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Abstract
Purpose – Increasing carbon productivity is an effective way to reduce carbon emissions, while
boosting economic prosperity. For appropriate formulating and enforcement of energy saving and
carbon emissions reduction policies in various sectors, it is of great significance to investigate the
evolution characteristics and convergence modes of carbon productivity across the manufacturing
sectors.

Design/methodology/approach – Using slack-based measure directional distance function (SBM-
DDF) and global Malmquist–Luenberger (GML) productivity index, this paper measures the carbon
productivities of 29 manufacturing subsectors in Shanghai, China, from 2001 to 2016 under the total
factor framework. Furthermore, based on the convergence theories, it empirically examines the
convergence of carbon productivity across these manufacturing sectors.

Findings – The measurement results suggest that the carbon productivities of the manufacturing
sectors in Shanghai show an increasing tendency on the whole, and technical efficiency instead of
technological change makes a main contribution to the increase. It is found that there is no obvious s
convergence across the manufacturing sectors in Shanghai, but there exist both absolute ß
convergence and conditional ß convergence. Moreover, there is heterogeneity in convergence
characteristics between the clean sectors and polluting sectors. The findings also show that firm
size and industry structure have significant positive impacts on the growth of carbon productivities of
the manufacturing sectors, whereas the impacts of capital deepening and energy consumption
structure are significantly negative.
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Originality/value – This paper measures the carbon productivities of the manufacturing subsectors
by applying SBM-DDF and GML index, so as to improve the accuracy. It provides an insight into the
convergence of carbon productivity across the manufacturing sectors.

Keywords Measurement, Absolute b; convergence, Carbon productivity, Conditional b conver-
gence, r Convergence

Paper type Research paper

1. Introduction
Climate change poses a severe threat to human development. It has already been recognized that
the key to addressing climate change is to reduce carbon dioxide (CO2) emissions. Governments
all over the world are making remarkable efforts to reduce fossil fuel use and carbon emissions.
As the world’s largest greenhouse gas emitter, China has made a commitment on reducing CO2
emissions intensity by 40%–45% in comparisonwith the 2005 level and raising the percentage of
non-fossil energy in primary energy consumption to 15% by 2020. A commitment has also been
made by the Chinese authority on reaching the peak carbon emissions around 2030. Carbon
emissions come mainly from economic activities, especially in the manufacturing process. From
1995 to 2015, the CO2 emissions of China’s manufacturing industries increased by about 220.77%
and accounted for 58.27% of the national total CO2 emissions (Liu et al., 2019). Obviously,
improving energy efficiency and reducing CO2 emissions in themanufacturing sector is crucial to
achieving China’s peak emission targets. Carbon productivity reflects the efficiency of CO2
emissions in economic development, which is a key indicator that can combine economic growth
with CO2 emissions (Mielnik and Goldemberg, 1999). Unless developing countries find other
integrated economic/environmental solutions, their per capita emissions will continue to increase
during development (Cutlip and Fath, 2012). Therefore, increasing carbon productivity is an
effective way to reduce carbon emissions, while boosting economic prosperity in Chinese
manufacturing industries. Owing to different characteristics and production processes, the
carbon productivity varies from sector to sector. Therefore, for the purpose of appropriate
formulation and enforcement of energy saving and carbon emissions reduction policies in various
sectors, it is of great significance to investigate the evolution characteristics and convergence
modes of carbon productivity across themanufacturing sectors.

There have been a lot of studies on environmental issues considering CO2 emissions.
First, with respect to the measuring methods of the environmentally sensitive productivity
growth, Malmquist–Luenberger (ML) index proposed by Chung et al. (1997) has been widely
used in previous studies, though, the ML index may have the infeasibility problem. Oh
(2010) resolved the problem by defining the global production possibility set (PPS) and
constructed the global Malmquist–Luenberge (GML) index. Although the biennial
Malmquist–Luenberge (BML) index proposed by Pastor et al. (2011) avoids linear
programming infeasibilities but compared with the GML index, it lacks transitivity. Besides,
to the best of our knowledge, concerning the measurement of total factor carbon
productivity, most studies use radial DEA method without considering slack in the
constraints, which can be biased. Second, with respect to the convergence analysis,
according to what we know, the previous studies usually focus on the convergence of CO2
emissions and carbon intensity, while there are only a limited number of studies specifically
dealing with carbon productivity convergence. Moreover, most of these convergence studies
concentrate on the regional differences, for instance, provincial and prefecture-level
differences, whereas few are related to the differences of sector levels. Previous studies have
laid the foundation for further research. The contributions and main innovations of this
study are as follows: first, this paper attempts to measure carbon productivities of 29
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manufacturing subsectors in Shanghai applying slacks-based measure directional distance
function (SBM-DDF) and GML index, so as to improve the accuracy and efficiency of
the calculation. Second, from the perspective of manufacturing subsectors, rather than at the
geographical level, it provides an insight into the convergence of carbon productivity across
the manufacturing subsectors in Shanghai for the first time.

