
Analysis of influencing factors
of Chinese provincial carbon
emissions based on projection
pursuit model and Markov

transfer matrix
Lei Wen and Linlin Huang

Department of Economics and Management,
North China Electric Power University Baoding Campus, Baoding, China

Abstract
Purpose – Climate change has aroused widespread concern around the world, which is one of the most
complex challenges encountered by human beings. The underlying cause of climate change is the increase of
carbon emissions. To reduce carbon emissions, the analysis of the factors affecting this type of emission is of
practical significance.
Design/methodology/approach – This paper identified five factors affecting carbon emissions using
the logarithmic mean Divisia index (LMDI) decomposition model (e.g. per capita carbon emissions, industrial
structure, energy intensity, energy structure and per capita GDP). Besides, based on the projection pursuit
method, this paper obtained the optimal projection directions of five influencing factors in 30 provinces
(except for Tibet). Based on the data from 2000 to 2014, the authors predicted the optimal projection directions
in the next six years under theMarkov transfer matrix.
Findings – The results indicated that per capita GDP was the critical factor for reducing carbon emissions.
The industrial structure and population intensified carbon emissions. The energy structure had seldom
impacted on carbon emissions. The energy intensity obviously inhibited carbon emissions. The best optimal
projection direction of each index in the next six years remained stable. Finally, this paper proposed the policy
implications.
Originality/value – This paper provides an insight into the current state and the future changes in carbon
emissions.

Keywords Carbon emissions, Influencing factors, LMDI, Markov transfer matrix,
Projection pursuit model

Paper type Research paper

1. Introduction
Climate change has aroused widespread concern around the world, which poses one of the
greatest challenges to human beings. Greenhouse gas emissions are not considered as
simple environmental affairs but involve some fields associated with the political and
economic interests. These even impact the survival, development and security of one
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country (Yao and Qin, 2012). China now undergoes the rapid growth of urbanization and
industrialization (Tan, 2012). There will still be the vast pressure on energy saving and
emission reduction in China due to the large population, rapid development and increasingly
prominent contradictions between resources and environment. Accordingly, how to promote
energy savings and reduce carbon emissions in China have become a focus. In recent years,
carbon emissions have been broadly studied and researched.

Kapusuzoglu (2014) studied the impact of GDP on CO2 emissions. He suggests that
nearly 4 per cent of the world’s future changes in CO2 emissions are attributed to the
changes in GDP with population density as an endogenous variable. Borhan and Ahmed
(2012) built a simultaneous equation and assessed the relationship between the air pollution
index and economic growth between 1996 and 2006 in Malaysia. Air pollution indicators
consist of carbon monoxide (CO), sulfur dioxide (SO2), nitrogen dioxide (NO2), ozone (O3), as
well as particulate matter (PM10). As these results suggest, the primary source of pollution in
Malaysia originated from transport. From 1965 to 2010, GDP exports, energy consumption
and CO2 emissions in Thailand showed a two-way causal relationship. As the results
suggest, energy consumption, exports or GDP resulted in CO2 emissions (Anatasia, 2015).

Using co-integration and vector error correction models, Istaiteyeh (2016) found that per
capita GDP consequently increased per capita electricity consumption. Katircioglu (2017)
investigated the impact of oil price trends on CO2 emissions in the traditional environmental
Kuznets curve of Turkey’s economy. As the results suggest, the rapid changes of oil prices
negatively impacted carbon emissions. Kalayci and Koksal (2015) analyzed the impacts of
China’s air freight industry on CO2 emissions from 1980 to 2011 using econometric models.
Using the co-integration and vector error-correction modeling techniques, Ang (2007)
examined the dynamic causal relationships between pollutant emissions, energy
consumption and output for France. The results suggest that economic growth had a causal
impact on the increase in energy use and pollution in the long run.

The logarithmic mean Divisia index (LMDI) method is used to decompose the factors
affecting carbon emissions at the multi-regional level, which was verified by Ang et al.
(2009). By using the LMDI method, carbon emission factors were decomposed into energy
intensity, per capita GDP, energy consumption and population. The impact of these factors
on carbon emissions was discussed (Vinuya et al., 2010; Wang, 2012). The impact of energy
intensity, energy structure and output proportion on carbon emissions was analyzed by Xu
et al. (2016). The carbon intensity factors in China’s industrial sector was decomposed as
energy intensity, emission coefficient and structure. As the results suggest, energy intensity
was the critical factor for inhibiting carbon emissions. Carbon intensity was improved by
the emission coefficient, while the structure effect did not significantly impact carbon
intensity (Liu et al., 2015). The drivers of carbon emissions were decomposed into industrial
structure, energy intensity, etc. using the LMDI method, and the impact of these factors on
carbon emissions in Beijing were explored (Wu et al., 2014).

Using the fuzzy clustering algorithm, Xia et al. (2011) investigated an integrative
assessment on the Chinese industry from 2002 to 2007, classified the industrial sectors into
five types and summarized the major characteristics of each type. Industries in Tianjin fell
into four types, and the features of “emission-efficiency” were analyzed by conducting
cluster analysis (Shao et al., 2014). Yue and Zhu (2010) divided the carbon emission types of
30 provinces, except for Tibet, into four regions in accordance with two indicators (i.e. the
emission and discharge efficiency) using the cluster analysis method. Based on a projection
pursuit model, carbon emissions in China from 1996 to 2008 were studied (Yao and Qin,
2012). Based on the accelerated genetic algorithm and projection pursuit method, Zhang
(2016) conducted cluster analysis of carbon emissions in each province in China, obtained
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the optimal projection direction that determined the degree of all factors and classified all
regions in China into four types.

