing general aviation
aircraft.
Besides directly improving the fuel economy of a hybrid

aircraft during preliminary design, at least one more reason
exists to study optimal energy management in this context: the
development of non-optimal controllers for use in operational
environments. For most real-life problems, the deployment of
global-optimum real-time controllers is simply not possible.
This is an effect of several characteristics of optimal controllers
(e.g. the associated computational burden and the lack of
robustness to certain types of external disturbances) that limit
their use in operational context. To avoid these limitations,

Figure 1 Hybrid electric architectures

(a)

(b)

Notes: (a) Serial; (b) parallel; bold lines:

mechanical link, solid lines: electrical link
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non-optimal controllers are usually developed and tuned by
comparing their performance against optimal controllers in
high-fidelity simulation environments (Guzzella and Sciarretta,
2013; Sinoquet et al., 2009; Liu and Peng, 2008). This
application of optimal energy management will be briefly
addressed in the present work, as the presented methodology
can also be promptly used for this purpose. Some remarks
regarding the application of optimal controllers to hybrid
aircraft will also be given.
Relevant hybrid aircraft technologies, the optimal control

problem, the aircraft under study and the mission will be
described in the first half of this paper. In the second half,
results will be presented and discussed, and conclusions will
be drawn.

Background

Hybrid aircraft, unlike hybrid cars, are a relatively new topic,
and more research needs to be done to make them a viable and
efficient mean of transportation. However, some promising
steps are being taken: companies specialized in small/general
aviation aircraft developed or are developing fully electric
aircraft and hybrid electric aircraft (Brelje and Martins, 2018).
Some of the technologies developed for general aviation will,
hopefully, be exported to airliners, the largest segment of the
market.
Despite all the hopes surrounding hybrid aircraft, they face

some major difficulties in the fight for market share. The most
important one is likely to be the enormous cost of new
technology development and certification, very difficult to
overcome, as the expected gains in fuel efficiency are quite
small. Aircraft manufacturers are not able to finance the
development cost of a new aircraft unless it delivers substantial
reductions in fuel consumption.
In this section, some background remarks regarding hybrid

vehicle technology and hybrid aircraft technology will be given.
The aircraft used as a case study during the present work will
also be described. The topic of design methods for hybrid
vehicles, although relevant, is not going to be addressed, as it is
outside of the scope of this work, and interested readers are
referred to specialized literature (Silvas et al., 2016). This
section will also look into the problem of energy management
for hybrid aircraft and how to address its optimization for
hybrid vehicles in general and hybrid aircraft in particular.

Types of architectures for hybrid electric vehicles
Despite not being the main topic of this work, it is important to
give the reader some insights on the two main hybrid electric
architectures used for propulsion purposes: the serial
architecture and the parallel architecture (Guzzella and
Sciarretta, 2013;Wall andMeyer, 2017). Both are illustrated in
Figure 1, where the application is a fixed-wing aircraft
powertrain.

The main difference between both is the way the electric and
the fuel-powered systems are connected: in the parallel case,
this is done using a mechanical coupling mechanism (e.g. a
gearbox), while in the serial case, the connection is done
through a central electrical bus. In the latter case, the fuel-
powered system (e.g. an internal combustion [IC] engine) is
connected to a generator to provide energy to the bus.
Both architectures have pros and cons: in the parallel

architecture, complicated mechanical coupling mechanisms
must be designed and maintained, while in the serial
architecture, the complexity is in the design of a large and
redundant electrical system. The choice between architectures
is usually made very early in the design phase, and for small
aircraft, the serial architecture is usually favoured to take
advantage of the high-specific power of electric motors. These
pros and cons are summarized in Table 1.
It is important to note that the aircraft used in the present

work was designed according to a serial architecture, but the
proposed method is applicable to both serial and parallel
architectures. The authors would also like to note that these are
not the only possible architectures, and several variants can be
found in between the two mentioned architectures. Interested
readers are kindly referred to specialized literature (Guzzella
and Sciarretta, 2013).

