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Abstract
Purpose – This paper aims to review recent literature results on the equilibrium problem and the
strengthening design of masonry vaults.
Design/methodology/approach – A Lumped Stress Method (LSM) is considered within the Heyman’s
safe theorem, based on the definition of thrust surface of a masonry curved structure. In particular, the static
problem of the vault is formulated by introducing a membrane continuous of the studied masonry structure to
associate with a spatial truss through a nonconforming variational approximation of the thrust surface and
membrane stress potential. A tensegrity approach based on a minimal mass design strategy, different
strengths in tension and compression of the material is discussed within the strengthening strategy of
masonry vaults.
Findings – The numerical results have highlighted the efficacy of the two numerical approaches to assess
the vulnerability of existing structures and design optimal strengthening interventions of these structures.
Originality/value – The presented models can represent fast and useful tools to assess the vulnerability of
existing structures and design optimal strengthening interventions with composite materials of these
structures.
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1. Introduction
The study of structural vulnerability of masonry historical constructions is an international
priority to evaluate their safe and to preserve them over time by designing rehabilitation
interventions.

Several mechanical models available in literature are based on either local failure
mechanisms (Fraternali, 2007; Berardi., 2016) or the Heyman limit analysis approach
(Heyman, 1995). With reference to arches, the safe theorem of Heyman states that the
structure is safe if a line of thrust (funicular curve) in equilibriumwith the external loads and
entirely contained within the volume of the structure can be found.

This theorem has been extended to double-curved structures via either continuous
(Baratta and Corbi, 2011; Baratta and Corbi, 2013) or discontinuous (Fraternali et al., 2002;
Fraternali, 2010, 2011; Carpentieri et al., 2016) approaches. The theoretical approach and the
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computational burden of such models makes their implementation in finite element method
(FEM) code inappropriate.

This paper reviews an advanced numerical model capable to search a “safe” thrust
surface of masonry vaults, via an iterative procedure based on a constrained lumped stress
method (LSM) (Fraternali et al., 2002; Fraternali, 2010, 2011) and a tensegrity approach
capable to optimize the design of strengthening systems on masonry vaults (Fraternali et al.,
2015; Fraternali, 2007).

The first model considers that such structures exhibit a no-tension membrane state of
stress across the thrust surface. The membrane equilibrium is used to research an
optimal shape of the surface of the masonry model, under specific no-tension and position
constraints. The Pucher’s formulation is applied to identify the potential of the membrane
stress, by a nonconforming variational approach, with defined polyhedral
approximations. It leads to a representation of such a stress field by a discrete network of
compressive forces and allows to predict the regions exposed to crack pattern and to
evaluate a lower bound of the collapse load of examined existing vault. This model allows
to evaluate the statics of existing masonry structures and their vulnerability under
external loads.

The tensegrity approach allows to design optimal strengthening interventions with fiber
reinforced polymers (FRP) or fabric reinforced cementitious matrix (FRCM) to upgrade and
retrofit existing structures. This approach starts by modeling a structure as tensegrity
networks of masonry struts and tensile elements corresponding to the strengthened regions
of masonry. These reinforcements are generally represented by unidirectional composites,
applied to masonry structures along fixed directions (Mazzotti et al., 2015; Carozzi and
Poggi, 2015; Baratta and Corbi, 2015; Angelillo et al., 2014; Fabbrocino et al., 2015; De Piano
et al., 2017). The proposed optimization strategy searches the minimal mass tensegrity
structure connecting a given node set, by assuming different yielding constraints on
compressive (masonry) and tensile (FRP/FRCM) elements.

An initial connection pattern is defined by potential connections of each node to all the
neighbor nodes lying in a spheroidal domain of fixed radius through compressive and
tensile elements. The minimal mass optimization procedure allows to obtain a minimal mass
resisting mechanism of the reinforced structure via the relocation of nodes and the upgrade
of connections, accounting different strengths for the masonry struts and the FRP/FRCM
reinforcements, which can be regarded as an alternative LS/thrust network model of the
examined structure. The stress field given by the procedure is statically admissible, by
assuming the assumption of stable plastic response of masonry in compression and
reinforcements in tension, and safe theorem of the limit analysis of elastic-plastic bodies
(Koiter, 1960) ensures that the reinforced structure is safe under the examined loading
conditions.

