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Abstract

Purpose — In their paper titled “A Miracle of Measurement or Accidental Constructivism? How PLS
Subverts the Realist Search for Truth,” Cadogan and Lee (2022) cast serious doubt on PLS’s suitability for
scientific studies. The purpose of this commentary is to discuss the claims of Cadogan and Lee, correct some
inaccuracies, and derive recommendations for researchers using structural equation models.
Design/methodology/approach — This paper uses scenario analysis to show which estimators are
appropriate for reflective measurement models and composite models, and formulates the statistical model
that underlies PLS Mode A. It also contrasts two different perspectives: PLS as an estimator for structural
equation models vs. PLS-SEM as an overarching framework with a sui generis logic.

Findings — There are different variants of PLS, which include PLS, consistent PLS, PLSel, PLSe2, proposed
ordinal PLS and robust PLS, each of which serves a particular purpose. All of these are appropriate for scientific
inquiry if applied properly. It is not PLS that subverts the realist search for truth, but some proponents of a
framework called “PLS-SEM.” These proponents redefine the term “reflective measurement,” argue against the
assessment of model fit and suggest that researchers could obtain “confirmation” for their model.
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Erratum: The publisher of European Journal of Marketing wishes to inform readers that the
article “Partial least squares as a tool for scientific inquiry: comments on Cadogan and Lee”, by
Jorg Henseler and Florian Schuberth (2022), DOI: 10.1108/EJM-06-2021-0416 should have included an
acknowledgement that as a comment the article was not subject to double blind peer review. This
error was introduced during the production process. The publisher sincerely apologises for this error
and for any inconvenience caused.
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Research limitations/implications — Researchers should be more conscious, open and respectful
regarding different research paradigms.

Practical implications — Researchers should select a statistical model that adequately represents their
theory, not necessarily a common factor model, and formulate their model explicitly. Particularly for
instrumentalists, pragmatists and constructivists, the composite model appears promising. Researchers
should be concerned about their estimator’s properties, not about whether it is called “PLS.” Further,
researchers should critically evaluate their model, not seek confirmation or blindly believe in its value.

Originality/value — This paper critically appraises Cadogan and Lee (2022) and reminds researchers who
wish to use structural equation modeling, particularly PLS, for their statistical analysis, of some important
scientific principles.

Keywords PLS, PLS-SEM, Latent variables, Emergent variables, Composite model Mode A,
Structural equation modeling, Constructivism, Pragmatism, Instrumentalism, Scientific realism

Paper type Viewpoint

1. Introduction: Cadogan and Lee’s fresh look at partial least squares

Structural equation modeling (SEM) comprises a variety of techniques such as analysis of
variance, confirmatory factor analysis, confirmatory composite analysis, regression
analysis, path analysis and canonical correlation analysis (Bagozzi et al., 1981; Kline, 2015;
Schuberth et al,, 2018a; Zhang et al., 2021). It allows the analyst to model theories about
conceptual variables, their mutual interrelationships and their relationships to observed
variables. Consequently, it has become a widely appreciated method among researchers in
various social and behavioral science disciplines such as Psychology, Sociology and
Business Research — to name only a few. Arguably, the maximum-likelihood (ML) estimator
including its robust versions is the most widely used estimator for SEM (Joreskog, 1970).
Aditionally, a number of alternative estimators were introduced to cope with violations of
the ML estimator’s assumptions in empirical work, such as the asymptotic distribution free
(Browne, 1984) or the two-stage least squares (2SLS) estimator (Bollen, 2001).

During the past few decades, the partial least squares (PLS) algorithm, as an SEM
estimator, has become increasingly popular (Wold, 1975, 1982; Lohméller, 1989), particularly
in Marketing and Information Systems Research (Hair ef al,, 2012c; Ringle ef al.,, 2012). A
recent scientific debate highlighting PLS’s shortcomings (Ronkkoé and Evermann, 2013;
Henseler et al, 2014) stimulated several enhancements to PLS including consistent partial
least squares (PLSc, Dijkstra and Henseler, 2015b), a version of PLS that produces consistent
estimates for structural models containing latent variables, and a bootstrap-based test to
assess the overall fit of models estimated by PLSc (Dijkstra and Henseler, 2015a).

In their article titled “A Miracle of Measurement or Accidental Constructivism? How PLS
Subverts the Realist Search for Truth,” Cadogan and Lee take a fresh look at PLS by evaluating
its suitability through the lens of different research paradigms. A research paradigm can be
understood as a scientific worldview and “a disciplinary matrix — commitments, beliefs, values,
methods, outlooks, and so forth shared across a discipline” (Schwandt, 2007, p. 217). In this
spirit, Cadogan and Lee (2022) discuss whether PLS should be an element of the according
disciplinary matrix if researchers subscribe to scientific realism or constructivism and to a
lesser extent to instrumentalism or pragmatism. They conclude that:

PLS has no utility as a realist scientific tool, but may be of interest to constructivists, since it is
uniquely designed to construct different stories of the world depending on the research context.

Yet, is it true that PLS subverts the realist search for truth, as Cadogan and Lee’s title
suggests? Should PLS really be removed from the scientific realists’ disciplinary matrix in
marketing research?