In recent years, the Markov prediction model has been used to predict the energy
structure, as well as carbon emissions. Niu et al. (2012) came up with a method to calculate
the transfer matrix, which was verified by the statistical data of energy consumption
structure in a region. The research status and existing problems of carbon emissions in
Jiangsu Province were analyzed by Zhu et al. (2015), and the Grey Markov prediction model
was used to forecast carbon emissions from 2014 to 2020 in line with the data from 2002 to
2013. As the results suggest, carbon emissions in Jiangsu Province would reach nearly 334
million tons in 2020, and there would have been a rapid growth in carbon emissions in 2020.
Huang and Shang (2015) built the traditional Grey Markov prediction model and improved
the actual error of the initial prediction of the Grey Markov prediction. The improved new
model was adopted to calculate carbon emissions in China. As the results suggest, the new
model had higher accuracy and effectiveness in comparison with the traditional Grey
Markov model.

In contrast to the wealth of studies primarily exploring the factors affecting carbon
emissions in China, the contribution of each factor influencing carbon emissions and the
prediction of these factors have been rarely discussed. To fill these gaps, we decomposed
the factors affecting carbon emissions into per capita carbon emissions, industrial structure,
energy intensity, energy structure and per capita GDP using the LMDI model, and the
contributions of the five influencing factors to carbon emissions from 2001 to 2014 were
studied based on the data of 2000. In line with the study of Shao et al. (2014), this paper chose
2000 year as the base year. Using the projection pursuit model, this paper investigated the
optimal projection direction of each indicator from 2000 to 2014. The optimal projection
direction can be well expressed as the influence degree of factor. Using the Markov transfer
matrix, we predicted the weights of the five indexes in the next six years. By comparing the
optimal projection direction and investigating carbon reduction ability and potential, this
paper proposed the corresponding policy measures and suggestions.

2. Methodology
2.1 Carbon emission calculation method
In accordance with China’s central types of energy consumption, this paper primarily
studied eight types of energy (i.e. coal, coke, crude, gasoline, kerosene, diesel, fuel oil and
natural gas). There are some limitations that standard coal consumption was obtained by
multiplying the energy consumption based on the standard coal coefficient. Thus, this paper
calculated the standard coal consumption based on the average net calorific values of all
energy and the CO2 emission factor. Given this, carbon emissions may be calculated as:

C ¼
X
i

Ei � Qi � EFi � 12�
44 (2-1)

where, i denotes the type of energy consumed; C is the total carbon emissions; Ei is the total
consumption of energy i; Qi is the average net calorific value of energy i; and EFi is the CO2
emission factor.

2.2 Decomposition analysis
Using the LMDI method, this paper subdivided the change of carbon emissions in China into
five factors (i.e. per capita carbon emissions, industrial structure, energy intensity, energy
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structure and per capita GDP) and analyzed the contribution and the rate of various factors
to carbon emissions:

C ¼
X
i

Ci

Ei
� Ei

E
� E
Y
� Y

P
� P ¼

X
i

FiSiIiRP (2-2)

C
P
¼ A ¼

X
i

FiSiIiR (2-3)

where, Ci denotes carbon emissions of energy i; Ei is the consumption of energy i; E is the
total energy consumption; Y is GDP; P is the population; CP is per capita carbon emissions;
Fi ¼ Ci

Ei
is the carbon emissions intensity, i.e. the consumption of carbon per unit of energy i,

which can be considered as a constant; Si ¼ Ei
E is the energy structure; and I ¼ E

Y is the
energy intensity, which was defined as the energy consumption of per unit of GDP. Because
energy intensity is closely associated with the industrial structure, the impact of energy
intensity on carbon emissions was measured by the industrial structure and energy
intensity; R ¼ Y

P is per capita GDP representing the degree of economic development.
The change in carbon emissions from the base year to yearT can be calculated as:

DC ¼ CT � C0 ¼ DF þ DS þ DI þ DRþ DP (2-4)

where, DF, DS, DI, DR, DP are the contributions of carbon intensity, energy structure,
energy intensity and industrial structure, per capita GDP and population, respectively. The
decomposition equations may be calculated as follows:

DF ¼
X
i

L CT ;C0
� �

ln
Fi

T

Fi
0

 !
(2-5)

DS ¼
X
i

L CT ;C0
� �

ln
SiT

Si0

 !
(2-6)

DI ¼
X
i

L CT ;C0
� �

ln
IiT

Ii0

 !
(2-7)

DR ¼
X
i

L CT ;C0
� �

ln
Ri

T

Ri
0

 !
(2-8)

DP ¼
X
i

L CT ;C0
� �

ln
Pi

T

Pi
0

 !
(2-9)

where:

L CT ;C0
� �

¼
Ci

T � Ci
0

� �
= lnCi

T � lnCi
0

� �
Ci

T 6¼ Ci
0

Ci
T Ci

T ¼ Ci
0

0 Ci
T ¼ Ci

0 ¼ 0

8>><
>>: (2-10)
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And, the contribution rates of various factors may be calculated as follows:

rF ¼ DF
DC

� 100%; rS ¼ DS
DC

� 100%; rI ¼ DI
DC

� 100%;

rR ¼ DR
DC

� 100%; rP ¼ DP
DC

� 100%

where rF, rS, r1, rR, rP are the contribution rate of carbon intensity, energy structure, energy
intensity and industrial structure, per capita GDP and population, respectively.