Hybrid-electric aircraft: the Panthera hybrid
To test the novel proposed methods, the preliminary design
data of an aircraft already under construction will be used. This
aircraft is the hybrid version of the Panthera aircraft,
manufactured by Pipistrel, known as Panthera hybrid. The
original aircraft is a four-seat general aviation aircraft
(Figure 2), and the hybrid version will use the same airframe,
but the powertrain will be a hybrid-electric system with serial

Table 1 Pros and cons of different hybrid electric architectures

Pros Cons

Parallel Redundancy can easily be achieved in some cases Complex mechanical coupling mechanisms
Serial Highly modular Complex electrical systems

Figure 2 Panthera aircraft
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architecture, matching the one shown in Figure 1(a)
(MAHEPA consortium, 2017a).
The Panthera hybrid is powered by an electric motor rated to

300 kW (150 kW continuous). The motor is powered by two
electricity sources: Li-ion batteries and a generator powered by
a turbocharged piston engine. For redundancy, both the
electric motor and the generator are dual winding machines
connected to dual inverters. The IC engine powering the
generator provides up to 100kW in continuous operation
(MAHEPA consortium, 2017b).
The batteries of the aircraft are still under development thus

approximate data was used in this study. The batteries are
considered to store up to 20kWh of energy and weigh about
100 kg. The maximum capacity of the fuel tanks is 210L.
Based on the density of gasoline, one can conclude that the
batteries store approximately 1% of the total energy onboard
despite having approximately 63% of the total energy storage
mass (fuel tankmass not taken into account).

Problem: optimal onboard energymanagement
As already described, having a hybrid aircraft creates a whole
new range of problems to be investigated, especially in terms of
energy control. In the case of conventional aircraft, there is only
one source of energy, fuel, and the rate of fuel consumption is
fully defined by the desired engine performance at a given
instant (Roskam and Lan, 1997). That is not the case with
hybrid aircraft, where more than one source of energy is
available, and the rate of consumption of each source must be
selected to yield the desired engine(s) performance. The
selection of the energy consumption rates for an hybrid aircraft
is thus an underdetermined problem, opening a new degree of
freedom that can be used for optimization (Harmon et al.,
2006; Bradley et al., 2009; Perullo and Mavris, 2014;
Bongermino et al., 2017; Donateo et al., 2018b).
In most hybrid aircraft designs, it is assumed that there is an

automatic controller selecting the amount of energy to be
drained from each available source at each moment (i.e. in real
time). This controller can be programmed in many ways and
withmany objectives such as improving take off performance or
decreasing noise during approach. In the specific case under
study, the controller has the objective of decreasing total fuel
consumption and does this by selecting the throttle position of
the IC engine powering the generator (“generator throttle”),
while the pilot takes care of the electric motor driving the
propeller (i.e. the “normal” throttle).
These automatic controllers envisioned for hybrid aircraft

can have different levels of complexity and share several
similarities with the ones used in hybrid cars, as they serve the
same propose: onboard energy management. But, unlike cars,
the trajectory of an aircraft is usually much better known, a
priori, i.e. before the trip actually begins. This opens the door
for new types of high performance controllers, of types not
generally used in the car industry.
The best possible controllers are called optimal controllers
(Betts, 1998). In a comparison with conventional controllers,
optimal controllers are computationally heavier and require an
a priori knowledge of all the external disturbances applied to the
system. The flight trajectory is usually defined before the flight
and, thanks to the development of low cost and low-weight
powerful computers, these issues became straightforward. Even

in the case when optimal controllers are not used in real time
during the mission, they are still of utmost importance; they are
used to quantify the performance of a real time controller. This
is regularly done when studying the performance of controllers
for hybrid cars (Guzzella and Sciarretta, 2013; Sinoquet et al.,
2009; Liu and Peng, 2008).
A major difference between optimizing hybrid cars and

