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Abstract
Purpose – This study aims to introduce a new methodology for generating synthetic images for facility
management purposes. The method starts by leveraging the existing 3D open-source BIM models and using
them inside a graphic engine to produce a photorealistic representation of indoor spaces enriched with facility-
related objects. The virtual environment creates several images by changing lighting conditions, camera
poses or material. Moreover, the created images are labeled and ready to be trained in themodel.
Design/methodology/approach – This paper focuses on the challenges characterizing object detection
models to enrich digital twins with facility management-related information. The automatic detection of small
objects, such as sockets, power plugs, etc., requires big, labeled data sets that are costly and time-consuming to
create. This study proposes a solution based on existing 3D BIM models to produce quick and automatically
labeled synthetic images.
Findings – The paper presents a conceptual model for creating synthetic images to increase the
performance in training object detection models for facility management. The results show that virtually
generated images, rather than an alternative to real images, are a powerful tool for integrating existing data
sets. In other words, while a base of real images is still needed, introducing synthetic images helps augment
themodel’s performance and robustness in covering different types of objects.
Originality/value – This study introduced the first pipeline for creating synthetic images for facility
management. Moreover, this paper validates this pipeline by proposing a case study where the performance
of object detectionmodels trained on real data or a combination of real and synthetic images are compared.

Keywords Computer vision, Artificial intelligence, Digital twin, Object detection,
Asset management

Paper type Research paper

1. Introduction
The operations and maintenance (O&M) stage represents the most extended phase in the
life cycle in the architecture, engineering, construction and operations (AECO) sector
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(Akcamete et al., 2019). During this phase, many stakeholders handle processes and
procedures, often appearing and leaving at different times, causing a loss or a distortion of
asset information. According to the National Institute of Standards and Technology (NIST),
approximately 57.8% of the projected US$15.8bn annual costs are incurred by owners and
operators during the operational phase (Gallaher et al., 2004). These expenses are brought on
by ineffective business process management, redundant facility management (FM) systems,
lost productivity, rework costs and other problems.

Nowadays, a solution for better information management is represented by digital twins
(DTs) – an updated and accurate digital replica of a physical asset that represents the asset’s
as-is condition (Ioannis Brilakis et al., 2019). However, it is necessary to detect objects and
their geometric relationships within the asset to generate DTs. Most research is focused on
recognizing large architectural components such as columns, ceilings and walls rather than
detecting secondary building components like heating, ventilation and air conditioning
(HVAC) elements, which are a crucial part of effective FM. However, the production and the
update of precise and reliable DTs that reach FM information level present different
challenges:

� Compared to the design and construction phases, the operation stage is dynamic,
with many changes in uses, tools and pieces of furniture of the various parts that
constitute the asset.

� DT is characterized by many objects and systems that are usually smaller than
structural elements, making their representability and updatability difficult.

� Compared to structural components, FM-related assets have a wider range of variance
within classes, necessitating learning additional feature patterns. For instance,
radiators will have slightly varied markings, valve designs and other features.

The significant manual effort required to create an enriched DT is prohibitively expensive
compared to the resulting model’s perceived value. For these reasons, there is a high demand
for greater automation in creating an information-rich DT. Using image processing and
machine learning techniques, researchers have recently studied methods for extracting
features such as color, texture and shape that can distinguish target components from other
objects. In this context, Deep learning models have been applied for contextual awareness of
scenes as computers have advanced with the introduction of faster GPUs. Such applications
necessitate the collection of a large amount of labeled image data. In this context, large-scale
publicly available data sets like the Scene Understanding (SUN) database (Song et al., 2015),
Common Objects in Context (COCO) data set (Lin et al., 2014), KITTI Cityscapes data set
(Geiger et al., 2012) and NuScenes (Caesar et al., 2019) have been generated. However, data
on FM-related scenes are scarce. Thus, there is a vital requirement for large-scale annotated
image data regarding the asset’s operations components.