Cadogan and Lee have a point in that a substantial part of the literature on PLS
promotes a mismatch between model and estimator, which leads to inconsistent
estimates, i.e. the estimates do not converge in probability toward the true population
parameters. However, Cadogan and Lee’s critique is overly broad, because it extends to
PLS variants that are potentially valuable to researchers pursuing a realist worldview
and to PLS use cases that pose no threat to a realist inquiry. Therefore, this commentary
takes a more nuanced look at PLS, thereby allowing the analyst to make more fine-
grained selection decisions regarding the estimator of SEM. It will demonstrate that for
all covered research paradigms there are consistent PLS estimators that facilitate
scientific inquiry.

2. Using “PLS” as a catch-all is an oversimplification

In their article, Cadogan and Lee (2022, Footnote 7) use “PLS” as an umbrella term for
various PLS estimators, such as PLSc, ordinal partial least squares (OrdPLS) or robust PLS.
However, to lump all PLS estimators together is not well-founded, because they have
different objectives and show different statistical properties for different models. Table 1
provides a concise overview of various PLS estimators that have been proposed to estimate
structural equation models.

PLS was developed by Wold (1966) as an approach suitable for principal component
analysis and (generalized) canonical correlation analysis — at the time still known as
nonlinear iterative least squares and nonlinear iterative partial least squares, respectively
(Tenenhaus et al., 2005). A few years later, the same author proposed PLS as an estimator for
structural models containing latent variables (Wold, 1974, 1982). In this case, PLS
determines weights to form composites and subsequently uses these composites to estimate
the relationships between the latent variables. As various researchers (including Herman
Wold himself) noted, PLS estimates are not consistent for this type of model; they are only

Estimator Inventor(s) Purpose

PLS Wold (1974, 1975, 1982) A computationally efficient but inconsistent estimator
for structural equation models containing latent
variables (however, it provides consistent estimates for
the composite model)

ordinal PLS Cantaluppi and Boari (2016) A modification of PLS that can cope with ordinal
categorical observed variables in a psychometric way
robust PLS Schamberger et al. (2020) A modification of PLS that can cope with unsystematic
outliers
PLSc Dijkstra and Henseler (2015a, An extension of PLS that provides consistent estimates
2015b) for structural models containing latent variables
PLSel Huang (2013) A one-step improvement methodology based on PLSc-

estimated factor loadings and 2SLS-estimated
structural parameters

PLSe2 Huang (2013) An optimal generalized least squares methodology
using a PLSc-implied covariance matrix

ordinal PLSc Schuberth et al. (2018b) A modification of PLSc that can cope with ordinal
categorical observed variables in a psychometric way

robust PLSc Schamberger et al. (2020) A modification of PLSc that can cope with
unsystematic outliers

PLSc via Jung and Park (2018) A modification of PLSc that can cope with

regularization multicollinearity issues in the structural model
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Table 1.
Estimators for
structural equation
models based on PLS
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consistent at large, i.e. only if both the number of observations and the number of indicators
converge to infinity, will PLS estimates converge in probability to the respective population
parameters (Hui and Wold, 1982; Dijkstra, 1985; Ronkko and Evermann, 2013). It was shown
only recently that PLS produces consistent estimates for models containing interrelated
composites (Dijkstra, 2013, 2017; Cho and Choi, 2020).

Various modifications have been developed for PLS to encounter violations of PLS’
assumptions in empirical research and problems in a collected data set. For instance,
Cantaluppi and Boari (2016) invented OrdPLS to deal with ordinal categorical observed
variables in a psychometric way. Similarly, Schamberger et al (2020) developed robust
partial least squares (robust PLS) to deal with datasets contaminated by unsystematic
outliers.

To overcome PLS’s inconsistency for structural equation models containing latent
variables, Dijkstra and Henseler (2015a, 2015b) developed PLSc, which is based on PLS, but
applies a correction for attenuation to produce consistent estimates for structural models
containing latent variables. It can cope with non-recursive structural models, e.g. models
that contain feedback loops, and correlated random measurement errors within a block of
indicators (Dijkstra and Henseler, 2015a; Rademaker et al,, 2019). Schuberth et al. (2018b)
proposed ordinal consistent partial least squares (ordinal consistent partial least squares) to
estimate structural models containing latent variables measured by ordinal categorical
variables, and Schamberger et al. (2020) introduced robust PLSc as a way to deal with data
sets containing unsystematic outliers. Moreover, a version of PLSc has been proposed that
uses a ridge least squares estimator to yield the structural parameters in case of
multicollinearity (Jung and Park, 2018). Recognizing that PLSc estimates are consistent but
not asymptotically efficient for structural models containing latent variables, Huang (2013)
proposed PLSel and PLSe2 to overcome this issue.

The following subsections focus only on PLS and PLSc to demonstrate the problem of
summarizing all estimators for SEM that are based on the partial least squares principle
under the umbrella term “PLS.” As the previous paragraphs have shown, their
modifications were mainly developed to relax further assumptions made by PLS and
PLSc.

2.1 Suitability of “PLS” for the realist variable framework

In their article, Cadogan and Lee present the realist variable framework, which is a
theory about causal relationships between unobservable conceptual variables and
their causal relationships with observed variables. Transferring this theory into a
statistical model results in a structural model containing latent variables, i.e. each
unobservable conceptual variable is modeled as a latent variable that is related to a set
of observed variables, and the latent variables are embedded in a structural model.
Subsequently, Cadogan and Lee (2022, Footnote 5) argue that PLS including PLSc are
incompatible with the realist variable framework and structural models containing
latent variables.