Manufacturing industry is the foundation of economic development and an important
indicator of comprehensive economic strength in a nation or region and is also a crucial part of
the real economy. Owing to a distinctive combination of factors, Shanghai has been China’s
leading industrial and manufacturing center for some time. Its manufacturing industry has
always been an essential part of the city’s economy. According to statistics, the added value of
Shanghai’s manufacturing industry accounted for 26% of the city’s GDP in 2016. Additionally,
Shanghai’s 13th Five-Year Plan set a new target, i.e. the ratio of themanufacturing added value to
the city’s GDP would be about 25% with its best efforts. However, the “extensive” development
of Shanghai’s manufacturing industry has also resulted in a considerable amount of energy
consumption and CO2 emissions, which hinder the promotion of sustainable economic growth.
Furthermore, Shanghai’s manufacturing industry is facing downward pressure with an
increasing phenomenon of “industry hollowing out.” The annual carbon emissions of Shanghai’s
manufacturing industry rose from 36.94MT in 2001 to 52.4 MT in 2016, at an average growth
rate of 2.36% on a year to year basis, which made a severe test to the sustainable development of
the industry. Shanghai municipal Government successively made “Shanghai’s 13th Five-Year
Plan for Industrial Green Development” and “Shanghai’s 13th Five-Year Plan for Transformation
andUpgrading ofManufacturing” in February 2016 and June 2017, respectively, emphasizing the
concept of green development and set the goal of reducing the energy consumption per value
added of firms above designated size by about 15% in 2020 compared to 2015 levels. The city
also committed to peak CO2 emissions by around 2025, which put new pressure on the green
development of the manufacturing industry. Thus, under the dual constraints of resource and
environment, improving the carbon productivity of the manufacturing industry is essential to the
sustainable development of Shanghai.

The remaining of the paper is structured as follows. In Section 2, we concentrate on the
measures of sectoral carbon productivity and method for convergence analysis. In Section 3,
data source and processing are reported. In Section 4, the changing trends of carbon
productivity across the manufacturing sectors are analyzed. Moreover, we present a
convergence analysis of carbon productivity across manufacturing sectors in Shanghai,
with the derived empirical results being presented and discussed. In Section 5, we conclude
the study and provide some policy implications.

2. Methodology and theories
2.1 Measurement method for carbon productivity
There are many studies on measuring environmental efficiency and productivity, in which the
DEA method has received more and more scholarly attention. For example, Kumar and Jain
(2019) used the Luenberger productivity indicator to evaluate the carbon-sensitive productivity of
56 Indian thermal power plants during the period of 2000–2013. Previous studies usually use the
Malmquist (M) index method to measure total factor productivity (TFP) (Zhou et al., 2010; Zhang
et al., 2015; Yang et al., 2015; Yang and Wang, 2016; Sueyoshi et al., 2017). Nevertheless, the
traditional M index does not take into account the “bad output” such as waste water, exhaust gas
and CO2 that may exist in the production process, but in reality CO2 often exists in the form of
undesired output, so this may lead to bias in environmental productivity measures. To solve this
problem, Chung et al. (1997) constructed a new productivity index on the basis of the geometrics
mean of DDF, namely, theML index, which considered both the desired output and the undesired
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output. Later, the ML index has been widely used to measure productivity (Watanabe and
Tanaka, 2007; Wang et al., 2013; Arabi et al., 2015; Chen, 2016; Aghayi and Maleki, 2016).
However, the ML index still has some weakness, and there may be cases where linear
programming has no solutions, which makes the measuring results lack stability or be
inconsistent with actual production activities. Färe et al. (2001) demonstrated the infeasibility
problem intuitively. To overcome this weakness, Tone (2001) developed a slacks-based DEA
model, and Fukuyama and Weber (2009) and Färe and Grosskopf (2010) suggested a more
generalized SBM-DDF. In addition, Oh (2010) presented a global PPS when measuring the TFP
and proposed the GML index. This productivity index is circular without the potential
infeasibility issue and its application in the research studies of environmentally sensitive
productivity growth began in recent year (Ananda and Hampf, 2015; Tao et al., 2017; Chen et al.,
2018). Besides, to avoid the problem of linear programming infeasibilities, Pastor et al. (2011)
proposed the biennial Malmquist productivity (BM) index. Based on the BM index, the BML
index was constructed to measure the productivity (Zhao and Lin, 2019), however compared to
the GML index, the BML index lacks transitivity.

Here, we present the methodology of SBM-DDF and GML index.
2.1.1 Global production possibility set. The decision-making unit (DMU) consists of

various Shanghai’s manufacturing subsectors and a total of 29 DMUs are included, DMUk
(k = 1, 2, � � �, K). According to Färe et al. (2007), the production technology for each
manufacturing sector produces N desirable outputs,y ¼ y1; � � � ; yNð Þ 2 Rþ

N and I
undesirable outputs, b ¼ b1; � � � ; bIð Þ 2 Rþ

I by using M inputs, x ¼ x1; � � � ; xMð Þ 2 Rþ
M .

The set (xk,t, yk,t, bk,t) represents the inputs and outputs of sector k in period t. P(x) denotes
the PPS, which satisfies the following assumptions: closed sets, the strong disposability of
inputs, the weak disposability of undesirable outputs, and undesirable outputs are
inseparable from desirable outputs. Using the DEA method, the contemporaneous PPS can
be expressed as follows:

Pt xð Þ ¼ yt; bt
� �

:
XT
t¼1

XK
k¼1

ztky
t
kn � ytkn;8n;

XT
t¼1

XK
k¼1

ztkb
t
ki ¼ btki;8i;

XK
k¼1

ztk ¼ 1; ztk � 0;8k
8<
:

9=
;
(1)

where ztk represents the weight of each cross-section observation, and the constraintXK
k¼1

ztk ¼ 1; ztk � 0 means that the production technology exhibits variant returns to scale.