The variety of types, shapes and materials of FM-related objects complicates the
implementation of a recognition model that performs well. While preparing data for asset
components scene understanding, two challenges arise: the first is that image labeling is
done by hand, which is time-consuming and expensive. Image labeling for object recognition
is the task of using a polygon to mark the area containing the object and specify the class of
the object. A dozen clicks on a single object are required to mark a polygon. The second
problem is that domain knowledge is necessary to label the FM items. Identifying the area
and class of objects in a scene photograph requires expertise. For example, identifying a
color code that indicates the contents of a pipe in a plumbing system requires competence.
This knowledgemay require additional training for the labeler.
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These two challenges can be addressed using existing 3D object drawings that are often
used inside BIM models. Indeed, in the past few years, many vendors provided detailed and
accurate digital representations of FM components. Those virtual models are collected in
several open data sets that can be used as a source for generating FM-BIM models. Hence,
the labeling operation can be performed in a BIM environment using a virtual camera.
However, variances in color and texture between BIM and real-world images – usually
photographs – cause differences in spatial elements that serve as training requirements. As
a result, for BIM images to be used as training data for photograph analysis, they must first
be translated into a photographic style.

Recently, it is increasingly common to use open-source graphics engines, such as Blender,
Unity or Unreal, in computer vision and machine learning to generate synthetic data.
Synthetic data is information that is artificially manufactured rather than generated by real-
world events, which has several significant benefits, including the option to automatically
generate labeled data and the possibility to respond to different environmental factors, such
as various lighting situations, seasons and day–night cycles.

To date, no synthetic data pipeline has been developed in the context of enriching FM-
BIMmodels. Therefore, this study addresses the following research questions:

RQ1. What pipeline can be used to generate FM-related synthetic data?

RQ2. Are FM synthetic data valuable to increase the accuracy of FM components’
object detection?

Finally, the rest of this paper is structured as follows: previous research on the topic and
state of the art is presented in Section 2; the proposed and adopted pipeline is described in
Section 3; the experiment and results are shown in Section 4; discussion, conclusions and
future work are in Section 5.

2. Background
In this paper, we propose a framework based on synthetic data to enable and facilitate the
detection of small secondary objects to enrich DT with sufficient details for FM operations.
Most of the previous research focused on detecting structural objects such as floors, ceilings
and walls (Wang et al., 2017; Hou et al., 2019; Hong et al., 2021; Pan et al., 2022a; Pan et al.,
2021), while few studies posed attention to small objects that are parts of assets sub-
systems, such as fire safety or energy systems. Compared to structural components, FM-
related objects are typically smaller than structural parts with changing geometrical
features. Hence, using the same algorithms to detect such small-scale elements is
challenging. Therefore, if proven effective, synthetic data can significantly help in training
object detection models with a sufficiently diverse and balanced data set without relying on
manual collection and annotation of big data sets. In the following paragraphs, we revise
object detection applications in the AECO domain and how synthetic data have been
introduced and deployed in recent research.

2.1 Object detection models
The goal of generic object detection is to locate and identify existing items in a single image
and then label them with rectangular bounding boxes to indicate their certainty of existence.
The frameworks of generic object identification algorithms are divided into two groups
(Figure 1). One follows the standard object detection pipeline, first generating region
proposals and then categorizing each proposal. The other considers object identification a

Synthetic
images

generation

35



regression or classification problem, using a unified framework to directly produce final
findings (categories and locations).

For this study, we decided to deploy the classification-based method because it can
process images in real time, which is beneficial for the surveying activities conducted in
FM’s scope. Specifically, we trained the You Only Look Once (YOLO) model, introduced by
Redmon et al. (2015). YOLO uses the topmost feature map to predict confidences and
bounding boxes for numerous categories. Since its introduction, it has been constantly
improved by adopting several innovative strategies such as batch normalization, anchor
boxes, multi-scale training, etc. In particular, we used the fourth version introduced by
Bochkovskiy et al. (2020). In a nutshell, the input image is divided into a S x S grid by YOLO,
and each grid cell is responsible for guessing the object centered in that grid cell. Each grid
cell forecasts B bounding boxes and their associated confidence scores.