2.3 Projection pursuit
The projection pursuit model, proposed by Kruskal (1969), is a multi-data processing
method projecting high-dimensional data into low-dimensional space under numerical
optimization calculation, to find out the optimal projection reflecting the data structure
characteristics. The model has no special requirements of data, and sample size can ignore
the effects of variables not associated with the structure and features of the data, and can
efficiently solve various practical problems (Kruskal, 1969). The specific steps are as
follows:

� Step 1: Normalize the evaluation index. The normalization process is capable of
eliminating the dimension of the index and unifying the range of the evaluation
index.

Normalize the forward indicator as:

x i;jð Þ ¼
x* i;jð Þ � xmin jð Þ
xmax jð Þ � xmin jð Þ

(2-11)

Normalize the negative indicator as:

x i;jð Þ ¼
xmax i;jð Þ � x* i;jð Þ
xmax jð Þ � xmin jð Þ

(2-12)

where, {x*(i,j)|i = 1, 2 . . . n, j = 1, 2 . . . p}, the sample set of each evaluation index, is
the index j of sample i; n and p refer to the sample size and the number of indicators,
respectively; xmax(j) and xmin(j) are the maximum and minimum values of the index j,
respectively j; x(i, j) is the normalized sequence of indicators.

� Step 2: Construct a projection function Q(a). The p-dimensional data, {x*(i,j)|i = 1,
2 . . . n, j = 1, 2 . . . p}, is incorporated into Z(i), one-dimensional projection value with
the projection direction a = {a(1), a(2), . . . a(p)}, the unit vector in the projection
pursuit method.

Where:

Z ið Þ ¼
Xp
j¼1

a jð Þx i;jð Þ; i ¼ 1; 2; . . . ; n (2-13)

When Z(i) is incorporated, the distribution of the projection value is as follows: the
local projection point is as dense as possible; it is better to gather into several points;
the whole projection point is scattered as much as possible. Accordingly, the
projection function may be expressed as:
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Q að Þ ¼ SzDz (2-14)

where:

Sz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1
Z ið Þ � E zð Þ
� �2
n� 1

s
(2-15)

Dz ¼
Xn
i¼1

Xn
j¼1

R� r i;jð Þ
� � � u R� r i;jð Þ

� �
(2-16)

where:

r i;jð Þ ¼ jZ ið Þ � Z jð Þj (2-17)

u tð Þ ¼
1 t � 0

0 t < 0

(
(2-18)

Here, Sz denotes the standard deviation of Z(i); Dz is the local density of Z(i); E(z) is the
average of the sequence; R is the window radius of Dz; r(i,j) is the distance between the
samples; u(t) is the unit step function.

� Step 3: Optimize the projection index function. When the sample set of each index is
gained, the projection function varies only with the projection direction. Thus, the
optimal projection direction may be calculated by solving the maximum problem of
the projection function as follows:

Max:Q að Þ ¼ SzDz

s:t:
Xp
j¼1

a2 jð Þ ¼ 1 (2-19)

2.4 Markov transition matrix
The Markov transfer matrix, proposed by Russian mathematicians A. A. Markov at the
beginning of the twentieth century, is a useful tool to predict the status of the future
(Rabiner, 1990). By exploring the initial probabilities of different states and transition
probabilities between states, it considers the time series as a stochastic process and
determines the trend of the state change to predict the future (He, 2011). Specific steps are as
follows:

� Step 1: Input experimental data and processing the data. A Markov chain with a set
of states {s1, s2, . . . sn} and the transfer matrix A = (aij)n�n, where, aij� 0. The index
j in t year is valued as yt(j), j = 1, 2. . . k; t = 1, 2, 3 . . . n; the index j in t þ 1 year is
valued as ytþ1(j), j = 1, 2 . . . k; t = 1, 2, 3 . . . n, where,

Pk
j¼1 aij ¼ 1; i ¼ 1; 2; . . . n.

� Step 2: Determine the Markov transfer matrix using the least squares method.
According to the properties of Markov chain, ytþ1 jð Þ ¼Pn

t¼1
yt ið Þaij; j ¼ 1; 2; . . . kð Þ can be yielded. And, the transfer matrix A is yielded by
solving the equation using the least squares method.