Based on the global PPS constructed by Oh (2010), the GML index needs to replace the
contemporaneous PPS, Pt(xt) with a global PPS, PG(x), where PG(x) = P1(x1)| P2(x2)| [. . .] |
PT(xT), meaning that the global reference production set is the sum of that of all the periods. As
shown in Figure 1, the global benchmark technology equals to the envelopment of all the T
contemporaneous benchmark technologies. PG(x) extends the method of Pastor and Lovell (2007)
by considering unintended outputs in production process.PG(x) can be formulated as follows:

PG xð Þ ¼ yt; bt
� �

:
XT
t¼1

XK
k¼1

ztky
t
kn � ytkn; 8n;

XT
t¼1

XK
k¼1

ztkb
t
ki ¼ btki;8i;

8<
:
XT
t¼1

XK
k¼1

ztkx
t
km# xtkm; 8m;

XK
k¼1

ztk ¼ 1; ztk � 0; 8k
)

(2)
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2.1.2 Global slack-based measure directional distance function. The DDF has many
favorable features, but it does not consider slacks in the constraints when estimated
applying DEA, which are important sources of inefficiency (Fukuyama and Weber, 2009).
Hence, we use the SBM-DDF developed by Fukuyama and Weber (2009) in this paper.
Incorporating CO2 as an undesired output, the function is defined as:

Pt xð Þ ¼ yt; bt
� �

:
XT
t¼1

XK
k¼1

ztky
t
kn � ytkn;8n;

XT
t¼1

XK
k¼1

ztkb
t
ki ¼ btki;8i;

XK
k¼1

ztk ¼ 1; ztk � 0; 8k
8<
:

9=
;
(3)

where the SBM-DDF, SG
V is defined on the global PPS, PG(x). xt,k

0
, yt,k

0
and bt,k

0
are the input

and output vectors of the sector k in period t and gx, gy as well as gb are directional vectors,
which indicate the decrease of input and the increase (decrease) of desirable output
(undesirable output) . sxm, s

y
n and sbi represent the slack in the input, desirable output and

undesirable output constraints, respectively. sxm and sbi being positive indicate that
production is not at the technology frontier and the actual inputs and pollution exceed that
of the boundary, whereas Sy

n being positive implies that the actual outputs are insufficient.
2.1.3 Global Malmquist–Luenberger index. On the basis of global SBM-DDF, this paper

further constructs the GML index to measure the carbon productivities of the Shanghai’s
manufacturing sectors. GML index can solve the potential infeasibility problem. Referring to
the idea of Oh (2010), the index is defined as follows:

GMLtþ1
t ¼ 1þ SG

V xt; yt; bt; g
� �

1þ SG
V xtþ1; ytþ1; btþ1; gð Þ (4)

In this study, we measure the carbon productivity growth by calculating the change of GML
from time t to tþ 1. GMLtþ1

t > <ð Þ1 corresponds to productivity gain (loss). Specifically, a
GMLtþ1

t index greater than 1 indicates that the carbon productivity is rising from time t to
tþ 1, whereas a GMLtþ1

t index less than 1 shows that the carbon productivity is decreasing
from time t to t þ 1 and GMLtþ1

t ¼ 1 implies that the carbon productivity is the same
between the two periods. TheGMLtþ1

t index can be further decomposed into the efficiency
change (GECtþ1

t ) and the technical change (GTCtþ1
t ), specifically decomposed as follows:

Figure 1.
GML productivity

index
b

Undesirable 
Output

A

Pt
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GMLtþ1
t ¼ GECtþ1

t � GTCtþ1
t ;

GECtþ1
t ¼ 1þ St

V xt; yt; bt; g
� �

1þ Stþ1
V xtþ1; ytþ1; btþ1; gð Þ ;

GTCtþ1
t ¼

1þ SG
V xt; yt; bt; g
� �h i

= 1þ St
V xt; yt; bt; g
� �h i

1þ SG
V xtþ1; ytþ1; btþ1; gð Þ

h i
= 1þ Stþ1

V xtþ1; ytþ1; btþ1; gð Þ
h i :

(5)

where GECtþ1
t > <ð Þ1 corresponds to the efficiency improvement (degradation) of carbon

productivity. GTCtþ1
t > <ð Þ1 indicates a movement in the global technology frontier

toward increasing (decreasing) desirable outputs and decreasing (increasing) undesirable
ones.

2.2 Convergence hypothesis and test
With the increasing global warming threat, a rising number of literatures have investigated
the evolution and convergence of CO2 emissions and energy productivity recently. Mulder
and De Groot (2012) found that the cross-country differences in overall energy intensity
tended to decline through an examination on the energy intensity across 18 OECD nations
between 1970 and 2005, and the lagging countries were inclined to catch up with leading
countries, with the average convergence rate of the service industry being higher than that
of the manufacturing industry. Similar studies were conducted by Liddle (2009, 2010) and
Wana et al. (2015). Herrerias (2012) investigated the per capita CO2 convergence across 25
EU countries from 1920 to 2007 and confirmed the convergence hypothesis among them.

For the effective allocation of China’s target to cut emissions across regions, the
convergence of CO2 emissions and carbon intensity have been researched in some studies.
For instance, Huang and Meng (2013) empirically concluded that per person carbon
emissions in the urban area of China exhibited convergence between 1985 and 2008,
considering the spatial effects. Wang and Zhang (2014) tested the convergence of carbon
emissions per person in six sectors of 28 provinces between 1996 and 2010, finding strong
evidence of convergence across provinces. Yang et al. (2016) conducted similar provincial
convergence research using GMM estimator. Additionally, using a continuous dynamic
distribution method, Wu et al. (2016) found the existence of convergence of the per person
CO2 emissions across 286 Chinese cities between 2002 and 2011. Furthermore, exploratory
research has been conducted by some researchers on carbon intensity convergence in China.
For example, Hao et al. (2015) concluded that there existed stochastic convergence as well as
b convergence in carbon intensity across 29 Chinese provinces from 1995 to 2011. Zhao
et al. (2015) verified the convergence hypothesis in CO2 intensity among provinces in China
between 1990 and 2010 using dynamic spatial model. Li et al. (2017) claimed that carbon
intensity presented stochastic convergence across cities in the Yangtze River Delta from
2000 to 2010 and there was b -convergence by applying spatial panel data models. However,
there are only a limited number of studies concerning carbon productivity convergence. For
example, Li and Song (2017) believed that the carbon productivity in China’s inland and
coastal regions would be converging as the gap of per capita GDP decreases and the
shirking of the technological progress gap and human capital investment gap would
accelerate the convergence. Bai et al. (2019) analyzed the convergence of total carbon
productivity among 88 countries and regions in the world and found that there was no
convergence in the whole sample, but there existed the club convergence.
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Investigating the carbon productivity convergence of the manufacturing sectors in
Shanghai is conductive to identifying carbon productivity trends and formulating specific
emissions reduction policies. Because Shanghai is a province-level municipality, this study
is focused on regional/provincial level. To determine the dynamic evolution trends of carbon
productivities in different the manufacturing sectors in Shanghai in-depth, we empirically
test the convergence hypothesis. Two main hypotheses of convergence are presented in the
previous studies, namely s convergence and b convergence. Moreover, referring to Sala-i-
Matin (1996), the latter can be further divided into absolute b convergence and conditional
b convergence.