Despite the availability of the YOLO v4 model, we cannot use its weights entirely
because they have been trained to detect categories that are not included in our application
domain. However, we can use a good portion of the already pre-trained weights by applying
a transfer learning technique. As its name suggests, transfer learning is the process of
applying previously learned knowledge to solve new but related challenges. We can take
advantage of a pre-trained model that was previously trained on thousands of images for
detecting high-level features as the model has already “seen” and “learned” from many
images.

2.2 Detection of secondary objects in buildings
While most of the research is used to assist robots in recognizing certain items in the
environment and performing a given task, there has been little effort in the AECO area.
Ad�an et al. (2018) suggested a method for detecting objects such as switches, ducts and
signs in a colored point cloud. Potential zones of interest are computed through in-depth
pictures and color images concerning the wall plane, depending on whether the objects have
geometric or color discontinuities in the wall area. The region of interest is then compared to
a pre-defined depth model database and a pre-defined color model database containing
object classes from the scene. Wei and Akinci (2019) deployed the DenseNet model for
feature extraction (Huang et al., 2017) in different publicly available data sets. The authors
proposed a framework for image-based localization and semantic understanding that relied
on semantic segmentation. However, the conclusion pointed out that object detection models
can improve the pipeline mentioned above because only a part of the object is necessary to
link it to its DT; therefore, a coarser bounding box might be good enough to enable the
association. Finally, (Pan et al., 2022b) proposed a pipeline to enrich geometrical digital twin
GDT) by leveraging images and valuable text information. Despite reaching good
performances in some object categories, such as fire extinguishers and smoke alarms, for

Figure 1.
The two object
detection frameworks
are region proposal
and regression/
classification (derived
from Zhao et al., 2018)
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objects that vary significantly in different environments (e.g. lights and sockets), the
accuracy drops, meaning that the deployed data sets were insufficient to train the model. As
a result, the proposed method needed more data to be effective, especially to cover other
objects that were not considered in the study but are still an essential component of GDT
(e.g. bookshelves, desks, etc.). Our study aims to fill this gap by proposing artificially
generated synthetic data.

2.3 Synthetic data
The use of synthetic data to improve the performance of a taught model has become a
widespread practice in the computer vision and machine learning communities
(Rampini and Cecconi, 2022). Because training a deep learning model generally
necessitates a huge quantity of data, many academics have proposed using synthetic
data to complement current data sets and offer training data for new applications. The
challenge of deploying synthetic data is bridging the reality gap with real-world data.
However, the expenses in terms of time and computational power required to generate a
good amount of photorealistic data negate the primary selling point of artificially
generated data, which is the possibility of generating a large amount of already labeled
data essentially for free (Tremblay et al., 2018). Therefore, recent approaches focused
on creating diverse scenarios by changing objects’ 3D models (Peng et al., 2015) and
backgrounds (Saleh et al., 2018).

In the AECO domain, there is scarce research on synthetic data, and none of them is
focused on FM-related objects. Hong et al. (2021) proposed a pipeline for automatically
generating labeled and high-quality synthetic data. The research focused on structural
elements from buildings and bridges and comprised three main steps:

(1) converting BIM images into real-world images using CycleGAN;
(2) automatically labeling them with the help of the spatial data in the BIM to produce

different synthetic data sets; and
(3) combining the final synthetic data set created by splicing the chosen synthetic data

sets.