hybrid aircraft is the high correlation between weight and
performance in the latter case. This effect is usually neglected
when designing a controller for cars but becomes important
when dealing with aircraft. Addressing this effect in energy
management was only done in qualitative ways (Perullo and
Mavris, 2014), and one of the objectives of this work is to
address it in a quantitative way.
To conclude the remarks on the optimal energymanagement

problem, all optimizations require an objective function (a
target quantity to be minimized or maximized). As already
noted, in this work, the objective is to minimize the total fuel
consumption. Other metrics may be relevant for this problem,
such as the minimization of total energy, minimization of total
energy cost ormore advancedmetrics (Pornet et al., 2014).

Optimal control for a hybrid aircraft

In this section, the methodology used to tackle the problem of
optimal energy management for hybrid aircraft will be detailed.
Before starting the detailed explanation, the overall approach is
presented.

Methodology roadmap
The problem under study is an optimization problem and, to
perform the optimization itself, the DP method will be used.
The reasons why this method was chosen will be detailed in the
next sections. The aircraft will be modelled as a point-mass
model, as the scope of this work is performance dynamics only.
The trajectory/mission will be fixed (i.e. not subjected to
optimization), making the required flight power at each instant
of the mission completely defined. The optimizer will then
optimize the power delivered by the IC engine during the
mission tominimize fuel consumption.
The use of this simplified performance model coupled with

an optimizer allows one to study what are the optimal
“generator throttle” settings for such a mission. More
importantly, it also allows studying which parameters of the
mission and/or aircraft have the largest effects on the
optimization results.

Optimal control
The problem one is trying to solve belongs to a class of
problems usually called “optimal control problems”. Several
different solution methods have been applied to a variety of
problems both in aeronautics and astronautics (Betts, 1998;
Rao, 2009; Guzzella and Sciarretta, 2013).
The results presented in the present work were obtained

using one of the oldest methods available: the DPmethod. This
method was selected for two main reasons: it is easy and
straightforward to use and, if properly implemented, always
yields the global optimal solution for the problem.
Unfortunately, the solution is optimal only if all the external
disturbances applied to the system are known beforehand,
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being this method more useful for checking the performance of
real-time controllers than for a real-life application. Besides, it
tends to be quite computationally expensive.

Dynamic programming and solver
The DPmethod was originally introduced by Richard Bellman
in the late 1950s (Bellman, 1957). Only a short description of
the methodology will be given, and readers interested in details
are referred to specialised texts (Bellman, 1957; Bertsekas,
2017; Guzzella and Sciarretta, 2013).
The base of DP is the so-called “principle of optimality”

(Bellman, 1957): “Every part of an optimal control policy is an
optimal control policy”. For example, if a state trajectory from
state A to state C is optimal and passes through state B, then the
segment of the trajectory from B to C should also be optimal.
Taking this into account, the optimal trajectories (and related
control policies) can be calculated by going back in time: for
every time step, there is an optimal trajectory that allows
achieving the desired final state. Soon the costs for all the
possible trajectories are known, the optimal trajectory starting
from the initial state can be selected (and consequently the
optimal control policy).
The DP solver used in this work is open source and was

developed at the Institute for Dynamic Systems and Control –
ETH Zürich. The solver was introduced and validated in the
literature (Sundstrom and Guzzella, 2009; Sundström et al.,
2009; Elbert et al., 2013). In this work, the solution is found by
modelling the aircraft as a mathematical model which is
evaluated during small-time steps for given initial states,
external conditions and controls. The output of the model is
the final state at the end of a time step. By evaluating the
outputs and managing the inputs, the model is continuously re-
evaluated until the optimal initial states and control policies to
achieve a given final condition are fully determined.