� Step 3: Predict the future state according to the Markov transfer matrix.
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2.5 Data resources
The data for eight types of fuels in each province studied in this paper were collected from
the China Statistic Yearbook and China Energy Statistical Yearbook from 2000 to 2014 (e.g.
coal, coke, crude, gasoline, kerosene, diesel, fuel oil and natural gas). The carbon emissions
were calculated by energy consumption, average net calorific value of energy and CO2
emission factor, where the average net calorific of energy, and the CO2 emission factor
originated from the IPCC Guidelines for National Greenhouse Gas Inventories (2006). This
paper selected five factors as influencing factors (i.e. per capita carbon emissions, energy
intensity, industrial structure, energy structure and per capita GDP). Per capita carbon
emissions were acquired by the total carbon emissions of each province divided by the total
population of each province, in which the whole carbon emissions were gained by adding
the carbon emissions of all types of energy, and the total population originated from
National Bureau of Statistics of China. Because energy consumption is dominated by coal in
various provinces, energy structure was acquired by the proportion of coal consumption to
total consumption. Energy intensity was obtained by energy consumption divided by GDP,
where GDP of each province came from National Bureau of Statistics of China. The
industrial structure was obtained by sharing the added value of the secondary industry in
the gross product, in which the added value of the secondary industry and the gross product
originated from National Bureau of Statistics of China. Per capita GDP was acquired by
GDP divided by the total population.

3. Results and discussion
3.1 Decomposition of carbon emissions factors
In total, 30 provinces in China were explored using the LMDI method. The contributions and
rates of factors to the increase of carbon emissions in China are listed in Table I. The
contribution values on carbon emissions of the provinces in China about five factors from
2000 to 2014 are listed in Table II. To more clearly compare the contribute values of the
provinces, Table II was converted into Figures 1 to 5. The impact of five indicators was
analyzed.

Table I suggests that, in the last 15 years, per capita GDP had the largest contribution to
carbon emissions, taking up 67.42 per cent. The contribution of per capita GDP to carbon
emissions had always been positive, showing an increase, and the growth was still fast in
2005. Due to the new normal of China’s economy, the national economic slowdown policy,
per capita GDP growth has been slowed down since 2011. The economic growth could
directly affect carbon emissions. With the decline of per capita GDP growth, the total carbon
emissions would decrease accordingly. Accordingly, new normal of China’s economy
contributes to carbon control.

Per capita GDP in all provinces is positive, as shown in Figure 1, suggesting that
economic development accelerates the rise of carbon emissions in China. The contributions
of per capita GDP in Hebei, Shanxi, Shandong, Inner Mongolia and Liaoning to national
carbon emissions reached 18.19 � 108 t, 20.21 � 108 t, 22.26 � 108 t, 15.79 � 108 t and
16.79 � 108, taking up 7.03, 7.81, 8.60, 6.10 and 6.49 per cent, respectively. The industrial
structure of these provinces is a typical energy-intensive structure. Chemistry, energy and
steal industry are the economic foundation of these provinces.

The contributions of per capita GDP on Beijing, Ningxia and Hainan were just 3.58� 108

t, 2.68 � 108 t, 0.58 � 108 t, taking up 1.39, 1.04 and 0.22 per cent, respectively. In Beijing,
high-tech industries take up a relatively big proportion in industrial structure. Ningxia was
a big agricultural province. In Hainan, tourism was the primary industry, and its

IJCCSM
11,3

412



Table I.
Contribution value
and rate of carbon
emissions factors

Years

Industrial structure Energy structure Energy intensity Per capita GDP Population
Value
(104)

Rate
(%)

Value
(104)

Rate
(%)

Value
(104)

Rate
(%)

Value
(104)

Rate
(%)

Value
(104)

Rate
(%)

2001 –0.07 –4.04 –0.0039 –0.21 –0.67 –36.56 1.08 59.05 0.0025 0.14
2002 –0.06 –1.59 0.0458 1.27 –0.99 –27.59 2.35 65.08 0.16 4.47
2003 0.43 6.62 0.21 3.21 –1.13 –17.38 4.44 68.54 0.28 4.25
2004 0.80 7.61 0.11 1.03 –1.72 –16.39 7.45 71.07 0.409 3.90
2005 1.35 4.37 0.19 0.62 –2.17 –7.01 26.78 86.52 0.46 1.48
2006 1.81 9.05 0.26 1.32 –3.29 –16.48 13.98 70.02 0.63 3.14
2007 1.93 7.37 0.34 1.32 –5.21 –19.92 17.86 68.33 0.80 3.06
2008 2.25 6.84 0.33 1.02 –7.81 –23.73 21.54 65.44 0.98 2.97
2009 1.92 5.41 0.13 0.38 –8.63 –24.28 23.69 66.68 1.16 3.26
2010 2.57 5.92 –0.04 –0.10 –10.95 –25.25 28.36 65.37 1.46 3.36
2011 2.91 5.57 0.22 0.43 –13.46 –25.81 33.92 65.05 1.64 3.15
2012 2.49 4.44 –0.01 –0.02 –15.27 –27.25 36.49 65.11 1.78 3.17
2013 1.67 2.84 –0.12 –0.21 –17.09 –28.99 38.17 64.74 1.896 3.22
2014 1.23 1.99 –0.42 –0.68 –18.44 –29.82 39.75 64.27 2.006 3.24
total 21.22 4.84 1.25 0.28 –106.83 –24.35 29.58 67.42 13.65 3.11

Table II.
Contribution values
on carbon emission
of the provinces in
China about five

factors from 2000 to
2014

Provinces

Industrial structure Energy structure Energy intensity Per capita GDP Population
Value
(104)

Rate
(%)

Value
(104)

Rate
(%)

Value
(104)

Rate
(%)

Value
(104)

Rate
(%)

Value
(104)

Rate
(%)