Other research built synthetic data sets for different purposes: Neuhausen et al. (2020)
enhance the performance of a YOLOv3 detector in tracking and monitoring workers’
movements on the constructions site by adding around 600 synthetically generated in eight
construction on-site scenes; Sutjaritvorakul et al. (2020) deployed a fully synthetic data set to
detect worker from a load-view crane camera contributing to the safety of crane’s operation.
Moreover, recent research showed the potential of synthetically generated indoor scenes,
where many images with different furniture and light conditions were provided with high
photorealistic footage (Li et al., 2019; Roberts et al., 2020; Neuhausen et al., 2020;
Sutjaritvorakul et al., 2020; Li et al., 2019; Roberts et al., 2020). Finally, Wei and Akinci (2021)
proposed a pipeline for generating synthetic data using 4D-BIM for scene understanding. In
particular, the fourth dimension of BIM is leveraged to deal with the dynamic environment
that is usually characterized on-site construction field. However, to date, no workflows focus
on synthetic images representing FM secondary objects; hence, this study aims to fill this
gap.

3. Proposed solution
This research is part of a broader schema that automatically enriches DT models with FM-
related objects (Figure 2). Aside from those relatively significant structural aspects, smaller
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FM items (such as fire alarms and emergency switches) should be included in an enhanced
DT to assist facilities management. Indeed, HVAC systems expenditures often account for
the majority of overall costs in a building’s operational activities (Ad�an et al., 2018). As a
result, a DT would be more valuable if it included components that are commonly required
in FM activities.

The pipeline proposed in this study covers most of the data set creation and model
definition phases. The model use, which includes the geometric relationships among the
objects, is left outside the scope of this study, and it is partially addressed in Pan et al.
(2022b).

The workflow contains two primary steps:
(1) the procedural generation of synthetic images through a graphic engine (Blender)

and 3D CAD models; and
(2) the training of an object recognition model made by a combination of real and

synthetic images. In the following subparagraphs, the two steps are furtherly
explained.

3.1 Synthetic data set
Over the past decade, deep learning models have achieved impressive performance and
evolved from simple classification tasks to more complex topics such as object detection
and/or segmentation. For most applications, rather than increasing the model’s complexity,
the focus has shifted to providing sufficient data to train the model, especially for computer
vision tasks.

The availability of an extensive, well-balanced and precisely labeled data set is an ideal
situation that is rarely verified in real-world applications. Often, data sets are scarce or
require much time and annotation effort. For example, the ImageNet data set, one of the

Figure 2.
The overall research
schema (the parts
colored in red are not
covered in this paper)
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most important in the Computer Vision field, required almost two years to label around 11
million images with crowdsourcingmethods (Russakovsky et al., 2015).

As a result, many researchers are trying to avoid the challenges of collecting and
annotating data in the real world by creating virtual environments that generate training
examples in a controllable and customizable manner. These artificially generated data are
known as synthetic data sets and present several advantages over real-world-based data:

� produce balanced data sets;
� cover a wide range of lighting conditions;
� generate automatically labeled images;
� produce more semantic representations such as depth maps, segmentation maps

and so on; and
� it is easier to comply with privacy regulations such as the EU General Data

Protection Regulation (GDPR) (Voigt and Bussche, 2017) or the California Consumer
Privacy Act (CCPA) (Bukaty, 2019). Especially in a little-shared industry such as
construction, it is challenging to collect publicly available indoor images from
different buildings.

Figure 3 shows the workflow’s difference between a real-world, manually annotated dataset
and a synthetically generated one.

Generally, the input data for generating synthetic images is an environment built with
3D assets. In the AECO industry, thanks to the growing adoption of CAD first and BIM
lately, a considerable amount of 3D drawings is widely present in the market. Moreover,
most of these models are available in open-source data sets formed by models freely
provided by vendors. Therefore, it is possible to leverage the existing 3D BIM models and
use them as a backbone for generating AECO-related synthetic data sets. In this study, we
used the BIM object platform (BIMobject, 2015), which contains different object categories
(with different formats) that covers several building systems (structural, electric, heating
and so on). From BIMobject, it was possible to download the 3D models and import them
into a graphic engine.

