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Abstract
Purpose – Within the context of 2D square lattices, searching for the existence of band gaps assumes a
great interest owing to many possible fields of application: from energy absorption devices to noise and
vibration controllers, as well as advanced strategies for the seismic isolation.
Design/methodology/approach – The underlying microstructure may influence the mechanical
response of 2D square lattices according to a complex interplay between different factors. A first one is related
to the so-called “size-effect”. A second one relates, instead, to themass density distribution.
Findings – It has been observed that lumped masses may induce additional band gaps to appear and may
magnify their width. Finally, an additional factor deals with the inner damping characteristics of the
constituent materials, which usually are polymer-based.
Originality/value – This study focuses on the first factor from a specific perspective: to investigate the
influence of the size effect on the existence and properties of frequency band gaps.
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1. Introduction
The study of the dynamic properties of a 2D lattice (Zhou et al., 2009; Wang et al., 2009;
Martinsson andMovchan, 2003; Phani et al., 2006; Zhen et al., 2008; Gaofeng and Zhifei, 2010)
is usually based on few assumptions. Firstly, by virtue of the Bloch theorem, the hypothesis
of infinite lattice points allows to restrict the study to the representative unit cell (RUC).

An example is shown in Figure 1, where the symbols a1 and a2 denote the generating
vectors along the directions of spatial periodicity. In this example, a1 and a2 are normal to
each other.

The displacement of an arbitrary point P of the infinite 2D lattice is given by:

u rð Þ ¼ uk rð Þ exp �iv t þ k � rð Þ (1)
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where the symbol r indicates the position vector of a generic material point P, the symbol k
denotes the Bloch wave vector, v is the angular frequency and uk(r) is the amplitude. It is
important to remark that uk(r) and the point lattice exhibit the same spatial periodicity.
Finally, the position vector r is expressed by:

r ¼ r0 þ n1a1 þ n2a2 (2)

where (n1,n2) is an integer pair and r0 is the position vector ofO, which is the corresponding
point ofPwithin the RUC. Equation (1) becomes:

u rð Þ ¼ u r0ð Þ exp n1k � a1 þ n2k � a2ð Þ (3)

The periodic boundary condition for the dynamic analysis of the unit cell assumes the
following final form:

u rð Þ ¼ u r0ð Þ exp 2p n1k1 þ n2k2ð Þ½ � (4)

Equation (4) is true if the Bloch wave vector is represented by means of a linear combination
of the reciprocal space vectors b1 and b2:

k ¼ k1b1 þ k2b2 (5)

2. Numerical experimentation and assumptions
The numerical results presented in this study deal with two RUC configurations: a primary
configuration (I) made of four micro-beams [Figure 2(a)] and a different configuration (II)
which has been enhanced bymeans of four auxiliary micro-beams [Figure 2(b)].

We assume that the spatial periodicity vectors a1 and a2 are orthogonal to each other
with the same norm a. This implies the study is limited to square lattice only. Moreover we
assume the RUC configuration can be modelled by interconnecting straight micro-beams
with rigid internal connections. Finally, an appropriate micro-scale parameter is introduced
to account for the so-called size effect (Mancusi and Feo, 2013; Mancusi et al., 2017; Mindlin,
1963; Lui and Su, 2009; Onck et al., 2000; Andrews et al., 2000; Park and Gao, 2006; Barretta
et al., 2017; Ma et al., 2008). The followed approach consists in considering the contribution
of couple stresses in addition to classical Cauchy stresses. To this scope, a further
constitutive parameter is required. This parameter has with the physical dimension of a
scale length (Mindlin, 1963). We want to remark that couple stresses are considered in a

Figure 1.
Two-dimensional
square lattice
material (example of
a RUC)

PRR
2,2

176



simplified manner, according to the so-called modified couple stress theory, assuming that
only the symmetric part of the rotation gradient contributes to the strain energy density.

Geometric and mechanical information of the reference unit cell considered in this study
are listed in the following Table I.

The following hypotheses are also taken into account:
� primary micro-beams are composed of aluminium: E = 9.00 � 104 N/mm2; v = 0.23;

G = 3.66� 104 N/mm2; l = 6.58 mm; r = 2.70� 10�6 kg/mm3;
� auxiliary micro-beams are composed of aluminium (i), as above, or epoxy resin (ii):

E = 1440 N/mm2; v = 0.38; G = 522 N/mm2; l = 17.6 mm; r =1.10� 10�6 kg/mm3.

Numerical results are relative to the following two choices:
(1) the micro-scale characteristic length l is zero (i.e. the size effect is discarded); and
(2) the size effect is accounted for.