To investigate the suitability of PLS and PLSc for the realist variable framework and
thus for scientific realists, one could imagine a fictitious researcher studying the relationship
between three conceptual variables &, & and 7. As the researcher is a scientific realist, he/
she applies the realist variable framework (Cadogan and Lee, 2022; Figure 1) and follows the
steps as the framework directs: the researcher assumes that the meaning of the three studied
conceptual variables is properly defined; according to this researcher’s beliefs, the two
unobservable conceptual variables & and & cause a share of the variance in the conceptual
variable 7; the researcher believes that the unobservable conceptual variables & and &
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PLS estimates

5\11 = ;\12 = ;\13 =0.97

Nor = Ay = 0.53 Mot = Ay = 0.53 Na1 = Agp = 0.80

Conclusion: ML and PLSc retrieve the population parameters whereas PLS does not.

Figure 1.
Comparison of PLS,
PLSc and ML for
latent variable
models

cause variation in their respective observed variables x11, X712, %13 and xp; and Xoo.
Additionally, he/she believes that the conceptual variable 5 causes the full variation in its
observed variable y, i.e. ¥ is a perfect measurement of 7; the fictitious researcher believes
that the remaining variances in the observed variables x7; to xo5 and the conceptual variable
n are caused by other unobserved variables &1 to &2 and . Further, he/she claims that
these unobserved causes are not correlated with one another. Similarly, the fictitious
researcher postulates that the unobserved causes &1 to & are uncorrelated with the
conceptual variables, and that the unobserved cause ¢ is uncorrelated with the conceptual
variables & and &.

The assumed data generating process, i.e. the population model, is presented at the top of
Figure 1. To preserve clarity, the variances of the disturbance terms are rounded to second
decimal place. Thus, the world indeed functions according to the researcher’s beliefs.
Subsequently, the researcher specifies a structural equation model in accordance with his/her
theory and applies PLS and PLSc to estimate the relationships between the variables.
Additionally, the researcher applies the ML estimator (Joreskog, 1969, 1970), which is widely
acknowledged for estimating structural models containing latent variables and thus serves as a
reference. To avoid issues caused by sampling variation, let us say that the researcher uses the
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population variance-covariance as input for the three estimators. Thus, the parameters are
actually not estimated, but calculated.

As shown in Figure 1 and discussed in the literature, PLS is not able to retrieve the
population parameters. Cadogan and Lee are thus correct that PLS is hardly suitable for
estimating structural models containing latent variables, because even if a researcher uses
the entire population to calculate the parameters, he/she would draw the wrong conclusions
from the model. In contrast to PLS, both ML and PLSc are able to retrieve the parameters of
the population model, and they produce identical results.

Considering the statistical properties of ML and PLSc, the two are very similar. Both ML
and PLSc are consistent and asymptotically normal (Bollen, 1989; Dijkstra and Henseler,
2015b). Consequently, for an increasing sample size, ML and PLSc estimates converge in
probability to the population values if the model is correctly specified. In fact, the main
difference between their properties is that ML estimates are known to be asymptotically
efficient (Bollen, 1989), while this has not been shown for PLSc estimates. However, various
simulation studies have demonstrated that ML and PLSc show a similar finite sample
behavior (Dijkstra and Henseler, 2015b; Yuan et al, 2020). The same behavior can be
observed for more complex structural models containing quadratic and interaction effects of
latent variables. In this case, PLSc performs similarly to latent moderated structural
equation modeling (Dijkstra and Schermelleh-Engel, 2014). The latter is an ML estimator for
models containing interaction terms of latent variables (Klein and Moosbrugger, 2000).

Against the background that both PLSc and ML produce the exact same results on a
population level, show very similar statistical properties and behave similarly in finite
samples; it is not clear why PLSc would be disqualified as a method for scientific realist
inquiry. Further, it is not clear why the model estimated by PLSc “contains no theoretical
causal contact between unobservable conceptual variables and data” (Cadogan and Lee,
2022), whereas the same model, but estimated by ML, does. Cadogan and Lee also broadly
derogate the principle of correction for attenuation. In their words, “dividing b, the observed
relationship between X and Y, by some denominator does little to pacify the realist’s
concerns on this front.” There are several issues here. First, Cadogan and Lee seem to
misunderstand how the correction for attenuation is executed in PLSc: not the path
coefficients b between two proxies, but their correlation should be divided by the geometric
mean of their reliabilities. Second, correction for attenuation is an established psychometric
approach dating back to Spearman (1904b), which should not simply be discarded by a coup
de main. Third, rejecting correction for attenuation would also imply that all approaches
relying on proxies for latent variables, such as factor scores regression with a correction for
attenuation (Wall and Amemiya, 2000; Devlieger and Rosseel, 2017), should be rejected for
scientific realist inquiry. Apparently, Cadogan and Lee do not follow a common
understanding in statistics that distinguishes between the estimator and the estimand (the
estimated quantity, see Mosteller and Tukey, 1987), and they overlook the fact that it
matters little how an estimator arrives at an estimate, as long as it has certain statistical
properties.

2.2 Not all conceptual variables have to be measured; some can be built

The realist variable framework assumes that unobservable conceptual variables cause the
variance in their associated observed variables, and it relies on the reflective measurement
model to model these relationships statistically. However, in various disciplines conceptual
variables are assumed to be formed by or to emerge from a set of variables within their
environment. For instance, gene and brain regions can be regarded as biological composites
of single nucleotide polymorphisms or voxels, respectively (Jung ef al, 2012, 2016;



Romdhani et al., 2014). Similarly, stress and job performance can be regarded as concpets
that emerge as linear combinations from a set of variables (Hancock, 1997; Murphy and
Shiarella, 1997).