A graphic engine uses computer time rather than human time to generate examples. It
has complete information about the scenes it renders, allowing it to save time and money on
human annotations and reviews. A graphic engine also allows for the generation of rare
examples, allowing control over the training data set’s distribution. For this study, we used
Blender – a free and open-source 3D graphic engine that supports three-dimensional object
modeling, simulation and rendering (blender.org, 2015). The engine was chosen among the
others for its embedded Python API (Blender Python API), which allows scripts that
facilitate the process of iterating through light conditions, camera poses and textures, as
well as the process of generating annotations.

3.2 Complete data set
Despite the abovementioned advantages of synthetic data, training and running an object
detection model that relies entirely on artificially generated data cannot guarantee good
performances. Even if the real-world data are limited to 10% of the entire data set, the
benefits in terms of precision and recall are well documented (Nowruzi et al., 2019).

Although there are no existing data sets for object detection focusing on FM-related
objects, inside the largest annotated image data set – Google Open Images V6 – we can use
the “power plugs and sockets” category to identify those elements. The data set was
released in 2020 and comprised 1.9 million images for 16 million manually annotated
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bounding boxes for 600 object categories. For the “power plugs and sockets” category, 112
images are available for training, totaling 198 bounding boxes.

On the other hand, the pipeline proposed to create synthetic images tailored explicitly for
FM applications is shown in Figure 4.

Eevee and Cycles are the two main render engines accessible in Blender. In general, Eevee
was designed for real-time rendering, whereas Cycles was designed for realism. As a result,
unless dedicated graphics cards (GPUs) are used, Cycles renders images substantially slower
than Eevee. Currently, a user can build all accessible forms of ground truth maps when using

Figure 3.
The dataset iteration
process is compared
using real-world and
synthetic datasets
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Cycles, unlike Eevee, which cannot generate segmentationmasks or optical flow ground truths.
Mayer et al. (2018) presented a thorough examination of several synthetic and real-world data
sets for training neural networks for optical flow and disparity estimation applications. The
authors highlight two significant findings. The first point is the significance of diversity in the
training set. Second, they demonstrate that the photo-realism of the data set is not significantly
influencing the model’s strong performance. Therefore, to introduce a pipeline as accessible and
flexible as possible, we used the Eevee render engine to build the synthetic data set.

The output of the generation process is a series of RGB synthetic images and associated
text files that contain the coordinates of the bounding boxes surrounding the sockets. The
text files are produced in the format compatible with YOLO, where each object’s bounding
box inside the picture is reported in the form: object class, x coordinate of the bounding box
center, y coordinate of the bounding box center, bounding boxwidth an bounding box height.

Consequently, to test the accuracy of using a combination of real and synthetic images,
we created 100 images (like the ones in Figure 5) by rendering and iterating through ten
different types of sockets, ten different settings (kitchen, bathroom, bedroom and living
room) with different camera poses and light conditions.

3.3 Object detection model
In this step, we aim to use the created data set to test the effectiveness of using artificially
generated data to increase precision and recall in detecting small objects related to FM context.

The model implemented for this study, which is the fourth version of the YOLO
architecture (Bochkovskiy et al., 2020), has been chosen for twomain reasons:

(1) It can detect objects almost in real time using videos and photos: this aspect is
significant considering how the surveys are conducted in our field, where the use
of wide-angle cameras and drones is growing dramatically.

(2) Despite the newer version of YOLO (up to v7), the fourth version is more robust
and has been used and proven in several applications. However, changing the
version of the model in the future should not change too much the pipeline steps
proposed in this study.

3.4 Evaluation metrics
To test the effectiveness of introducing synthetic data, we must define the metrics we use to
evaluate the model. In object detection tasks, the predictions are made using a bounding box

Figure 4.
Proposed pipeline for
creating FM-related

synthetic images
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and a class label. The overlap between the predicted and the ground truth bounding boxes
determines the accuracy of the prediction, which is commonly called intersection over union
(IoU) (Figure 6).