It is worth remarking that the present analysis represents a generalization of the parametric
analysis discussed byMancusi et al. (2017).

Ten finite elements over each micro-beams are considered for the numerical analysis.
The convergence rate and the accuracy of the numerical solutions have been adequately
assessed (Mancusi and Feo, 2013; Mancusi et al., 2017).

The dimensionless frequencies which are detected by means of an eigenvalue problem,
are studied over the boundary of the irreducible part of the first Brillouin zone and are
presented in a non-dimensional form as ~v ¼ v=v 1, where:

v 1 ¼ p 2

a2

ffiffiffiffiffiffiffi
EI
rA

s
(6)

Figure 2.
2D square lattice
configurations (a

denoting the lattice
constant): a first

configuration made
of four micro-beams
(a) and a second one

which has been
enhanced bymeans

of four auxiliary
micro-beams (b)

Table I.
Geometry and

mechanical
parameters (I/II as in

in Figure 2)

a l1 A As I l2
# RUC [mm] [mm] [mm2/mm] [mm2/mm] [mm4/mm] [mm]

1 I 1.0� 10-1 5.0� 10�2 5.0� 10�3 4.17� 10�3 1.04� 10�8 0.00
2 II 1.0� 10�1 5.0� 10�2 5.0� 10�3 4.17� 10�3 1.04� 10�8 3.54� 10�2
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In Table II, the main results concerning the lowest natural frequencies (not dimensional) are
presented. They refer to the pointsO,A andB indicated in Figure 3.

A comparison emerges between two different hypotheses concerning the constituent
material of the auxiliary micro-beams:

(1) aluminium (i.e. the same material as the primary micro-beams); or
(2) epoxy resin.

Moreover, the influence of the microstructure length is also considered according to the
assumptions previously summarized by acronyms “a” and “b”.

In Table III, the comparison is finally extended to the position and the width of the first
band gaps. The row indicates as “lower band” denotes the number of the frequency band
immediately below the considered gap.

3. Final remarks
It has been observed that the position and width of the first band gaps are influenced by the
magnitude of the micro-scale parameter l. In general, a forward shift of the first band gaps is
related to the size effect. Moreover, flat bands also appear in the low-frequency region if
auxiliary micro-beams are present. Finally a not-uniform mass density distribution over the
RUCmay influence the band structure of the 2D periodic material.

Table II.
First natural
frequencies v1

Points 1 2 3 4 5 6 7 8 9 10

1.a O 0.0 0.0 4.2 4.2 6.1 9.3 18.8 18.8 23.9 29.4
A 0.8 2.4 3.3 7.0 11.5 13.2 14.5 20.0 25.5 32.9
B 1.7 2.2 8.9 11.6 11.6 12.7 17.0 17.0 28.9 34.7

1.b O 0.0 0.0 10.8 10.8 15.9 21.7 37.1 37.1 52.1 56.4
A 2.0 6.6 7.5 15.9 17.8 25.7 30.4 36.6 51.6 53.2
B 4.2 5.7 14.1 14.1 22.1 27.4 30.6 30.9 48.2 48.3

2.a.i O 0.0 0.0 2.6 3.7 4.0 4.3 4.3 4.8 7.9 9.3
A 0.6 2.2 3.0 3.3 4.2 4.3 4.3 8.4 10.3 11.9
B 1.5 2.2 3.0 4.2 4.3 4.3 9.7 9.8 10.7 12.7

2.a.ii O 0.0 0.0 1.1 1.1 1.1 1.1 4.0 4.0 5.8 6.3
A 0.6 1.1 1.1 1.1 1.2 2.3 3.3 6.2 6.3 6.3
B 1.0 1.1 1.1 1.1 1.7 2.2 6.1 6.3 6.3 6.3

2.b.i O 0.0 0.0 7.0 9.6 10.2 11.4 11.4 12.7 19.5 21.7
A 1.5 6.0 6.8 8.0 10.1 11.4 11.4 14.5 20.4 26.4
B 3.7 5.7 7.7 8.8 11.4 11.4 11.5 13.8 25.0 27.3

2.b.ii O 0.0 0.0 1.2 1.2 1.2 1.2 6.9 6.9 6.9 7.0
A 1.2 1.2 1.2 1.2 2.0 6.2 6.8 6.9 6.9 7.1
B 1.2 1.2 1.2 1.2 4.2 5.7 6.9 6.9 6.9 6.9

Figure 3.
Irreducible part of the
first Brillouin zone
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