Dynamic programming for hybrid vehicle problems
Among other techniques, DP is regularly used to quantify the
performance of real time controllers in hybrid cars (Guzzella
and Sciarretta, 2013; Sinoquet et al., 2009; Liu and Peng,
2008). This is owing to its “most wanted” characteristic of
yielding the global optimum for the problem. The main
problem with DP is the so-called “curse of dimensionality”: the
problem scales exponentially with the number of states and
controls. This is usually not a problem for hybrid car problems,
were there is usually just one state: the state of charge (SoC) of
the battery.
When dealing with hybrid aircraft, the SoC can be used as

solo state (Bongermino et al., 2017). However, to achieve more
meaningful results, the weight of the vehicle must also be
accounted as state. This is especially important in long-range
missions, where the reduction of mass owing to fuel
consumption greatly modifies the aircraft performance. The
weight becomes then a second state, requiring a substantial
increase in computation power and memory requirements
when compared to a single state case.
Summarising, the two states of the system to be optimized

are weight (W) and SoC, and the corresponding equations of
state are as follows:

_W ¼ � _mf � g (1a)

SOC
:

¼ �Ibat=Q0 if Ibat � 0

�h c � Ibat=Q0 if Ibat < 0

(
(1b)

The equations of state are integrated in time for a time step
through a simple Euler integration, and the resulting states feed
into the DP algorithm. Details on how _mf and Ibat are
computedwill be given in the next section.
It is important to stress that, against common practice in

other aircraft performance studies, speed and altitude are not
states, and subsequently, they are not subjected to
optimization. Speed and altitude should instead be regarded as
variable external inputs (see sectionMission parameters). This is
necessary to avoid the “curse of dimensionality” because an
excessive number of states would make the simulations
prohibitively expensive. In this study, the focus is on the
optimization of the “internal works” of a hybrid aircraft, i.e. the
internal energy management. Problems including more states
are regarded asmatter for future work.

Modelling
To simulate (and optimize) the trajectory of any vehicle or a
figure of merit (e.g. fuel consumption) for a given trajectory, a
mathematical model describing the dynamics of the vehicle is
generally needed. This is also the case when DP is used as
optimizationmethod.
The aircraft performance is modelled using the classical

point-mass model with some typical simplification: the angle of
attack and thrust line angle are assumed to be small, and CD is
assumed to be function ofCL only (noMach dependency,CD =
CD [CL]). The whole system is regarded as quasi-static, which
means that the transients of all the subsystems are neglected. In
addition, the accelerations/decelerations to which the aircraft is
subjected during climb and descent are ignored, but this
approximation should be challenged in the future.
Nevertheless, given the small and slow changes in speed during
climb and descent, it is expected that the main findings of this
work remain unchanged. The described simplifications are
common in aircraft performance optimization studies (Roskam
and Lan, 1997; Burrows, 1982).
Starting from the steady, symmetrical, powered flight

equations ofmotion (Roskam and Lan, 1997):

L�Wcosg ¼ 0 (2a)

T �D�Wsing ¼ 0 (2b)

As at each time, stepW is known and g is predefined, T can be
computed. This allows to compute the flight power through the
relation Pflight=T·V
Another relevant approximation is the assumption that

propeller, gearbox, motor, invertors and generator have
constant efficiencies – a reasonable approximation in high-level
preliminary studies like this work. It is interesting to note that,
thanks to the electric drive and active control, it is possible to
keep, for every flight condition, the propeller operating very
close to its maximum efficiency point. Using this
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approximation, the flight conditions can be related with the
electrical power flowing through the aircraft’s electrical bus
using the following expression:

Pflight ¼ h prop � hGB � hM � h inv � Pbat 1Pgenð Þ (3)

The battery power (Pbat) relates with Ibat through the following:

Pbat ¼ Ubat � Ibat (4)

where Ubat is determined using a battery model. As Pflight is
determined by the flight conditions and weight and Pgen are
defined by the control variable, Pbat and Ibat can then be
computed for each time step.
The aircraft battery is a Li-ion cell pack with a 104S24P

architecture. The modelling of the battery was done using two
different implementations:
1 A standard implementation (Guzzella and Sciarretta,

2013), where the open-circuit voltage (Ubat) of the pack is
regarded as, constant and only the ohmic losses and
Coulombic efficiency are taken into account; this
implementation is the one used for all the results
presented throughout in this work.