A threshold for the IoU value needs to be defined to calculate the precision and recall of
the object detection model. For instance, if the IoU threshold is 0.5, and the IoU value for a
prediction is 0.8, then it is considered a true positive (TP). On the other hand, if the IoU is 0.4,
the prediction is classified as false positive (FP). Therefore, by setting different IoU
thresholds, the prediction’s precision and recall differ. Usually, the precision–recall curve is
adopted to represent the tradeoff between precision and recall for different thresholds. A
high area under the curve indicates both strong recall and high precision, with high
precision corresponding to a low false positive rate and high recall corresponding to a low
false negative rate.

The average precision (AP) is defined by the area under the precision–recall curve. For
multi-classes detection tasks, the most common metric is the mean AP (mAP) score, defined
below:

Figure 6.
Calculation process of
precision, recall and
IoU

Figure 5.
Examples of
synthetically
generated data
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mAP ¼ 1
N

XN

i¼1

APi

whereN is the number of classes.
As we are detecting one class in this study, the AP is equivalent to the mAP.
We evaluated themAP for four different cases, summarized in Table 1.
The first data set includes only real-world images and is used as the benchmark. The

second data set is the same size as Data set 1, and it is used to understand how the
introduction of synthetic images alters the model’s performance. Although Data set 2
presents an unlikely practical scenario (i.e. where synthetic images are used to replace real
images to maintain the data set size), this is useful to understand how the performance
change when introducing synthetic images without increasing the data set size. Finally,
Data sets 3 and 4 are mixed data sets, i.e. composed of real and virtually generated images,
where the amount of synthetic images is 50 and 90% of the total images, respectively.

4. Results and discussions
In this section, we evaluate the performances of the YOLO v4 object detection model with the
four data sets. We use the mAP, a common evaluation metric for object detection tasks. The
comparison clarifies if the proposed pipeline can be used for FM-related tasks, perhaps
extending the methodology to other components such as fire extinguishers, furniture or heating
equipment. Finally, we discuss the results and the insights that can be derived from them.

4.1 Object detection results
The training of the object detection model has been performed using the NVIDIATesla P100
graphic card with 16 GB of vRAM. The model requires as input 416 � 416 RGB images,
which are divided into batches of 32 images. The number of epochs for training is set to
2,000 after trying different values (more epochs were causing overfitting, were less a drop in
performance), and the learning rate was set to 0.001.

Figure 7 shows the mAP performance of the validation set during the training. The
validation set is formed by 20% of the real images training set, except for Data set 4, where
the validation set is 40% of the real images (i.e. 5% of the overall training data set). We
decided to use only real images for the validation set because also the test data set included
them. In this way, the performances on the validation set are comparable to those on the test
set. In all data sets, the models are increasing the mAP value until it reaches a stable value
with the epoch increase, meaning that the model has converged.

Moreover, Table 2 shows the mAP performances on the test data set. Noteworthy, the mAPs
on the test and validation data sets are similar, assessing the robustness of model performance.

The worst performance is in the case of the smallest data set (Data set 2), composed
equally of real and synthetic images. Considering that a data set composed of only real
images (Data set 1) performs better, it follows that, for the same size, data sets formed of
only real images perform better. However, it should be remembered that the primary

Table 1.
Data sets used to
train the object
detection model

Data set Real images Synthetic images

1 112 0
2 66 66
3 112 100
4 112 888
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purpose of synthetic images is to enable model training when sufficient real images are
unavailable. Therefore, it is more interesting the results obtained with Data sets 3 and 4
compared to Data set 1. In this case, there is an increase in performance with both Data sets
3 and 4.

It should be noted that there is no significant difference between Data set 3 (composed of
50% synthetic images) and Data set 4 (composed of 90% synthetic images). Therefore, we
can infer that the benefits of adding synthetic images are most significant when the number
of images added is comparable with the initial data set. By contrast, the benefits are
significantly less when addingmore images than the original data set.

The results are also affected by the distance between the cameras and the target object.
As sockets and power plugs are small objects, the training images were taken not too far
from the objects (around 50 cm). Therefore, introducing pictures of an entire room may not
trigger the detection of the targeted objects. However, the speed of the YOLO network (close
to real time) allows for adjusting the distance quickly by giving immediate feedback to the
user (especially with video cameras).