We continue by reviewing some case studies for the research of the thrust surface of
masonry vaults and the optimal design of strengthening interventions.

2. Lumped stress method
2.1 Mechanical model
LS models of vaulted structures have been formulated in recent studies through polyhedral
stress functions, i.e. piecewise linear functions ŵ defined over triangulationsPh of a simply-
connected domain X, which lies in the x-y plane of a given Cartesian frame (Fraternali et al.,
2002; Fraternali, 2010, 2011). These models are based on the assumption that an internally
self-equilibrated systems of forces applied on to the edges ofPh can be associated to scalar
functions defined over the same mesh, with the property that the generic force P̂ ij
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corresponds to the jump in the normal derivative of ŵ across the edge connecting nodes i
and j. In particular, concave “folds” of ŵ generate compressive forces, while “convex” folds
generate tensile forces (refer to the illustrative example shown in Figure 1.

It is worth noting that the existence of a solution to the equilibrium problem of the vault
guarantees its stability under the given loading, in the light of the static theorem of limit
analysis for masonry structures.

2.2 Iterative form-finding procedure
The proposed LSM is described as follows:

� Step 1: It is assumed that an initial geometry f̂ ¼ f̂1 of the thrust surface (the middle
surface of the curved structure).

� Step 2: For f̂ ¼ f̂1, find the stress function vector û1 that solves the equilibrium
equations and the boundary conditions û1 ¼ û

00
on S

00
h.

� Step 3: Compute the convex hull of û1 and consider the concave (upper) edge of such
a region (“concave hull” of û1), obtaining a no-tension stress function û2.

� Step 4: Project û2 onto the original triangulation Ph, through linear
interpolation, obtaining a new stress function û3; for û ¼ û3; compute the
geometry vector f̂3 that solves the equilibrium equations (3) under the boundary

conditions f̂3 ¼ f̂
00
on S

00
h .

� Step 5: Set f̂1 ¼ f̂3 and return to Step 2.

The final goal of the above solution strategy consists of a suitable topology optimization of
the adopted truss model.

3. Tensegrity model
3.1 Mechanical model
Let us consider a masonry vault or dome with mean surface described by a set of nn nodes in
the 3D Euclidean space (Fraternali et al., 2015), whose position vectors nk are referred to a
given cartesian frame {O, x, y, z}. Let us introduce the node matrix, N, given by the
components (xk, yk, zk) of the position vectors of all nodes as follows:

Figure 1.
Illustration of a

polyhedral stress
function (a) and the

associated system of
planar forces (b)
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N ¼
x1 . . . . . . . . . xnn
x2 . . . . . . . . . ynn
x3 . . . . . . . . . znn

2
664

3
775 (1)

The initial connection pattern (Figure 2) is modeled by fixing the connection radius, rk and
connecting the node k-th with all the j-th neighbors nodes under the following condition:

jnk � njj# rk (2)

The connection of the k-th node to the j-th neighbor node is realized through two elements
working in parallel: a compressive masonry strut (or bar) bi = nk � nj and a tensile FRP/
FRCM element (or string) si = nk� nj.

Let us assume l i and g j, the compressive force per unit length (force density) acting in
the i-th bar and the tensile force per unit length acting in the j-th string, both defined to be
positive quantities; nb and ns the total number of bars and of strings composing the
background structure, respectively (with nb = ns in the initial configuration); x = [ l 1 . . .

Figure 2.
Initial connection
pattern
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l nb g 1. . .gns]
T the vector with nx = (nb þ ns) entries that collect the force densities in bars

and strings,w the external load vector.
The static equilibrium equations under a given load condition is expresses as follows:

Ax ¼ w (3)

where A is the static matrix of the structure (3nn � nx), referred to the geometry and the
connectivity of bars and strings (Nagase and Skelton, 2014).

The materials constraints are imposed by assuming elastic-perfectly-plastic bars and
strings via the following inequalities:

l ibi#sbiAbi (4)

g jsi#s siAsi (5)

being sbi and s si the compressive strength of the generic bar and the tensile strength of the
generic string, respectively.