The measurement theory (Spearman, 1904a) and its template, the reflective
measurement model, are hardly suitable to operationalize conceptual variables that
are not measured, but are formed. Against this background, researchers have
proposed other approaches and auxiliary theories to model and assess such
conceptual variables. For instance, the composite model was proposed to model
conceptual variables that are aggregated (Edwards, 2001) or formed (Henseler, 2017;
Schuberth et al., 2018a; Henseler, 2021). Analogous to measurement theory, Henseler
and Schuberth (2021) have introduced synthesis theory as an auxiliary theory for
formed conceptual variables. In a statistical model, formed conceptual variables are
represented by emergent variables (Coan and Gonzalez, 2015; Henseler and Schuberth,
2021; Yu et al., 2021), not latent variables[1].

The composite model assumes that there is “a definitorial relation between a construct
and its indicators. This means that the construct is made up of its indicators or elements”
(Henseler, 2017, p. 179). Further, the model assumes that the variables forming the
construct act along a single dimension, i.e. all the information between the blocks of
observed variables is conveyed solely by the composites (Dijkstra, 2017). Hence, the
composite model can help us to understand whether the ingredients make up a new
coherent whole or whether they are simply a random collection of elements. This idea
resembles the act of design in which designers arrange ingredients to create something
new.

On the one hand, the composite model does not have immediate implications for realists,
because if the ingredients exist, so does the composite. On the other hand, the composite
model can help us to understand whether a set of elements act along a single dimension,
which corresponds to an emergent property of the composite.

There are various estimators that can be used to consistently estimate composite models:
not only PLS but also generalized structured component analysis (GSCA, Hwang and
Takane, 2004) and Kettenring’s (1971) approaches to generalized canonical correlation
analysis, such as the maximum variance method (MAXVAR) (Dijkstra, 2017; Cho et al.,
2020).

Figure 2 juxtaposes the performance of PLS, GSCA and MAXVAR for a composite
model. The model is similar to the structural model containing latent variables from
Figure 1, but the constructs &, & and n are modeled as emergent variables, not as latent
variables. As shown in Figure 2, all three estimators are capable of retrieving the parameters
of the population model.

3. Partial least squares as an estimator for structural equation modeling vs
partial least squares-structural equation modeling

Cadogan and Lee (2022) refer to PLS as “the kind of PLS modelling of the sort that Hair et al.
(2019b) and Dijkstra and Henseler (2015b) promote” (Footnote 7). This explanation could be
understood to imply that Hair ef al. (2019b) and Dijkstra and Henseler (2015b) work with the
same understanding of PLS. However, little could be further from truth [2]. The difference
between the two understandings of PLS is highlighted by Hair et al (2019b, p. 570) who
stated that Dijkstra and Henseler’s (2015b) PLSc “adds very little to the body of knowledge,
and by its name is deceptive,” thus distancing themselves from Dijkstra and Henseler
(2015a). Whereas Dijkstra and Henseler (2015a, 2015b) regard PLSc and PLS as estimators
for SEM, Hair ef al (2019b) regard PLS-SEM (including the method of confirming
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Figure 2.
Comparison of PLS,
GSCA and MAXVAR
for composite models

Population model

PLS estimates GSCA estimates MAXVAR estimates

wyy = 0.57 wyy = 0.57 wyy = 0.57
wio = 0.38 wig = 0.38 w1y = 0.38
g = 0.19 w3 = 0.19 3 = 0.19
Wy = 0.36 Wy = 0.36 Wy = 0.36
Wy = 0.72 gy = 0.72 oy = 0.72

Conclusion: PLS, GSCA, and MAXVAR retrieve the population parameters.

measurement quality, Hair ef al, 2020; Schuberth, 2021) as an overarching approach.
Therefore, one cannot pose just one conceptualization of PLS that the two groups of scholars
jointly promote. Figure 3 visualizes these different understandings of PLS.

Three features of Figure 3 are particularly worth noticing. As the shaded areas emphasize,
Dijkstra and Henseler (2015a, 2015b) and subsequent publications (Henseler et al, 2016; Henseler,
2017; Miiller et al, 2018; Henseler, 2021; Benitez et al, 2020) ascribe a relatively small (but
nevertheless important) role to PLS, PLSc, PLSel, OrdPLS and the likes within SEM. The different
PLS approaches serve solely as estimators in SEM. The estimator should be chosen according to
the specified model, i.e. PLS for models relating composites and PLSc for models relating latent
variables (Henseler, 2017). In contrast, PLS-SEM as promoted by Hair ef @l (2011, 2012b, 2012c,



SEM PLS-SEM Partial least
Stage 1. Model specification squaresasa
Stage 1: Specifying the structural model research tOOl
Specify structural model
Specify relationships between constructs
and observed variables
Stage 2: Specifying the measurement models 1745
Stage 2: Model identification
Stage 3: Data collection and examination
Ensure that model parameters have a
unique solution
Stage 4: PLS path model estimation
Stage 3: Model estimation
Stage 5: Assessing measurement models
[ me J[ ADF |[ us |
[ es [[ wis [ wismv |
| P | | OElPIES | | b Ple Stage 6: Assessing structural model
[ PLsc || ordPLSc | |[robust PLS(|
Figure 3.
Stage 4: Model assessment Two different
Stage 7: Advanced PLS-SEM analysis conceptions of PLS:
Assess overall model fit PLS as an estimator
Assess model parameter estimates in SEM (Henseler,
Assess other criteria Stage 8: Interpretation of results and drawing 2021) vs PLS-SEM as
conclusions an overarching
framework (Hair