2 A more complex modelling (Tremblay and Dessaint,
2009), where the open-circuit voltage depends on the
SoC [1]; comparisons with the standard battery model for
a reference trajectory indicated (negligible) differences on
the final states of about 0.05%.

All the cell characteristics are taken from Tremblay and
Dessaint (2009), except the Coulombic efficiency. This
parameter was assumed to be 95% and, because of this,
subjected to a sensitivity study in the section Sensitivity studies.
The maximum discharge rate of the battery is 15C owing to a
requirement for an all-electric take off, but, in the present work,
that is not simulated (see sectionMission parameters for details).
The maximum simulated discharge rate is thus much lower,
�5C during climb. As the discharge C-rates are acceptable for
this type of problems, the Peukert effect was not added to none
of the battery models, although this approximation should be
challenged in future work. Regarding charging, the battery
recharge power is limited to 10kW (or 0.5C). All the
propulsion system components are regarded as operating in a
quasi-static regime.
Both the aircraft polar (CD = CD[CL]), and the efficiencies of

the subsystems (among other relevant parameters) were
obtained from the aircraft manufacturer, originating from flight
tests or industrial experience, guaranteeing a reasonably high
level of confidence and realism to the model, even after all the
approximationsmentioned previously.

Enginemodelling
Special attention was devoted to the IC engine modelling. This
was done following two different approaches.
In the first approach, the specific fuel consumption (SFC) is

regarded as constant. This implies both generator power and
fuel mass flow rate are linear functions of the generator throttle
setting (Cf = [0,100%]) which acts as sole control variable for
the optimization:

Pgen ¼ Pgen Cfð Þ ¼ h gen � PIC; where PIC ¼ PICmax � Cf

(5a)

_mf ¼ _mf Cfð Þ ¼ SFC � PIC; where PIC ¼ PICmax � Cf

(5b)

For the second approach, actual engine data obtained in bench
tests was used. This data cannot be published in the present
work, for confidentiality reasons. The bench tests were
performed at two different atmospheric pressures to simulate
two different altitudes: low flying at 671m (2200 ft) and limit
operating altitude of the engine (undisclosed, above 6,500m).
Owing to the turbocharger, differences between the two data
sets are negligible and, in this work, only the low-altitude data
was used. The raw data from the bench tests was fitted with a
3rd degree polynomial (for ease of implementation), and the
fuel mass flow rate becomes a non-linear function of engine
power. Equation (5b) is thus replaced by equation (6):

_mf ¼ _mf PICð Þ; where PIC ¼ PICmax � Cf (6)

whereCf acts again as the sole control variable.
Bench test data showed an almost-linear increase in fuel

consumption with increasing power, hinting that the first
modelling approach is not imprecise for this engine. As one of
the objectives of the present work is to investigate the effects of
the main factors influencing optimal energy management, it
was decided to follow the first approach asmain approach. This
wittingly makes the problem more “artificial” but allows to
better investigate and understand the different factors without
introducing too much “real world” disruptions in the
modelling. Nevertheless, the second approach was also
implemented, and a comparison between results obtained by
following the two different approaches is presented.