Beijing –1.04 –4.70 –0.88 –5.97 –3.82 –3.94 3.58 1.39 0.79 6.84
Tianjin 0.03 0.12 –0.11 –0.75 –3.32 –3.43 4.76 1.84 0.63 5.43
Hebei 0.54 2.43 –1.96 –13.27 –5.44 –5.62 18.19 7.03 0.77 6.69
Shanxi 2.31 10.46 –0.37 –2.53 –9.02 –9.32 20.21 7.81 0.896 7.75
Inner 2.397 10.84 –0.13 –0.88 –3.50 –3.62 15.79 6.10 0.196 1.69
Liao Ning –0.102 –0.46 –0.93 –6.32 –8.79 –9.08 16.79 6.49 0.35 3.03
Jilin 0.93 4.21 0.24 1.62 –3.28 –3.38 6.58 2.54 –0.006 –0.05
Heilong Jiang –1.24 –5.63 1.07 7.23 –4.42 –4.56 7.92 3.06 –0.067 –0.58
Shang Hai –0.69 –3.12 –1.298 –8.78 –4.65 –4.80 5.396 2.09 1.73 14.95
Jiangsu 0.14 0.65 –0.006 –0.04 –6.24 –6.45 16.84 6.51 0.62 5.41
Zhe Jiang –0.39 –1.77 0.052 0.35 –4.09 –4.22 9.86 3.81 0.81 6.97
Anhui 1.69 7.66 0.17 1.18 –4.04 –4.17 8.45 3.27 –0.11 –0.91
Fujian 0.42 1.92 0.17 1.17 –0.69 –0.72 4.18 1.62 0.16 1.38
Jiangxi 1.14 5.16 –0.02 –0.16 –1.97 –2.04 4.37 1.69 0.10 0.90
Shan Dong 1.14 5.17 1.13 7.62 –1.89 –1.95 22.26 8.60 0.76 6.54
Henan 1.70 7.71 0.30 2.04 –4.36 –4.50 14.49 5.60 –0.14 –1.18
Hubei 0.74 3.37 0.095 0.64 –3.49 –3.61 9.49 3.67 0.009 0.08
Hunan 0.80 3.64 0.65 4.39 –1.72 –1.78 6.91 2.67 –0.13 –1.14
Guang Dong 0.41 1.84 1.32 8.95 –6.32 –6.52 12.74 4.93 1.43 12.36
Guangxi 0.48 2.16 –0.59 –3.98 –1.09 –1.12 4.12 1.59 –0.11 –0.91
Hainan 0.07 0.33 –0.35 –2.40 0.11 0.11 0.58 0.22 –0.05 –0.48
Chong Qing 0.31 1.39 –0.31 –2.07 –2.19 –2.27 3.77 1.46 –0.09 –0.75
Sichuan 1.26 5.68 –0.78 –5.27 –2.49 –2.57 7.92 3.06 –0.27 –2.31
Guizhou 0.14 0.65 –0.15 –1.02 –3.14 –3.25 7.24 2.80 –0.296 –2.56
Yunnan –0.03 –0.15 –0.45 –3.08 –0.41 –0.42 4.49 1.74 0.197 1.70
Shannxi 0.88 3.98 0.22 1.48 –1.52 –1.57 8.00 3.09 0.011 0.09
Gansu 0.31 1.42 0.24 1.66 –2.32 –2.39 4.51 1.74 –0.04 –0.33
Qinghai 0.06 0.29 –0.13 –0.87 –0.48 –0.49 0.92 0.35 –0.05 –0.43
Ningxia 0.195 0.88 0.06 0.43 –0.07 –0.07 2.68 1.04 0.12 1.06
Xinjiang 0.49 2.21 0.57 3.83 –1.94 –2.00 5.69 2.20 0.64 5.51

Chinese
provincial

carbon
emissions

413



development was driving the growth of the economy. Energy consumption in these
provinces was small.

Energy intensity improvements efficiently alleviated the increasing of carbon emissions,
as shown in Table I. From 2000 to 2014, the total of contribution value of energy intensity to
carbon emissions change was –106.825 � 108 t, with the average contribution ratio of 24.35
per cent. The contribution of the energy intensity to carbon emissions had always been

Figure 1.
Contribution values
on carbon emissions
of the provinces in
China about per
capita GDP from 2000
to 2014
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Figure 2.
Contribution values
on carbon emission of
the provinces in
China about energy
intensity from 2000 to
2014
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negative, and the degree of that was getting bigger and bigger, suggesting that active
control of energy intensity would inhibit carbon emissions.

As suggested in Table II and Figure 2, from 2000 to 2014, only the energy intensity effect
value of Hainan province was positive, i.e. 0.11 � 108 t, taking up 0.11 per cent. The energy
intensity in Hainan province promoted carbon emissions.

Figure 3.
Contribution values
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the provinces in
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Besides, the energy intensity effect values of other provinces were negative. In Hebei,
Shanxi, Liaoning, Jiangsu, Henan and Guangdong, the degree of inhibition was relatively
large as –5.44� 108 t, –9.02� 108 t, –8.79� 108 t, –6.24� 108 t, –4.36� 108 t, –6.32� 108 t,
respectively. These areas were energy-intensive regions. Improving energy efficiency would
alleviate the increase of carbon emissions in China.