Note: The shaded areas flag PLS-related elements

2014, 2017a, 2017b, 2019a, 2019b) is regarded as an overarching approach, method, technique or
analytic framework (Ringle et al, 2012), and therefore not just a part of SEM. PLS-SEM has its
own kind of model (PLS models) and its own model evaluation steps (Hair ef al, 2020). A second
major distinction between SEM and PLS-SEM is the aspect of model identification. As PLS and
PLSc serve only as estimators within SEM, model identification remains a crucial step, also when
PLS or PLSc are used (Henseler, 2021). As one means of ensuring model identification, Henseler
et al. (2016) introduced the dominant indicator approach, which fixes the sign of one indicator
loading. In contrast, PLS-SEM is claimed to have “no identification problems” (Hair ef al, 2017b, p.
18); it is “not constrained by identification and other technical issues” (Hair ef al, 2017b, p. 27).
Finally, whereas the assessment of overall model fit is a crucial element of SEM, it does not form
part of PLS-SEM’s canonical list of stages. See also Section 5.

4. Redefining reflective measurement in partial least squares-structural
equation modeling

Reflective measurement as represented by a common factor model is the dominant approach
to model unobservable conceptual variables. In line with Cadogan and Lee (2022), “if one

et al., 2017b)
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Figure 4.

A common factor
model, the statistical
model underlying
reflective
measurement

subscribes to realism, then the common factor model maps over the realist’s conceptual
model, in which unobservable and observable variables are causally linked.” Figure 4
depicts a common factor model with reflective indicators. This appears to correspond with
the understanding in PLS-SEM in which for:

[...] reflective indicators, the direction of the arrows is from the construct to the indicator
variables, indicating the assumption that the construct causes the measurement (more precisely,
the covariation) of the indicator variables (Hair ef al, 2017b, p. 13).

Yet, PLS-SEM, which relies on PLS, does not consistently estimate parameters of a common
factor model. See also Section 2.1. PLS-SEM proponents appear to be well aware of this fact.
For instance, PLS-SEM represents constructs as linear combinations of its indicators
(Sarstedt et al, 2016). Similarly, “[instead of following a common factor model logic [...],
PLS-SEM calculates composites of indicators that serve as proxies for the concpets [sic]
under research” (Hair et al., 2017b, p. 33).

In case of reflective measurement, PLS-SEM relies on PLS Mode A as an outer weighting
scheme. PLS Mode A yields indicator weights that are proportional to the true common
factor loadings (Dijkstra, 2015). The statistical model underlying PLS Mode A is depicted in
Figure 5. The indicator weights are constrained to be proportional to the true loadings
(using a proportionality factor ¢ such that the variance of & equals 1). As can be seen, the
construct £ in Figure 5 differs from the construct ¢ in Figure 4. Concretely, whereas the
construct ¢ in Figure 4 is measured without measurement error, the construct & in Figure 5
does contain a measurement error, the amount of which can be determined as:
(A0 + Al + A26s3).

Although PLS-SEM proponents seem to be aware of the fact that PLS Mode A is different
from the reflective measurement model that SEM has put forward, they continue to equate
the two models and pretend that PLS-SEM is appropriate for reflective measurement
models. For instance, in their glossary Hair ef al. (2017b) explain reflective measurement as:

[...] a type of measurement model setup in which measures represent the effects (or
manifestations) of an underlying construct. Causality is from the construct to its measures
(indicators). Also referred to as Mode A in PLS-SEM.




Similarly, Hair et al (2017¢) confirm that PLS-SEM ‘“[hJandles reflectively [...] specified
constructs” (p. 620) and according to Hair et al (2017b, p. 19), PLS-SEM ‘[elasily
incorporates reflective [...] measurement models.” Consequently, there is a large risk for
researchers applying PLS-SEM that the actual statistical model does not match their theory.
This problematic practice of equating PLS Mode A with reflective measurement becomes
most evident in the writings of Hair ef al; even so, one comes across it in a large part of the
PLS literature. In the light of this situation, Henseler (2021) warns that some highly cited
PLS-related publications exhibit the same problem. See, for example, Cassel et al. (1999),
Chin (1998), Chin et al. (2003), Esposito Vinzi et al. (2010), Haenlein and Kaplan (2004), Hair
et al. (2017a), Hair et al. (2012a; 2013), Hair et al. (2014), Hair et al. (2012b), Hair et al. (2017a),
Hair et al. (2017d), Hair et al. (2012c), Henseler ef al. (2009), Hulland (1999), Lowry and Gaskin
(2014), Peng and Lai (2012), Reinartz ef al. (2009), Ringle et al. (2012), Sarstedt et al. (2014),
Sosik et al. (2009) and Tenenhaus et al. (2005). Against this background, Cadogan and Lee
(2022) are right in finding “PLS[-SEM]'s symbolic language maps over that of common
cause SEM, making it harder to recognize that PLS[-SEM] does not adopt a realist stance.”