4.2 Discussions
The previous paragraph shows that the introduced pipeline can be deployed to enhance
the object detection model’s performance by leveraging synthetically generated data. The

Figure 7.
mAP performance on
the validation set for
each data set. The
model is learning
most of its weights in
the first 1,000 epochs
and reaches a stable
value in the last
epochs

Table 2.
mAP performances
of the three data sets

Data set mAP (%)

1 69
2 61
3 77
4 79
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experiments, aiming at recognizing sockets and power plugs, gave numerous insights
and reflection points.

First, for the same number of images, the data set composed of only real images
performed better than the mixed data set (real and synthetic), meaning that the virtually
generated images are a powerful tool for enhancing and integrating existing real image-
based data sets rather than replacing them. This is evident from Data sets 3 and 4, where
the mAP score increased by a factor of 10% compared to Data set 1. Therefore, synthetic
images are a viable solution to address the challenges that FM-related object detection
models face for effective training. Moreover, this performance gap might be reduced by
addressing the sim-to-real gap with other AI techniques, such as generative adversarial
networks (GANs). Second, the possibility to easily create annotated synthetic data
allowed us to embrace the FM object’s variability. For instance, in some scenarios like the
ones in Figure 8, the model trained on Data set 1 could not correctly predict sockets and
power plugs because neither black nor horizontally oriented sockets were present in the
training data set. Solving these problems using only real-world images would have
required collecting and annotating images that include the cases above, spending
considerable time and resources. On the other hand, synthetic images were sufficient to
change color or orientation to the 3D BIM models already used. Moreover, creating
images capable of recognizing these types of scenarios also took very little time. This
means that synthetic data can easily solve problems related to the variability of FM
objects, perhaps iterating the training process once problems are found through feedback
and testing.

Finally, it is worth mentioning that the performance of Data sets 3 and 4 are comparable,
meaning that many synthetic images do not guarantee a comparable increase in
performance. Consequently, it is hard to establish a minimum required number of images to
achieve the desired results because they depend on different aspects like object size,
typologies, etc. Therefore, defining the correct number of synthetic images to include will be
established by an iterative process (somewhat like what happens when defining the depth
and density of layers of neural networks).

In conclusion, synthetic images facilitate the introduction of more data quickly and
enable iteration throughout the process. If the performance is not good enough, more images
can be created to train the model again without conducting another campaign for data
collection and annotation.

Figure 8.
Examples of socket

types not included in
Data set 1 and,
therefore, not

recognized by the
model. By adding
synthetic images

based on 3D
drawings similar to
the power plugs in

the picture, the model
can recognize them
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5. Conclusion
The documentation of as-is conditions has increasingly been done by capturing videos and
images. However, to automate the process of extracting information from such data, it is
necessary to train deep learning models that require producing a large amount of labeled
data, which is a costly and timely demanding task. In this study, we introduced a pipeline
tailored for the AECO industry for generating FM-related synthetic images to overcome
difficulties with classifying ground truth visual FM data. Although other methodologies
have been proposed for different industries, the proposed method takes advantage of the
existing 3D BIM object models that are freely accessible to create a training data set that
encompasses the broadest possible collection of FM-related objects. Moreover, using a
graphic engine allows the production of more realistic images by deploying advanced
rendering tools that help to close the sim to the real gap. The methodology has been tested to
recognize sockets and power plugs to answer the first research question. However, the
proposed method can produce the desired amount of virtually generated data of any objects
modeled in a BIM environment using only open-source and freely available sources and
products.

The created data set has been used to train a YOLO object detection model, and its
performances are compared with those obtained using real training data. As an answer to
the second research question, the experiment findings demonstrated that the suggested
strategy outperforms models trained on only real-world photos by covering a broader
object’s variability and increasing prediction robustness. In the future, we plan to introduce
a GAN model to further increase the realism of the synthetic images and probably improve
the mAP score and the variability of the scenes.
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