2.2.1 s Convergence. There is s convergence if the cross-sectional dispersion of carbon
productivity across sectors has the tendency of decreasing significantly over time. Standard
deviation and coefficient of variation, measures of variability, are used here to study the s
convergence of carbon productivity across the manufacturing sectors in Shanghai. The
specific calculation formula is given as:

S ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1

ðCPit � CPitÞ
N

vuuut
; CV ¼ S=CPt (6)

whereN denotes the number of manufacturing sectors and S denotes the standard deviation.
CPit is the carbon productivity of sector i in year t, CPt represents the average value of
carbon productivity in year t and CV denotes the coefficient of variation.

2.2.2 Absolute b convergence. The absolute b convergence hypothesis based on
neoclassical growth theory implies that the growth rates of poor economies are higher than
those of the rich ones and all the economies approach the common steady state in the long
term. For this data set, absolute b convergence examines whether carbon productivities in
sectors with lower initial levels have the tendency of growing faster than those in the sectors
with higher initial levels. There is absolute b convergence if the carbon productivities of
different sectors are converging to one another irrelevantly of their initial conditions.
Referring to Sala-i-Matin (1996), the empirical specification of our model is given as:

gi;t ¼ aþ b lnCPi; t�1 þ h i þ g t þ « i;t (7)

where ln CPi, t–1 is the logarithmic form of carbon productivity of sector i in year t�1, gi,t
indicates the growth rate of carbon productivity of sector i in year t, i.e. gi,t = (ln CPi,t – ln
CPi,0)/t and ln CPi,0 refers to the carbon productivity in the base period, t[ [1, 14]. a is the
intercept terms; h i, g i and « i,t are the individual fixed effects reflecting the sector
heterogeneity, time fixed effects, and random disturbance terms, respectively. The
coefficient b is the parameter of our central interest. A significant negative b indicates the
presence of absolute b convergence of carbon productivity across the manufacturing
sectors in Shanghai.

2.2.3 Conditional b convergence. Also, according to neoclassical growth theory, the
conditional b convergence hypothesis indicates that economies with identical structural
characteristics approach the common steady state in the long term irrespective of their
initial levels. In conditional b convergence, if different manufacturing sectors have different
structural characteristics, e.g. firm size and energy consumption structure, then they will
have different steady states over time. Conditional b convergence model is developed by
incorporating several control variables that may affect the convergence of carbon
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productivity of the absolute b convergence model. Referring to the previous literature, the
conditional b convergence model is established as follows:

gi; t ¼ a þ b 1lnCPi; t�1 þ b 2ESi; t þ b 3ISi; t þ b 4KLi; t þ b 5RSi; t þ h i þ g t þ « i;t

(8)

In this model, ESi,t denotes the firm size of sector i in period t, represented by the increase
rate of the ratio of industrial output value (IOV) to the number of enterprise above
designated size of the sector. ISi,t denotes the industrial structure of sector i in period t,
which is represented by the ratio of IOV of the sector to that of the overall manufacturing
industry. When the industry’s focus is on sectors with high carbon productivity, the
structural effect is positive and vice versa. KLi,t denotes the degree of capital deepening of
each sector in period t, computed by the ratio of its capital to labor. RSi,t denotes the energy
consumption structure of each sector, represented by the ratio of the consumption of coal
energy to total energy consumption. Coal is a kind of energy source with high emissions
coefficient. Cheap coal with abundant reserve is a preferred element (Pan et al., 2019). In
Shanghai, coal is the largest fossil fuel source of its industrial CO2 emissions with a
proportion of more than 50% from 1994 to 2011 (Shao et al., 2011), hence sectors having
different energy consumption structure may also have difference in carbon productivities.
The coefficients for each control variable, i.e. firm size, industry structure, capital deepening
and energy consumption structure are indicated by b 2–b 5, respectively. Other variables in
the equation (8) are the same as those in the equation (7).

2.3 Estimation method
Concerning the estimation method, for the absolute convergence b model, we use the panel
data methods based on Hausman test. Because of the incorporation of the control variables
that affect the growth of carbon productivity, the conditional b convergence model may
have endogenous problems caused bymissing explanatory variables. To solve this problem,
the usual practice of the existing literature is to use the first-order differential GMM
estimator or system GMM estimator. Considering that differential GMM has a weak
instrumental variable problem, we apply the system GMM approach to estimating the
conditional b convergence model. Whether the system GMM estimator is consistent is
decided by the instrument validity and the no serial correlation assumption, which can be
tested by two specification tests, i.e. a Sargan test for the exogeneity of subsets of the
instruments and an Arellano–Bond test for serial correlation.