Battery recharge during descent
Another detail that was modelled to make the simulation more
realistic was the use of the propeller to recharge the battery and,
at the same time, act as a speed brake. This, to the authors’ best
knowledge, is a novelty in aircraft optimal energy management
problems. The maximum amount of power that can be
harvested from the flow was calculated using the wind power
equation (Kalmikov, 2017):

Pmax ¼ 1=2 � r � A � V 3 � CP (7)

where r is the air density,A is the rotor area,V is the flow speed
andCP is the rotor power coefficient.
A propeller is not designed to work as a windmill, so a

conservative value for the power coefficient was selected (CP =
0.3). This is comparable to an old farm windmill and quite
below the typical values of 0.45–0.50 for modern large-scale
wind turbines (Hau, 2005).
As explained previously, this equation defines the maximum

power that can be harvested by the rotor (= the propeller) for a
given flow speed (= flight speed). �Pmax is used as the lower
limit for the (negative) propulsive power, or, in other words, the
maximum amount of braking power that can be applied by the
wind-milling propeller without loss of energy.
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Nevertheless, for most of the flight conditions, the practical
recharge limit of the battery is above this limit, meaning that, in
most of the situations, the propeller needs to operate at CP <

0.3. In the modelling, it is assumed that the blade pitch angle of
the propeller can be freely varied to regulate the rotating speed,
and no operational limits are exceeded.

Mission parameters
To perform an optimization, a test mission had to be defined.
This prescribed mission is representative of a typical mission
performed by the Panthera hybrid.
The mission is set in terms of altitude, speed and flight path

angle. As mentioned before, these parameters are fixed and are
not regarded as states in the optimization problem, but cruise
altitude and climb angle, being among themost important from
an operational point of view, will be varied in the sensitivity
studies (see section Sensitivity studies). This mission
corresponds to a mission close to the maximum range of the
aircraft without any use of reserve fuel. The fuel tanks are full at
take-off, and 1/3 of total fuel capacity is reserve fuel.
The aircraft takes-off at maximum take-off weight using only

battery power, with the generator at idle for noise
considerations. The generator only goes into full use above
305m (1,000 ft) above ground. It was estimated that the energy
corresponding to �20% of the battery charge is used for take-
off and initial climb, so the simulations start with battery at
80% and at 305m (1,000 ft). The mission is terminated at the
same altitude. The climb and descent are made with g 6 4°
(respectively) and at constant equivalent airspeed. The runway
is at sea level, and a still international standard atmosphere is
assumed. For simplification, the transitions between flight
phases (e.g. climb to cruise) are regarded as instantaneous. All
the relevantmission parameters are plotted in Figure 3.
As a final remark, one should note that for each mission, a

different optimization result will be obtained; although the
control allocation result is optimal, it is only optimal for each
individual mission.

Discretization
DP requires states, controls and time to be discretized. The
time step is 60 s, fairly bellow the characteristic time of the
dynamics under study. Both states (SoC and weight) are
discretized in 121 discrete levels, while the single control
(“generator throttle”) is discretized in 101 discrete levels. The
discrete levels are the possible values for the mentioned
quantities between their minimum and maximum value. A
mesh convergence study is presented in section Mesh
convergence studies.

Results

The results of the optimization of energy management for the
Panthera hybrid during a representative mission are presented
in this section. As already stated, all optimizations were
performed usingDP and along the prescribedmission.
First, the basic optimal results for this mission are going to be

presented. These results confirmed the expected behaviour
previously described in the literature. Next, the optimal results
will be compared with a non-optimal energy management, and
conclusions will be drawn. Afterwards, the results obtained
using the two modelling approaches for the IC engine will be
compared. Finally the hybrid aircraft performance will be
compared with the conventional aircraft, and results regarding
themesh convergence study will be presented.

Optimal energymanagement for the prescribedmission
The optimized control and state trajectories, for the given
mission, are synthesized in Figures 4 and 5. Two cases are
presented: one in which the final battery SoC is free (Figure 4)
and another in which the final battery SoC is constrained to
100% (Figure 5).
One can easily confirm that the expected optimal use of

battery stored energy is the one expected from reasoning
(Perullo and Mavris, 2014): after the cruise altitude is reached,
the battery is basically not used until the last part of the cruise
or is recharged as soon as possible (depending on the final
battery SoC constrain).