5. Assessment of model fit

Cadogan and Lee (2022) emphasize the importance of “methods which at least explicitly
propose data generating mechanisms, and which when used appropriately can ‘test’ the
mechanisms against observable data” for scientific realists. In the context of SEM, testing
the mechanisms against observable data involves the assessment of overall model fit, which
means that the discrepancy between the sample variance-covariance matrix and the
estimated model-implied counterpart is investigated. This is also promoted for models
estimated by PLSc (Dijkstra and Henseler, 2015a; Benitez ef al, 2020). Against this
background, it is surprising that Cadogan and Lee did not discuss this opportunity for
structural models containing latent variables estimated by PLSc. As Dijkstra and Henseler
(2015b) proposed, structural equation models containing latent variables estimated by PLSc
can be assessed for overall model fit by a bootstrap-based test. This approach is not tied to
PLSc and also finds application in the SEM literature under the name “Bollen-Stine
bootstrap” (Bollen and Stine, 1992). To draw a conclusion about whether the specified model
shows a perfect fit in the population, the bootstrap-based test — as its name suggests — relies
on the bootstrap. Specifically, it compares the value of a discrepancy function that measures
the difference between the observed variables’ sample variance-covariance and their model-
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Figure 5.

Statistical model
underlying PLS Mode
A in PLS-SEM
(“Reflective
measurement”)
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implied counterpart, to a critical value obtained from the bootstrap reference distribution of
this discrepancy measure. Notably, the bootstrap procedure is based on a transformed data
set to ensure that the observed variables’ sample variance-covariance matrix agrees with the
specified model, i.e. the variance-covariance matrix of the transformed data set equals the
variance—covariance matrix the estimated model implies. Although Beran and Srivastava
(1985) have derived the statistical properties of the bootstrap-based test, a simulation study
additionally confirmed that the bootstrap-based test is suitable for structural equation
models containing latent variables estimated through PLS (Dijkstra and Henseler, 2015a).

In contrast to the literature that regards PLS and PLSc as estimators within SEM
(Dijkstra and Henseler, 2015b; Henseler et al., 2016; Benitez et al., 2020), overall model fit
assessment is ascribed little value in PLS-SEM (Hair ef al.,, 2019a, 2020). Instead, PLS-SEM
relies on a set of heuristic rules to confirm measurement models and assess structural
models (Hair et al, 2020). Particularly the notion that (measurement) models can/should/
must be confirmed (Hair et al.,, 2020) is at odds with the Popperian dictum that models can
never be confirmed, only rejected. In the past, various researchers have criticized the use of
the assessment criteria for reflective measurement models in PLS-SEM (Ronkko et al., 2016;
Schuberth, 2021). This is mainly due to the following reasons. First, as shown in the
previous section, the reflective measurement model in PLS-SEM differs from the reflective
measurement model SEM put forward. As the assessment criteria used to confirm PLS-SEM
reflective measurement models were developed under the assumption that the reflective
measurement model is true, their validity for evaluating PLS-SEM reflective measurement
models is limited. Second, PLS-SEM applies PLS to estimate reflective measurement models’
parameters, which is known to produce inconsistent estimates for this type of model.
Consequently, only questionable conclusions can be drawn from these criteria about
reflective measurement models, as they are based on inconsistent PLS estimates.

In addition to assessing the overall fit of structural models that include latent variables,
the overall fit of models with emergent variables can also be assessed (Dijkstra, 2017;
Schuberth et al, 2018b). Composite models’ overall fit assessment relies on the same
principle as latent variable models’ assessment, i.e. the difference between the observed
variables’ sample variance-covariance and their estimated model-implied counterpart is
examined. However, instead of applying the variance-covariance implied by a latent
variable model, the model-implied variance-covariance of the composite model needs to be
considered. For more details about the assessment of composite models, the interested
reader is referred to Dijkstra (2017) and Schuberth et al. (2022).

6. Discussion

The focal point of Cadogan and Lee’s treatise was the extent to which PLS is an appropriate
method for researchers who adhere to a particular research paradigm. While many
researchers might subscribe to only a single research paradigm, electing to conduct a study
that includes multiple research paradigms requires empathy and understanding of all
research paradigms covered. Not only do Cadogan and Lee manage this challenge well, they
also demonstrate that they subscribe to all four covered research paradigms.

Obviously, scientific realism is close to Cadogan and Lee’s hearts. Not only do they
devote their paper to realists’ research quality; they are also confident that they are not alone
with this worldview, because “many marketers embrace the realist stance” (Cadogan and
Lee, 2022).

In past publications, both Cadogan and Lee pursued an instrumentalist worldview. If
structural equation models turn out to be significantly wrong, but researchers nevertheless
deem them adequate for drawing conclusions about the world (as for instance in the



Questionable statement of Cadogan and Lee (2022)

Partial least

Proposed correction squares as a

“The outputs that PLS produces lie outside the
scope of scientific realist inquiry”

“PLS ... is uniquely designed to construct different
stories of the world depending on the research
context”

“[Rlecent work by PLS experts explicitly attempts to
link PLS with constructivism.” “. . . Henseler’s
(2017) observation that tools such as PLS are
consistent with a constructivist perspective.”
“Henseler’s (2017) view of tools like PLS as aligning
with constructivism, rather than realism . ..”