3. Data
There are 31 two-digit manufacturing sectors in total according to China’s
Classification of National Economy Industry (GB/T4754-2011). Because of the
incompleteness of data, we remove two sectors from our data set [1]. For the
consistency of statistical caliber, referring to Li et al. (2018), we split the sector “Rubber
and Plastics Products” into two sectors: “Rubber Products” and “Plastics Products”.
Moreover, the “Manufacture of Automobiles” and “Manufacture of Railway, Ship,
Aerospace, and Other Transport Equipment” are merged into “Transport Equipment”.
Thus, we collect the data of 29 manufacturing subsectors [2] in Shanghai from 2001 to
2016. The variables are selected as follows:
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3.1 Inputs
Capital, labor and energy are selected as inputs of production activities. The input data are
obtained from the Shanghai Statistical Yearbook 2002–2017. The annual average number of
employees of different manufacturing subsector is chosen as an indicator of the labor.
Aggregate energy consumption of each manufacturing subsector is adopted to indicate
energy, measured by 10,000 tons of standard coal. Capital investment is estimated using the
perpetual inventory method at constant prices in 2000:

Ki; t ¼ 1� d i; t
� �

Ki; t�1 þ Ii; t (9)

where Ii,t is the amount of fixed asset investment in different manufacturing sectors in year
t, Ki,t and Ki,t–1 are the capital stock of different manufacturing sectors in year t and t �1,
respectively,Ki,0 is the initial value forK in the base year (i.e. year 2000 in this study) and d i,

t is the depreciation rate of capital stock. Referring to Zhang et al. (2004), d i,t is assumed to be
9.6%. Moreover, Ki,0 is determined using the steady-state method proposed by Harberger
(1978). Here is the estimation formula:

Ki; t�1 ¼ Ii; t= gi; t þ d i; tð Þ (10)

where gi, t refers to the average annual growth rate of output during the studied period,
which is represented by the geometric average growth rate of industrial output of
Shanghai’s manufacturing sectors from 2001 to 2016.

3.2 Desirable output
The total IOV of each manufacturing sub-sector in Shanghai is selected to measure the
desirable outputs. The total IOV data is collected from the Shanghai Statistical Yearbook
2002–2017 and is converted into the 2,000 constant prices using the industrial producer price
index of Shanghai obtained from China Statistical Yearbook.

3.3 Undesirable output
Industrial CO2 emissions are selected as the proxy of the undesirable output. As the CO2

data is not available, we estimate it in terms of the total consumption of various energy
types. According to IPCC (2006), CO2 emissions from various manufacturing sectors can be
calculated by the following formula:

CO2 ¼
X8
i¼1

CO2;i ¼
X8
i¼1

Ei � NCVi � CEFi � COFi � 44
12

(11)

where i represents the energy types, Ei represents the adjusted energy consumption, NCVi,
CEFi and COFi refer to the net calorific value, carbon content and the oxygenation efficiency
of various energy types, respectively (Table 1). From NCVi, CEFi and COFi, the emission
factors for various fossil fuels can be calculated, i.e. it is the product of these three. Table 1
also reports the emission factors for the selected major fossil fuels. The values of 44 and 12
refer to the molecular weights of CO2 and carbon, respectively. Table 2 displays the
descriptive statistics of variables adopted here.
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4. Results and discussion
4.1 Measuring results and discussion
Table 3 reports the average carbon productivity of each manufacturing sector in Shanghai
from 2002 to 2016 and its decompositions, i.e. the global efficiency change (GEC) and the
global technological change (GET). As shown in Table 3, among the 29 sectors, the average
carbon productivities of 21 sectors such as transportation equipment, electronic and
telecommunications equipment as well as chemical fiber are greater than 1, and those of two
sectors, namely, the papermaking and paper products as well as nonmetal mineral products
are equal to 1, whereas those of the other six sectors are less than 1, e.g. leather and related
products, smelting and pressing of nonferrous metals and furniture manufacturing.
Obviously, the carbon productivities of the manufacturing sectors in Shanghai show an
increasing tendency on the whole, and technical efficiency is the leading contributor to the
growth, with GEC being greater than GET in most sectors. In some sectors, the negative
growth of technological change even offsets the positive growth of technical efficiency.

The annual trends of carbon productivities of 29 sectors during the studied period are
also analyzed. The temporal trends of ten representative sectors are depicted in Figure 2. It
can be found that, first, the carbon productivities of most subsectors are greater than 1 and
concentrate in the range of 0.9 to 1.2, but the carbon productivity of each subsector still
exhibits strong heterogeneity. The top three sectors in terms of carbon productivity are the
transportation equipment, chemical fiber and electronic and telecommunications equipment.
The reason for this may be that these three sectors are the pillar sectors of Shanghai’s
manufacturing industry with relatively high technical efficiency and so the energy can be
fully used. Second, according to the pollution degree, the 29 manufacturing sectors are
divided into 10 polluting sectors and 19 clean sectors in this study [3]. From this
classification, the volatility of carbon productivity in the clean sectors is small, e.g. metal
products and ordinary machinery, whereas that in the polluting sectors is high, such as
petroleum processing as well as smelting and pressing of nonferrous metals.