Figure 4 Optimal states and control for the given mission – free
battery final state
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This “behaviour” is easy to understand: burning as much
fuel as possible in the initial portion of the mission means that
the aircraft will fly lighter for the remaining portion. Flying
lighter means less propulsive power, making the aircraft more
“efficient”.
Regarding the computational effort needed to reach a

solution, the DP solver takes about 100 s to calculate the
solution for this problem in a conventional Windows
workstation.

Optimal vs non-optimal results
To test the gain obtained with the optimization, the same
mission was also “flown” using non-optimized controls. Three
different cases are presented in Figure 6.

“On-Off”Control
A non-optimal solution: the engine/generator is kept at
approximately 80% throttle for most of the flight. During
descent, the engine is at idle.

Optimal control – constrained final SoC
A solution with optimal control and the final battery SoC equal
to the value in the “On-Off” case. The objective is to compare
directly the fuel used between the two cases.

Optimal control – free final SoC
A solution with optimal control and no constrains on the
battery, the final case, is presented also in Figure 4.
As one can observe, in the final fuel consumption, there are

almost no differences. From the first to the second case, there is
only an improvement of 0.06% in total fuel consumption, while
from the first to the third case, the improvement is 0.4%.
One very interesting conclusion can be drawn from these

results is that the gains in optimizing the generator output are
so marginal that it is more interesting, from an engineering
point of view, to invest in using/developing an engine optimized
for one single “set point” and thus eventually minimizing the
weight of the system, fuel consumption and cooling
requirements. In a nutshell, going from a “throttleble” engine
logic to an auxiliary power unit logic with only “idle” or “on”
states.
If this “On-Off” reasoning is carried on, an important

conclusion is reached that the generator design and selection
depends only on the desired cruise performance, i.e. the desired
cruise speed. This happens only because the battery is “taking
care” of the high demand power segments of the flight, namely,
the take-off and initial climb. In other words, the two systems
can be designed independently, and modularity is easy to
implement.
It should also be noted that the small differences between the

optimal and non-optimal cases are expected to increase if more
energy is stored in the batteries with respect to the total energy
onboard.

Internal combustion engine – comparison of modelling
approaches
The two IC engine modelling approaches presented in section
Engine modelling were compared to see the effect of a more
realistic engine model on the optimal solution. By coincidence,
the results of the second approach have some similitude with
the “On-Off” control results presented in Figure 6. There is a
simple explanation for this: the bench test data shows an
increase in SFC for higher throttle settings (Cf > 80%), and the
optimizer avoids that region of high consumption even during
the highly demanding climb phase. And, unlike the non-
optimal solutions, the use of a realistic engine model yields
improvements in the results; the fuel consumption is 0.94%
lower, and the final SoC is 0.13% higher when compared to the
constant SFC case (Figure 7).
These results seem to indicate that the optimal solution is

very sensitive to systemmodelling and modelling uncertainties.
Similar conclusions will be found on the section Sensitivity
studies.

Comparison with conventional propulsion
Comparing the experimental hybrid Panthera with the
conventionally powered Panthera is extremely difficult.
The experimental aircraft has a payload different from the
conventional one and several systems, including the propeller,
are different. A direct comparison would never be fair

Figure 6 Optimal vs non-optimal results
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Figure 5 Optimal states and control for the given mission – full battery
at the end of the mission
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comparison. Keeping this in mind, some results from previous
work (MAHEPA consortium, 2017b) will be presented for the
reader’s information:
� Regarding cruise flight, the engine powering the generator

in the hybrid Panthera would have fuel consumption 1.8%
lower than the engine of the conventional Panthera. These
values are for the power required to sustain a cruise at
8,000 ft (2,438 m) and 158 kn (81 m/s).

� Regarding climb flight, the hybrid Panthera would
consume 22% less fuel to perform a standard climb, when
compared with its conventional counterpart. Note that, as
stated before, only battery power is used during take-off
and initial climb thus also minimizing noise pollution.