In Beijing, Jilin, Fujian, Jiangxi, Guangxi, Yunnan, Qinghai, Ningxia and Xinjiang, the
degree of inhibition was small as –3.82 � 108 t, –3.28 � 108 t, –0.69 � 108 t, –1.97 � 108 t, –
1.09 � 108 t, –0.41 � 108 t, –0.48 � 108 t, –0.07 � 108 t, –1.94 � 108 t, respectively. These
areas were non-energy-intensive regions. Agriculture, high-tech industries and tourism were
the focus of development. Energy intensity had less effect on carbon emissions. These areas
had reduced the investment in primary energy consumption, and the energy structure had
been reasonably improved and adjusted.

Table I shows that changes in the industrial structure around contributed to
21.22 � 108 t, taking up 4.84 per cent, which caused the cumulative increase in carbon
emissions. The contribution of the industrial structure to carbon emissions was
changed from being negative to positive in 2003. From 2003 to 2010, the contribution
rate of industrial structure for several years was relatively stable, suggesting the
share of the secondary industry in the gross product increased increasingly faster. Yet
after 2010, the contribution rate of industrial structure started to fall. China began to
focus on industrial structure transformation and propel the supply-side structural
reform.

The contribution of the industrial structure of Beijing, Liaoning, Heilongjiang, Shanghai,
Yunnan and Zhejiang was negative, respectively –1.04� 108 t, –0.102� 108 t, –1.24� 108 t,
–0.69� 108 t and –0.39� 108 t, as shown in Figure 3. The industrial structure of these areas
hindered the increase in carbon emission. In Beijing, Shanghai and Zhejiang, rapid economic
growth and sizable investment in science and technology helped to gain more considerable
efforts to develop new energy. Besides, the vigorous development of the service industry led
to a decline in the proportion of the second industry. In Yunnan, tourism was the primary
industry, and its development was driving the growth of the economy. Energy consumption

Figure 5.
Contribution values
on carbon emission of
the provinces in
China about energy
structure from 2000
to 2014
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was small. Carbon emissions would be controlled. Otherwise, the contribution of the
industrial structure in other energy-intensive provinces, such as Inner Mongolia and Shanxi,
was positive and great, respectively 2.397 � 108 t and 2.31 � 108 t. In these areas, energy
consumption was very high. Economic development would be driven by the secondary
industry. The industrial structure of these provinces enormously expedited the changes in
carbon emissions.

Table I shows that changes in population around contributed to 13.64 � 108 t, which
caused the cumulative increase in carbon emissions, taking up 3.11 per cent. According to
the National Bureau of Statistics of China, the population of the provinces has been
growing from 2000 to 2014. According to the basic situation of China’s vast population
base and the “Two Children” policy, the trend would continue. The large population
would undoubtedly bring the increase in consumption, probably leading to augment in
carbon emissions.

From 2000 to 2014, the overall population effect was positive. Yet the population effect
of Jilin, Heilongjiang, Anhui, Henan, Hunan, Guangxi, Hainan, Chongqing, Sichuan,
Guizhou, Gansu and Qinghai was negative, respectively, –0.006 � 108 t, –0.067 � 108 t,
�0.11 � 108 t, –0.14 � 108 t, –0.13 � 108 t, –0.11 � 108 t, –0.05 � 108 t, –0.09 � 108 t, –
0.27 � 108 t, –0.296 � 108 t, –0.04 � 108 t and –0.05 � 108 t, as shown in Figure 4. This
suggested that the population in these provinces hindered the increase in carbon
emissions, while the population effect in other provinces increased carbon emissions.
Thus, to efficiently deal with carbon emissions, the population of the provinces with the
positive effect should be controlled and the people of the regions with adverse impact
should be encouraged.

Table I shows that, in the last 15 years, the energy structure had little contribution to
carbon emissions, with the average contribution ratio of only 0.28 per cent. The overall
impact of energy structure adjustment on carbon emissions was small. Before 2007, the
contribution of the energy structure to carbon emissions showed an increase and underwent
an obvious growth in 2003. At this stage, the energy structure intensified carbon emissions,
and the degree was rising. China boosted rapid economic development primarily through
the heavy industry, which would cause the increase of carbon emissions. But, beginning in
2008, the energy structure effect has been declining in the whole. After 2012, the energy
structure effect became negative. The energy structure hindered the increase of carbon
emissions, and the degree was rising. At this time, China started to stress the energy
structure adjustment. The optimization and upgrading of energy structure had effectively
hindered the increase of carbon emissions.

From 2000 to 2014, the overall energy structure effect was positive. Yet, provinces with
adverse energy structure effects are more than those with positive energy structure effect, as
shown in Figure 5. That is to say, every province had gradually made energy structure
adjustment and had some improvement. In Shandong, Henan shannxi and Gansu, the
contribution of energy structure is positive as 1.13 � 108 t, 0.3 � 108 t, 0.22 � 108 t and
0.24 � 108 t, respectively. In these areas, reducing coal consumption and promoting the
exploitation of new energy were the focus of development. China had the foundation for
renewable energy sources and clean energy, such as wind power, geothermal and natural
gas. The transformation of energy structure was achievable.

3.2 The optimal projection direction analysis
The optimal projection direction of carbon emissions indicators can be obtained using the
projection pursuit method, as shown in Table III. The optimal projection direction could be
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well described as the influence degree of various factor on carbon emissions. Taking each
five-year plan as a stage, this paper analyzed the influence degree of various factor.