4.2 Empirical analysis of carbon productivity convergence
4.2.1 s Convergence test. Figure 3 presents the trends in the coefficient of variation of carbon
productivity in the overall manufacturing sectors, polluting sectors and clean sectors from 2002

Table 2.
Descriptive statistics
of variables related to
carbon productivity
measurement

Variables No. of observations Mean Std. Min. Max

IOV Industrial output value (100m RMB) 464 759.79 1154.01 31.08 7107.48
CO2 CO2 emissions (10,000 tons) 464 147.90 463.21 0.08 3064.78
Labor Average number of employees (10,000) 464 8.47 8.70 0.33 46.77
Capital Capital stock (100m RMB) 464 173.78 286.40 4.76 2946.08
Energy Total energy consumption (10,000 tons of

SCE)
464 135.10 256.73 0.09 1570.48

Table 1.
Emission factors for
different energy
types

Factors Raw coal Coke Crude oil Gasoline Kerosene Diesel oil Fuel oil Nature gas

NCVi 20,908 28,435 41,816 43,070 43,070 42,652 41,816 38,931
CEFi 26.4 29.5 20.1 18.9 19.5 20.2 21.1 15.3
COFi 0.94 0.93 0.98 0.98 0.98 0.98 0.98 0.99
Emission factor 0.5183 0.7801 0.8237 0.7978 0.8231 0.8443 0.8647 0.5897
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Table 3.
Average carbon

productivity indexes
of 29 manufacturing
sectors in Shanghai

(2001–2016)

Sectors GML GEC GET

S1 1.003 1.023 0.980
S2 1.002 1.005 0.996
S3 1.001 0.965 1.038
S4 0.998 1.000 0.998
S5 1.001 1.046 0.957
S6 1.002 1.035 0.968
S7 0.980 1.000 0.980
S8 1.002 1.016 0.986
S9 0.994 0.979 1.015
S10 1.000 0.999 1.001
S11 0.999 0.990 1.010
S12 1.009 1.039 0.972
S13 1.033 1.051 0.983
S14 1.036 1.042 0.994
S15 1.002 1.025 0.978
S16 1.046 1.030 1.015
S17 1.001 0.966 1.036
S18 1.005 1.014 0.991
S19 1.000 1.028 0.973
S20 1.010 1.027 0.984
S21 0.988 1.000 0.988
S22 1.002 1.012 0.990
S23 1.012 1.021 0.990
S24 1.008 1.014 0.994
S25 1.047 1.047 1.000
S26 1.014 0.998 1.017
S27 1.044 1.040 1.004
S28 0.975 1.000 0.975
S29 1.002 0.982 1.021

Figure 2.
Trends of carbon

productivities of ten
representative

industries: GML
index
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to 2016. It is evident from Figure 3 that, first, the coefficient of variation in the three samples
has great volatility as a whole, hence it is hard to conclude that significant s convergence
exactly exists. Compared to that of the overall industry and polluting sectors, the volatility of
the clean sectors is greater. Second, in manufacturing industry, the coefficient of variation is
relatively stable over the period 2002–2007 and decrease gradually over the period 2008–2016,
whereas it has a short-term sharp rise over the period 2007–2008. Third, during 2002–2016, for
the subsectors, the carbon productivity across the clean sectors shows a similar evolution trend
as that across the overall manufacturing sectors, which presents s convergence trend over the
two periods 2002–2007 and 2008–2016, whereas the carbon productivity across the polluting
sectors during the two periods does not display obvious trend of convergence or divergence.

4.2.2 Absolute b convergence test. Table 4 provides the estimated results of the absolute
b convergence of carbon productivity across the manufacturing sectors, as well as the
specification test statistics. The fixed effects (FE) model should be chosen based on
Hausman test results. As shown in Table 4, b is negative and significant at 1% significance
level, meaning the existence of absolute b convergence and sectors with low initial carbon
productivities are catching up with the sectors with high initial levels and will eventually
reach a common steady state. Similar to s convergence, after dividing the manufacturing
sectors into clean sectors and polluting sectors, the empirical test results show that both
subsamples display strong evidence of absolute b convergence. It also shows that the
convergence rate is higher in the clean sectors than that in the polluting sectors, whereas the
manufacturing sectors as a whole is somewhere in between.

4.2.3 Conditional b convergence test. Table 5 displays the estimated results of
conditional b convergence test. In addition to the manufacturing sectors as a whole,

Figure 3.
Trends of coefficient
of variation for
carbon productivity
of manufacturing
sectors

Table 4.
Estimated results of
absolute b
convergence test

Coefficients
and tests

Manufacturing sectors
as a whole Polluting sectors Clean sectors

B �0.1153*** (�7.22) �0.0524*** (�2.69) �0.1334*** (�6.37)
C 0.0019*** 0.0063 0.0078***
R2 0.0963 0.0393 0.1128
F or Wald 52.14 [0.0000] 7.26 [0.0070] 40.61 [0.0000]
Hausman test 5.00 [0.0820] 0.01 [0.9957] 6.89 [0.0319]
Model FE RE FE
Number of observation 406 140 266

Notes: Figures in parentheses are z-statistics and figures in brackets represent p values, ***p < 0.01;
**p< 0.05; * p< 0.1
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according to the previous classification, Table 5 also presents the test results in the two
classification sectors. The serial correlation tests in all regressions reject the absence of the
first-order serial correlation (AR1), whereas fails to reject the hypothesis of the absence of
second-order serial correlation (AR2), suggesting that serial correlation is not displayed in
the error terms. Therefore, the estimator is proved to be consistent. Moreover, the Sargan
test does not reject the null hypothesis in all regressions, indicating that the instruments are
valid.

As indicated in Table 5 that, first, for the whole manufacturing industry, the estimated
coefficient is significantly negative, indicating the presence of conditional b convergence for
carbon productivity across the manufacturing sectors in Shanghai, with sectors converging
to different steady states. Second, concerning the control variables, the coefficient of firm
size is positive and significant at the 1% level, implying that the expansion of firm size
contributes to promoting the growth of carbon productivity. In fact, Shanghai’s
manufacturing industry lacks large-scale firms and the concentration of each sector is low.
Therefore, it is vital to further increase investment and expand the firm size to achieve
economies of scale. The coefficient of the industry structure is also significantly positive at
the 1% level. The reason might be that the effectiveness of structural adjustment policies of
Shanghai’s manufacturing industry is gradually emerging and the industry’s focus is on
sectors with high carbon productivities. Actually, for the top five Shanghai’s manufacturing
sectors in terms of output value in 2016, whose output value accounted for 60.37% of that of
the whole manufacturing industry, their carbon productivities are generally greater than the
average level of the whole industry. With regard to capital deepening, the carbon
productivity decreases as capital deepens. The results are consistent with the findings of
Shao et al. (2016), where the negative relationship between capital deepening and efficiency
incorporating environmental impacts has been verified. The increase in capital deepening
means that the manufacturing is transformed from labor-intensive sectors to capital-
intensive ones. In China, capital-intensive sectors tend to be heavily polluting ones. Hence,
the extensive nature in the process of the heavy industrialization of the manufacturing is an
urgent problem to be solved to coordinate the development of environment and
manufacturing industry in Shanghai. For the variable of energy consumption structure, the