“[TThe numerical results, predictions, and
relationships that the PLS method returns are not
estimates of real world things, but rather, are
explicitly constructed by the analysis method, and
hence the analysts themselves”

“Further, some PLS advocates agree, identifying
PLS as an approach that is entirely constructivist,
located in a world where researchers modeling with
a ‘composite can be thought of as designers: They
design this construct’, explicitly mixing up
‘ingredients . . . [and arranging them] to form a new
entity’ (Henseler, 2017, p. 180), rather than explicitly
attempting to measure unobservable variables that
‘exist in nature’ (Henseler, 2017, p. 178). This
constructivist interpretation has seriously
problematic implications for realists . ..” (p. 23)

“PLSc’s use of common factors does not elevate PLS
to a method that meets the realist’s aspirations for
hypothetical causal contact”

Like the ML estimator, PLSc produces consistent research tool

estimates for reflective measurement models. Hence,
if SEM using ML is suitable for scientific realist
inquiry, SEM using PLSc should also be regarded as
suitable. Traditional PLS produces estimates for
composite models. Scientific realism stays neutral
with regard to composition

PLS is designed to create composites of observed
variables of which the correlation matrix has
‘maximum distance’ to the unit matrix

Henseler (2017) suggested that the composite model
aligns well with constructivism. Composite models
can be estimated using, among others, ML and PLS,
which means that ML and PLS are equally strongly
linked to constructivism. Henseler (2017) did not
view PLS as aligning less with realism

Every statistical method’s numerical results are
produced by the analysis method. PLSc provides
consistent parameter estimates for reflective
measurement models (Dijkstra and Henseler, 2015a,
2015b), and PLS Mode B provides consistent
parameter estimates for composite models (Dijkstra,
2017). Consistency means that estimates converge in
probability toward the true value of the parameters
given the model is correctly specified

It is questionable whether anybody would agree that
PLS is an entirely constructivist approach. Henseler
(2017) definitely did not identify it as such. Henseler
(2017) recommended specifying reflective
measurement models for unobserved conceptual
variables that are assumed to exist in nature, and
then estimating the reflective measurement model
parameters using PLSc. He recommended the
composite model as a representation for human-
made concepts. Composite models assume “a
definitorial relation between a construct and its
indicators. This means that the construct is made up
of its indicators or elements” (Henseler, 2017, p. 179).
In composite models, “the relationships between the
indicators and the construct are not cause-effect
relationships but rather a prescription of how the
ingredients should be arranged to form a new
entity” (Henseler, 2017, p. 180). Not all researchers
modeling with a composite can be thought of as
designers; only those “who introduce a composite
can be thought of as designers” (Henseler, 2017,

p. 181, emphasis added)

Since “causal contact” is a property of a model and
not an estimator, and PLSc estimates for reflective
measurement models do not differ qualitatively
from other estimators for reflective measurement
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Table 2.

Questionable statement of Cadogan and Lee (2022)

Proposed correction

“[TThe design of PLS means that it will produce
different results as a consequence of the varying
contexts (e.g., social environments) in which it is
undertaken”

“[TThings that are constructed, like the results from
a PLS analysis”

“Nelson and Stolterman (2012) describe the world in
archetypally constructivist terms: for instance they
claim that Thjumans did not discover fire — they
designed it’ (p. 11), and thus that ‘scientists . .. can
be understood more as design critics than natural
scientists’ (p. 27)”

“ Henseler (2017) affirms that PLS’s compositions,
and the relationships it creates between those
compositions, belong in the realm of ‘critical design’,
where PLS users essentially ‘imagine that-which-
does-not-yet-exist, to make it appear’ Nelson and
Stolterman (2012, p. 12)”

models, SEM with PLSc is a viable methodological
option for realists

The results of PLS remain the same no matter who
undertakes the analysis. However, as with
maximum likelihood, PLS takes the whole model
into account, which means that a construct’s factor
loadings can differ if different variables are related
to it

In structural equation modeling, model parameters
are estimated, not constructed, no matter which
estimator (ML, generalized least squares,
unweighted least squares, PLS, etc.) is used

Nelson and Stolterman (2012, p. 11) do not describe
the world, but human achievements: “Humans did
not discover fire — they designed it. The wheel was
not something our ancestors merely stumbled over
in a stroke of good luck; it, too, was designed. The
habit of labeling significant human achievements as
‘discoveries, rather than ‘designs,’ discloses a
critical bias in our Western tradition whereby
observation dominates imagination.” While
constructivists hold that knowledge about the world
is constructed (Lyotard, 1984), Nelson and
Stolterman (2012) make the point that a large part of
today’s world is constructed. At the same time, they
do not regard scientific knowledge as being
designed: “In the theoretical world of science, we do
not think about natural laws or truths as being
designed. But, in the real world — the present
environment that surrounds all of us — we
understand that we ‘create’ as well as ‘discover’ this
reality. This is because the real world has many
facets of an artificial world and is very much a
designed world. In fact scientists have begun to
label the present epoch as the Anthropocene era
because of the dominant effect human activity has
had on global systems, making them ever more
unnatural and artificial. Based on this, scientists
describing and explaining the world can be
understood more as design critics than natural
scientists” (p. 27)

Neither Henseler (2017) nor Nelson and Stolterman
(2012) use the term ‘critical design,” so Cadogan and
Lee’s claim cannot be affirmed. Nelson and
Stolterman (2012) do not say anything about PLS
users, but equate design with “the ability to imagine
that-which-does-not-yet-exist” (p. 12)

following papers Cadogan or Lee co-authored: Boso ef al., 2013; Cadogan et al., 2009; Hooley
et al., 2005), then they pursue an antirealist paradigm. Under such circumstances, that the
researchers used a model as a tool to better understand the world, identifies them as

instrumentalists.