The masses of each bar and string depend on the mass densities of bar, rbi, and string,
r si and are given by the following expressions:

mbi ¼ rbiAbibi (6)

msi ¼ r siAsisi (7)

3.2 Minimization approach
The minimal mass design of the background structure is performed by the following linear
program (Fraternali et al., 2015; Fraternali, 2007):

minimize
x;y

m ¼ d
T
y

subject to

Ax ¼ w

Cx#Dy

x � 0;y � 0

8>>><
>>>:

(8)

being

y ¼ Ab1 . . . :Abnb As1 . . . :Asns½ �T

dT ¼ rbi bi . . . : rbnb bnb rsi si . . . : rsnb sns½ �T

C ¼
diag b1; . . . ; bnbð Þ 0

0 diag s1; . . . ; snsð Þ

" #
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D ¼
diag s b1; . . . ;s bnbð Þ 0

0 diag s s1; . . . ;s snsð Þ

" #

The solution to problem in equation (8) provides minimal-mass configuration of the
background structure, chooses whether a bar or a string connects each couple of interacting
nodes and returns bars and strings with zero cross-section areas in correspondence with the
interacting nodes that do not need to be connected in the minimal mass configuration, under
the given equilibrium and yielding constraints.

4. Case studies
4.1 Numerical results of lumped stress method
The example deals with a cloister vault of Figure 3 subject to a force applied p= 20 kN.

The base of the cloister vault is restrained by fixed hinge supports. The examined vault
is characterized as follows: a constant thickness of 0.11 m; a side of the vault of 2 m; a height
of 1 m; and a self-weight (gm) of 20 kN/m3.

The final solution highlights a thrust surface not contained between intrados and
extrados of the vault and, then, the structure is not safe (Figure 4).

Figure 3.
Load condition of the
cloister vault

Figure 4.
(a) Initial 3D-
triangulation of the
thrust surface; (b)
final solution of the
trust surface�red
regions = area
external to extrados;
blue regions = area
external to intrados
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4.2 Numerical results of tensegrity model
The case study presented in Fraternali et al. (2015) deals with a tufe brick masonry with 15.0
kN/m3 self-weight and 13 MPa compressive strength, externally reinforced with FRP and
FRCM strips.

The composite tensile strength is assumed equal to 376.13 MPa and the composite
thickness equal to 0.17 mm.

The geometry of the examined vault is illustrated in Figure 5 of Fraternali et al. (2015),
together with the corresponding background structure, which features 441 nodes and 4,508
connections.

The optimal reinforcement of such a vault under vertical loading is mainly formed by
parallel FRP/FRCM strips 82 mm maximum width near the crown. The above
reinforcements are integrated with diagonal FRP/FRCM strips with about 140 mm
maximum width near the intersections of the four vault segments, under combined vertical
and seismic loading [Figure 5 of Fraternali et al. (2015)].

The analyzed seismic loading consists of horizontal forces with magnitude equal to 0.35
of the magnitude of vertical forces in all nodes, which approximate the effects of a seismic
excitation of the examined structure through a conventional static approach. The
compressed network includes couples of diagonal arches near the corners, parallel-line
arches and diagonal struts over the vault segments [Figure 5 of Fraternali et al. (2015)].

5. Conclusions
We have reviewed recent literature studies on the equilibrium problem and the strengthening
design of masonry vaults. More specifically, the LSM allows to model the membrane state of
stress carried by masonry structures through an adaptive, predictor-corrector technique. The
approach provides statically admissible force network according with no-tension constraints
and allows to evaluate if a vault is safe or not under fixed load conditions.

The tensegrity approach allows to analyze masonry structures of general shape and
dimensions, including structural complexes formed by an arbitrary combination of walls,
vaults and domes. The adopted optimization approach gives noninvasive reinforcement
patterns, which can be able to preserve a sufficient crack-adaption capacity of the structure,
under the respect of the equilibrium equations andmaterial yield limits.

The numerical results have highlighted the efficacy of the two numerical approaches that
could represent fast and useful tools to assess the vulnerability of existing structures and
design optimal strengthening interventions with composite materials of these structures.
Future developments of the present work will be focused on exploring alternative
reinforcement systems (Barretta et al., 2017).
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