Table 5.
Estimated results of

conditional b
convergence test

G
Manufacturing sectors

as a whole Polluting sectors Clean sectors

lnCPi,t�1 �0.1229*** (�143.86) �0.0824*** (�13.92) �0.1305*** (�132.31)
ES 0.0036*** (8.34) 0.0026 (0.69) 0.0036*** (3.00)
IS 0.0078*** (14.00) �0.0022 (�0.16) 0.0115*** (10.73)
KL �0.0077*** (�14.99) �0.0039*** (�2.93) �0.0120*** (�30.51)
RS �0.0001*** (�21.21) �0.0031 (0.1) �0.0025*** (�8.78)
L1.g 0.4653*** (64.27) 0.3663*** (2.79) 0.4597*** (75.69)
C 0.0598** (17.02) 0.0052 (0.1) 0.0869** (13.69)
Wald 194105.16 [0.0000] 11650.69 [0.0000] 108471.84 [0.0000]
AR(1) test �2.1263 [0.0335] �2.0302 [0.0423] �2.0083 [0.0446]
AR(2) test �1.2695 [0.2043] �1.3454 [0.1785] �1.0093 [0.3128]
Sargan test 23.0675 [0.9961] 5.3894 [1.0000] 13.2689 [1.0000]
Model SYS-GMM SYS-GMM SYS-GMM
Number of observations 377 130 247

Notes: Figures in parentheses are z-statistics and figures in brackets are p values, *** p< 0.01; ** p< 0.05;
* p< 0.1
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coefficient is also significantly negative, indicating that energy structure has
negative impacts on carbon productivity. The current coal-dominated energy consumption
structure of China unavoidably lead to more carbon emissions as output grows, thus
apparently hindering the carbon productivity growth.

Concerning the estimation results of the subsample, it can be found that, first, similar to
the overall manufacturing industry, there is conditional b convergence in the two
classification industries. Moreover, the clean sectors have a higher convergence rate than
that of the polluting sectors, which is similar to the situations in the absolute b convergence.
Second, as with the overall manufacturing industry, the firm size effect and industry
structure effect of carbon productivity in the clean sectors are positive and the capital
deepening effect and energy consumption structure effect are negative, all being statistically
significant at the 1% level. In the polluting sectors, capital deepening has a significantly
negative influence, implying that a rise in the capital-labor ratio is not conducive to the
growth of carbon productivity in the polluting sectors. The coefficient of firm size is positive
whereas the coefficients of the energy consumption structure and industry structure are
negative, but none of them is statistically significant.

5. Conclusions and policy implications
In this study, the SBM-DDF and the GML TFP index are used to calculate the carbon
productivities of 29 manufacturing subsectors in Shanghai from 2001 to 2016. We find that
on the whole, the carbon productivity of Shanghai’s manufacturing industry is growing, and
technical efficiency instead of technological change makes a main contribution to the
growth. Moreover, the annual average negative growth of technological change of some
sectors has offset the positive annual growth in technical efficiency. Therefore, there is still
much room for improving the carbon productivities of Shanghai’s manufacturing sectors by
relying on technological progress. It is also found that there is strong heterogeneity in
carbon productivity among subsectors.

Furthermore, based on the convergence theories, we empirically investigate the
convergence of carbon productivity across the manufacturing sectors in Shanghai. The
results show that as a whole, the carbon productivity of Shanghai’s manufacturing industry
does not exhibit obvious convergence or divergence over time and there is no s
convergence. As far as the subsample is concerned, there is no obvious s convergence in the
polluting sectors but there is s convergence in the clean sectors as in the overall industry
over the periods 2002–2007 and 2008–2016, whereas the carbon productivity in the polluting
manufacturing sector shows no obvious convergence or divergence during the two periods.
However, the carbon productivity of Shanghai’s manufacturing industry shows an absolute
b convergence characteristic. The sectors with low carbon productivities grow faster than
the sectors with high carbon productivities. There is also an absolute convergence b trend
in both classification sectors, and the absolute b convergence rate in the clean sectors is
higher than that in the polluting sectors. Using the dynamic panel data system GMM
estimator to study the conditional b convergence of manufacturing carbon productivity, we
find that these subsectors have different steady states and approach their respective steady-
state levels over time. There is conditional b convergence in both subsamples. Besides, the
convergence rate is also higher in the clean sectors than in the polluting sectors. Moreover,
the impacts of firm size and industry structure on the growth of manufacturing carbon
productivity in Shanghai are significantly positive, whereas the impacts of energy
consumption structure and capital deepening are negative and statistically significant.

Based on the findings, the following policy recommendations are given to improve the
carbon productivity of Shanghai’s manufacturing industry.
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The first is to promote technological innovation in enterprises and strive to improve the
level of technological innovation. Technological changes, such as the progress on energy-
saving technology, renewable energy, clean energy and new energy technologies and clean
and efficient use of coal technology, are all significant for enterprises within the investigated
sectors to implement. However, there are limitations within technological changes of
enterprises in Shanghai’s manufacturing industry as follows:

� The constraints of technological innovation are mainly reflected in the lack of
innovative talents. In terms of finding high-level innovative talents, Shanghai lags
behind Beijing and foreign metropolises.