The study of Cadogan and Lee itself is clearly of a pragmatist nature. The research question
about PLS’s suitability for researchers following a certain paradigm is all about the
usefulness of PLS and not about its truth or existence. Moreover, Cadogan and Lee’s (2022)
final and most pronounced conclusion is normative: ‘[ TThe method[. . .] should not be PLS.”
This is a pragmatist worldview par excellence: In order to achieve purpose Y [here: realist
inquiry], follow the norm X [here: “Do not use PLS”].

Although readers could get the impression that the group of researchers Cadogan and
Lee would least want to adhere to are the constructivists, in some instances they exhibit
behavior that they ascribed to constructivists, namely, “construct different stories of the
world” (Cadogan and Lee, 2022, Abstract). Some of these constructed stories result from
failure to distinguish between PLS as an estimator of structural equation models on the one
hand, and PLS-SEM on the other hand. Other constructed stories emerge from the practice of
contextomy, thus distorting the source’s intended meaning. Cadogan and Lee ascribe
statements and values to other researchers that are at odds to those researchers’ real
statements and opinions. Table 2 lists a selection of questionable statements Cadogan and
Lee made and juxtaposes them with corresponding corrections.

Cadogan and Lee (2022) make an important contribution by pointing to the interrelation
between scientific paradigms and highlighting that the use of a certain method might mean
different things to researchers who follow different paradigms. The starting point for this
commentary was Cadogan and Lee’s (2022) central statement that PLS subverts realist
search for truth. The previous sections have shown that this statement is not universally
true. If researchers carefully specify their model and use consistent estimators, that can be
based on PLS, there is no subversion whatsoever. Table 3 summarizes the conclusions about
PLS estimators’ suitability for different research paradigms. It also makes it visible that not
the estimator makes a difference, but the chosen model. Finally, this commentary concludes
in the form of three recommendations.

Recommendation 1: Researchers should select a model that adequately represents their theory.

Researchers should select a statistical model that best describes their theory. If their theory is
about unobservable conceptual variables that are measured by a set of observed variables as in
the realist variable framework, the reflective measurement model might be a suitable candidate.
Notably, recent literature has urged caution to reflexively use the common factor model in
modeling unobservable conceptual variables (Rhemtulla et al, 2020). Moreover, if the theory is
about conceptual variables that are formed or aggregated, the composite model appears to be a
more suitable alternative for modeling such theories. To avoid misunderstandings, researchers
should formulate their model explicitly.

Method Suitable for[. . .]

Model Estimator Realism Instrumentalism Pragmatism Constructivism

Reflective measurement model PLS X X X X
PLSc v v v V)
ordinal PLSc v v v V)
robust PLSc v v v V)
PLSel v v v V)
PLSe2 v v v V)

Composite model PLS ) v v v
ordinal PLS ) v v v
robust PLS (2] v v v

Note: v = suitable, (v') = potentially suitable, X = not suitable
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Recommendation 2: Researchers should carefully reflect on the properties of an estimator for
a certain model and not bother about whether the estimator is called “PLS.”

Various estimators have been proposed for structural models containing latent variables,
such as the ML estimator, the generalized least squares estimator, PLS and PLSc. In
deciding about whether to use an estimator for a certain model, researchers should consider
the estimator’s statistical properties for this model. Desirable estimator properties are
(asymptotic) unbiasedness, consistency and (asymptotic) efficiency [3]. As shown in Section
2.1, PLS does not show any of these properties for structural models containing latent
variables. Therefore, researchers are advised not to use PLS to estimate this type of model.
However, PLSc was specifically developed to estimate latent variable models and has very
similar statistical properties as the ML estimator, i.e. it is consistent and asymptotically
normal. Hence, there is nothing that speaks against using PLSc to estimate a latent variables
model. To conclude, researchers:

[...] should check any tool that they may be considering using, to establish its correspondence
with their commitments regarding the reality of the conceptual variables and causal forces in
their theories (Cadogan and Lee, 2022).

This includes inspecting the suitability of the employed estimator for the specified model.

Recommendation 3: Researchers should critically assess their model.

If SEM is used to describe phenomena of the world, researchers should do their utmost to
examine whether the model is a good description by exploiting the constraints the model
imposes. One way to do so is to assess the overall model fit by means of statistical testing,
regardless of whether the conceptual variables are modeled as latent variables or as
emergent variables. As various simulation studies demonstrated, the overall fit of latent
variable models and composite models estimated by PLSc and PLS, respectively, can be
assessed.

Notes

1. The notion of an emergent variable has been chosen to emphasize that the variable is not simply
a composite, but a composite that conveys all the information between its components and its
consequences, and that it is on the same level of abstraction as a latent variable.

2. Since Theo K. Dijkstra passed away in 2020, he can no longer confirm this personally. However,
based on prior personal communication with him, the authors are certain that Dijkstra’s view on
PLS was completely different to that of Hair ef al. (2019b).

3. This does not mean that estimators lacking these properties are intrinsically “bad”. For instance,
there are situations in which researchers deliberately sacrifice certain properties, such as
unbiasedness, to obtain estimates with a smaller standard error.
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