There is a difference in the influence degree of factors in various periods, as shown in
Table III. In the period of “10th Five-Year” plan, the optimal projection direction of per capita
carbon emissions in each year was the largest as 0.5998, 0.6122, 0.5234, 0.5740 and 0.5614.
Besides, the optimal projection direction value of energy intensity and energy structure were
also large. It could be argued that per capita carbon emissions, energy structure and energy
intensity had a significant impact on carbon emissions in China in these five years. China
was in a crucial period of rapid development. All aspects were in a significant growth trend.
Energy consumption had also increased significantly, in particular the coal consumption,
contributing to the increase of carbon emissions.

The impact of per capita GDP on carbon emissions was relatively small as 0.2759, 0.2705,
0.0335, 0.0554 and 0.0516. In the tenth five-year plan, economic development was relatively
fast, whereas GDP was still relatively low, which caused a little effect on carbon emissions.
As industrial development was not very mature, the impact of industrial structure on carbon
emissions was not obvious.

In the “11th Five-Year” plan, except for 2007, the optimal projection directions of energy
structure in 2006, 2008, 2009 and 2010 were relatively large, respectively, 0.7322, 0.6470,
0.4958, 0.6200, as shown in Table III. In these four years, energy structure was the primary
factor affecting carbon emissions. Due to the Beijing Olympic Games, all over the country
were reducing carbon emissions and controlling pollution, so the consumption of coal fell
sharply. Energy structure had undergone huge changes, which had a significant impact on
carbon reduction.

Besides, the optimal projection direction values of per capita carbon emissions and
energy intensity were also large. Energy intensity would also drop significantly with the
decline of high-polluted energy consumption. Thus, carbon emissions were affected by the
change of energy intensity. The sustained growth of the population accelerated the increase
of carbon emissions.

In the “12th Five-Year” plan, the optimal projection direction of energy structure in each
year was the largest as 0.6186, 0.6454, 0.5827, 0.6673, as shown in Table III. Besides, the
optimal projection direction value of the industrial structure is also large. It could be argued

Table III.
The optimal
projection direction
of indicators

Years
Per capita

carbon emissions
Energy
intensity

Energy
structure

Industrial
structure Per capita GDP

2000 0.5892 0.5559 0.4083 0.3819 0.1767
2001 0.5998 0.3557 0.6533 0.1041 0.2759
2002 0.6122 0.4000 0.2853 0.5573 0.2705
2003 0.5234 0.6652 0.5241 0.0886 0.0335
2004 0.5740 0.6412 0.5016 0.0682 0.0554
2005 0.5614 0.5334 0.5748 0.2593 0.0516
2006 0.3317 0.5043 0.7322 0.3089 0.0645
2007 0.7247 0.4481 0.1918 0.4704 0.1268
2008 0.4798 0.4460 0.6470 0.3878 0.0421
2009 0.5146 0.5179 0.4958 0.4677 0.0490
2010 0.4024 0.4576 0.6200 0.4927 0.0392
2011 0.5440 0.3237 0.6186 0.4154 0.2099
2012 0.4700 0.3320 0.6454 0.4972 0.0712
2013 0.3354 0.4600 0.5827 0.5781 0.0467
2014 0.3652 0.3854 0.6673 0.5152 0.0856
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that in these five years, energy structure and industrial structure had a crucial impact on
carbon emissions in various provinces. The “12th Five-Year Plan” required to adjust the
industrial structure, vigorously develop the service industry, reduce the development of
primary energy and energetically develop clean energy and new energy. Energy structure
and industrial structure have been optimized. Carbon emissions from the consumption of
coal and the high-energy consumption industry had been significantly reduced.

Energy intensity and per capita GDP had little impact on carbon emissions. The pace of
economic growth had been slowed down, but the total economy had been on the rise. Per
capita GDP did not undergo obvious change, resulting in the little impact on carbon
emissions. The impact of energy intensity on carbon emissions also was not large.

3.3 Prediction analysis
Based on the optimal projection direction of 2000 to 2014, the optimal projection direction
prediction value of 2015 to 2020 was obtained using Markov transfer matrix, as listed in
Table IV.

From the horizontal perspective, the optimal projection direction of each index in the
six years from the largest to the smallest is energy structure, industrial structure, per
capita carbon emissions, energy intensity, per capita GDP, as shown in Table IV. The
trend of each index remains stable. Energy structure and industrial structure still will
have the greatest impact on carbon emissions in the next few years. The exploitation and
utilization of clean energy, as well as the development of the tertiary industry, turn out to
be the developing trends of the present and the next few years. Carbon emissions will be
directly controlled.

From the vertical view, the optimal projection direction of energy intensity has been risen
steadily from 2015 to 2020 year, while the optimal projection direction of the industrial
structure has been fallen. The optimal projection directions of the other three indexes are
fluctuated, but roughly stable. By 2020, energy restructuring would be basically mature.
Even in some economically backward and energy-intensive areas, industrial structure
optimization and upgrading are also basically completed. The industrial reorganization has
not been critical for the control of carbon emissions. As a result, the impact of the industrial
structure on carbon emissions has been fallen from 2015 to 2020 year. With the continuous
improvement of energy efficiency, energy intensity is, therefore, declining, which plays an
important role in carbon emissions control.