� The negative externality of CO2 emissions often leads to an insufficient incentive for
enterprises to develop and use energy conservation and emission reduction
technology.

� At present, key low-carbon technologies in China are by and large still immature
and need to be introduced from advanced countries.

Enterprises in Shanghai attached strategic importance to the introduction and innovation of
new technologies, but there is still room for improvement in digesting and absorbing them.

Therefore, we identify three policy recommendations as follows:
(1) It is necessary to strengthen investment in education and staff training, as well as

to further improve the talent mechanism of the industry.
(2) Several effective stimulating measures for low-carbon technological innovation

should be considered, such as financial support and tax exemptions or reduction
policy. In particular, Shanghai as a financial center, should focus on its advantages
and promote technological innovation by further improving its financial services,
e.g., preferential access to credits. It is advisable for the government to provide
R&D subsidies and R&D innovation funds to encourage enterprises with low-
carbon productivity to engage them in R&D activities on energy-saving and
carbon-reduction technologies (Liu et al., 2019).

(3) To start with the establishment of demonstration projects, Shanghai can actively
promote cooperation with major international companies and introduce green
technologies through cooperation, learning and reproducing those technologies.

Moreover, focusing on the key manufacturing sectors in Shanghai, we recommend that
Shanghai take the lead in fully integrating the national initiatives to transform and upgrade
the manufacturing industry, e.g. “Made in China 2025” and “Internet Plus.” The
transformation and upgrading of the manufacturing industry as well as vigorously
developing intelligent manufacturing should be taken as themain direction of promoting the
international competitiveness of manufacturing industry.

The second is to expand the scale of enterprises and effectively exert economies of scale.
Shanghai’s manufacturing industry lacks large-scale enterprise groups, especially large
innovation-led enterprises. It is necessary to further increase investment and expand the
scale of enterprises to achieve scale efficiency. It should reasonably integrate industry
resources, rectify “low-small” enterprises and excess backward production capacity, as well
as increase the merger and reorganization of manufacturing quality enterprises to form
economies of scale. Simultaneously, it makes sense to intensify the cultivation of leading
enterprise groups, which play a leading and demonstrative role in Shanghai’s
manufacturing in terms of innovation capabilities, brand contributions and economic
benefits. Moreover, as there is an obvious heterogeneity among subsectors, the sectoral
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differences should be considered as well when the related policies and measures are
formulated.

The third is to optimize the industry structure and promote industrial upgrading.
Industrial structure is a large contributor to the carbon productivity growth of Shanghai’s
manufacturing industry. Therefore, the key to the improvement of the carbon productivity
of Shanghai’s manufacturing lies in the optimization and adjustment of the industry
structure and promoting the transformation from resource consumption growth to
innovation-driven growth. On the one hand, some sectors with traditionally high
consumption and pollution are facing overcapacity problems and the proportion of high
value-added sectors and low carbon sectors is still slow. On the other hand, the restructuring
of Shanghai’s manufacturing is limited by rising factor costs, constraints of environmental
capacities and the lack of technological innovations. Hence, industrial transfer should
continue to be promoted in Shanghai’s manufacturing industry. At the same time, it is
necessary to formulate key technological transformation projects to promote industrial
restructuring. Moreover, it is suggested to appropriately promote the development of
subsectors with high-carbon productivities, e.g. transportation equipment and
telecommunications equipment, which tend to coordinate the sectoral economic growth with
carbon emissions reduction, whereas restricting the development of subsectors with low-
carbon productivities and low industrial relevance, e.g. nonmetal mineral products.

The fourth is to optimize the energy structure and reduce CO2 emissions. To improve the
carbon productivity, it is necessary to pay attention to how to achieve CO2 emissions
reduction without sacrificing economic benefits. This requires reasonable reduction of the
proportion of high-carbon energy consumption such as oil and coal in the actual production
process. Limited by the energy resources, Shanghai’s energy supply mainly originates from
other regions of China. Therefore, relying on comparative technical advantages, Shanghai
can seek cooperation with regions with better natural conditions in developing and adopting
clean energy sources. Besides, it is advisable to promote clean production and encourage
enterprises to apply advanced technologies and equipment for pollution reduction and
energy conservation.

Notes

1. The two sectors removed in this paper are “Utilization of Waste” and “Repair Service of Metal
Products, Machinery and Equipment.”

2. The 29 manufacturing subsectors chosen in this paper are: food processing (S1), food production
(S2), beverage production (S3), tobacco processing (S4), textile industry (S5), garments and other
fiber products (S6), leather, furs, down and related products (S7), timber processing, bamboo,
cane, palm and straw products (S8), furniture manufacturing (S9), papermaking and paper
products (S10), printing and record medium reproduction (S11), cultural, educational and sports
articles (S12), petroleum processing and coking (S13), raw chemical materials and chemical
products (S14), medical and pharmaceutical products (S15), chemical fiber (S16), rubber products
(S17), plastic products (S18), nonmetal mineral products (S19), smelting and pressing of ferrous
metals (S20), smelting and pressing of nonferrous metals (S21), metal products (S22), ordinary
machinery (S23), equipment for special purpose (S24), transportation equipment (S25), electric
equipment and machinery (S26), electronic and telecommunications equipment (S27),
instruments, meters cultural and office machinery (S28) and other manufacturing industry (S29).

3. Among these 29 manufacturing sectors, polluting sectors include food processing, food
production, textile industry, papermaking and paper products, petroleum processing and coking,
raw chemical materials and chemical products, chemical fiber, nonmetal mineral products,
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smelting and pressing of ferrous metals, and smelting and pressing of nonferrous metals,
whereas others belong to clean sectors.
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