Mesh convergence studies

To verify the numerical quality of the results, a mesh
convergence study was performed. The number of
discretization steps was increased to 605 for the weight state
and 242 for the SoC state. The control parameter discretization
was increased to 303 steps.
Differences on the final states 0.03%were observed, together

with no significant differences in the control history or state
trajectories. This is considered to be a good indication of the
numerical validity of the results.

Sensitivity studies

Several parameters were tested to determine how sensitive the
final result was to them. Among the parameters, there was only
one that showed significant effects in the final results: battery
charging efficiency.
Battery charging efficiency, also called Coulombic efficiency,

is a modelling parameter used to take into account the fact that
not all the energy sent into the battery is converted back to
electric charge (Guzzella and Sciarretta, 2013). This factor has
several definitions and may or may not include the effects of the
ohmic losses or other effects. This factor also depends on the
battery chemistry, configuration or age. In the battery models

used in this work, the ohmic losses are explicitly taken into
account separately, and the value for the efficiency was taken
from literature (Toman et al., 2016; Yang et al., 2018) as a way
of compensating for the secondary above-mentioned effects.
Values in the literature range from 90% to above 99% thus
some exploration on this parameter was performed.
One can see the results in Figure 8, where all the state

trajectories and controls are optimal. Despite the fuel
consumption not changing meaningfully with different
recharging efficiencies, it is clear that the control parameter (the
“generator throttle”) and the trajectory of the SoC change
considerably depending on the efficiency value in themodel.
Also in Figure 8, one can observe the effect of the battery

recharge limit (10kW) on the optimal control history: observe
the differences on the two optimal controls for h c = 0.99
around 15min into the flight.
Besides the battery charging efficiency, the sensitivity to

variations in cruise altitude and climb angle was tested. For
relevant operational conditions, the control policy and the
corresponding trajectories do not change meaningfully (i.e. the
“shape” of the control policy does not change). The only
relevant difference is the SoC at the end of climb: higher altitude
and/or higher climb angle lead to a lower SoC at the end of
climb with respect to the baseline mission. The SoC plateau that
follows the end of climb is also lower in these cases, with no
evolution on the SoC level until the last phase of the mission
(like in the baseline). These results are result of the same control
policy for the climb seen before in the baseline case: IC engine at
100% power and the batteries supplying the needed extra
power. Longer and/or stepper the climb, more energy is drained
from the batteries and lower the SoC at the end of climb. This
highlights the importance of the climb phase for the battery
design.

Conclusions

In this work, a method to optimize the energy management for
a hybrid-electric aircraft is presented. The method can be used
during conceptual and preliminary design phases and uses a
DP open source solver together with an aircraft performance

Figure 8 Effect of the battery recharge efficiency in the SoC trajectory
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test data
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model. This model includes effects such as weight variations
and in-flight energy recovery during the descent. It was shown
that optimal controls only yield small improvements when
compared with non-optimal results. A sensitivity study showed
that the battery recharge efficiency can have a large impact in
the control history despite having a small effect in the final fuel
consumption (when optimal solutions are compared).
Regarding shortcomings of the presented method, it is

important to summarize that it is only applicable “as-is” during
the design and development phases of the aircraft. To use such
a methodology in operational environments, it should be
complemented by alternative methods, such as optimal control
solvers robust to external disturbances.

Future work

The main recommended follow up for this work is to test the
results against a different type of optimal control solver. This
will allow to further test the validity of the results but will also
allow the use of more complex aircraft models. Aircraft models
with more states (e.g. speed or altitude) will give new insights
on optimal trajectories and energy management, but models
with extra states are difficult to study using DP owing to
computational limitations. The author suggests the use of
direct methods, namely, direct multiple shooting and/or
collocation methods for further developments. The integration
of the tool within conceptual aircraft design tools is also
envisioned.
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