4. Conclusions and policy implications
In this paper, carbon emissions from 2000 to 2014 in China were analyzed using the
projection pursuit and Markov model. Through the LMDI decomposition model, several
factors affecting carbon emission were identified, i.e. per capita carbon emissions,

Table IV.
The best projection
direction prediction
value in 2015-2020

Year
per capita

carbon emission
Energy
intensity

Energy
structure

Industrial
structure per capita GDP

2015 0.4727 0.3968 0.5654 0.5364 0.1083
2016 0.4364 0.4262 0.6190 0.4870 0.0872
2017 0.4727 0.4237 0.5846 0.4946 0.1033
2018 0.4618 0.4320 0.6000 0.4798 0.0997
2019 0.4735 0.4321 0.5887 0.4811 0.1055
2020 0.4712 0.4354 0.5929 0.4753 0.1052
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industrial structure, energy intensity, energy structure and per capita GDP. Based on the
projection pursuit method, the optimal projection directions of five influencing factors in
30 provinces (except for Tibet) were acquired, and the difference of the optimal projection
direction of each element in 2003, 2008 and 2013 was studied. The weight of each index in
the next five years was predicted, and the corresponding suggestions were proposed
using the Markov transfer matrix according to the data from 2000 to 2014. Specific
conclusions are as follows:

� Based on the LMDI decomposition model, five influencing factors were determined
(e.g. per capita carbon emissions, industrial structure, energy intensity, energy
structure and per capita GDP). Based on the 2000 year, the contribution rates of the
five influencing factors to the carbon emissions in the period from 2001 to 2014 were
analyzed. The contribution of per capita GDP to carbon emissions was the most
prominent (Xu et al., 2016); energy intensity has negative impact on carbon
emissions, which is a crucial factor in the reduction of carbon emissions. The
contribution of energy structure and industrial structure to carbon emissions was
changed from negative to positive and increased generally. The decomposition
results of this paper were consistent with the study of Shao et al. (2014) and Liu et al.
(2015).

� The classification standards of 30 provinces (except for Tibet), the optimal
projection direction of the five factors, were obtained using the projection
pursuit model, reflecting the degree of various influencing factors on carbon
emissions in different years. Given the national policy, the paper analyzed the
change of the influence degree on carbon emissions of five indicators in three
periods.

� The relative weight values of the five indexes in the next six years were predicted
using the Markov transfer matrix according to the optimal projection direction of
each index from 2000 to 2014. Moreover, the relative weight difference of the
optimal projection direction was not significant and relatively stable.

Based on the noted findings, the policy of promoting energy savings and emission reduction
in the process of economic development is continuously supposed to be improved and
constructed. Specific recommendations are as follows:

� Improve energy structure and proactively develop renewable energy. Greater
attempt should be made to vigorously adjust and improve the energy structure in
various regions, especially Gansu, Heilongjiang and other provinces with relatively
rich energy resources but backward economic progress. Green energy and clean
energy should be vigorously developed and exploited to decrease the share of high-
carbon energy consumption. Besides, it is necessary to vigorously facilitated
building energy saving, encourage the use of energy-saving appliances and reduce
the energy consumption of the unit production.

� Pay more attention to readjusting industrial structure of the provinces and
autonomous regions. Tertiary industries (e.g. the tourism and services industry)
should be vigorously developed. The government should adjust the industrial
structure, making it gradually transfer from resource-intensive to intelligence-
intensive. The disparity of economic development in China is prominent, so it is
indispensable to formulate various industrial structure adjustment policies and
measures for the actual situation of each province in China. For the provinces in the
process of transferring from the primary industry to the secondary industry, they
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should adhere to the road of sustainable development and prioritize the
improvement of the technology level and the utilization of clean energy. For some of
the more developed provinces, they should attach importance to developing high-
tech industry, new energy industry and modern service industry. For the provinces
prioritizing the traditional coal production or high-energy consuming heavy
industry, the efficiency of existing technology should be proactively improved, and
the clean industry should be actively facilitated.

� Reasonably control the coal production and improving energy efficiency. The
government should limit the scale of high-energy-consuming production
enterprises. The advanced technology should be introduced to increase the energy
efficiency (e.g. coal moisture control). For the traditional coal production
enterprises, the development of other renewable energy or green energy could be
gradually improved, which would contribute to control carbon emissions.

� Establish an effective regional cooperation mechanism among the provinces in
China (Renukappa et al., 2013). For those provinces with low total CO2 emissions
and fast the deterioration, the government should stress its CO2 emissions
reduction based on the condition of CO2 emissions reduction in the provinces.
The establishment of CO2 emissions accounting and comparison system is
urgently required. Furthermore, relevant professionals are needed, and guide is
required.

In general, this paper studied the factors affecting carbon emissions and acquired the
current and future influence degree of various factors, which is of great significance to the
low-carbon development in China. Due to the limitations of research experience and various
conditions, the following aspects should be improved: first and foremost, carbon emission
factors should be further refined. There are vast factors affecting carbon emission, and more
accurate data should be collected to further analyze and discuss. Second, to predict the
influence degree of each factor in the next few years, the selected data remain minimal, and
the predicted results may have some limitations. Accordingly, the further study may make
more in-depth and accurate predictions based on the index weight for more consecutive
years.
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