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Abstract
Purpose – This paper aims to review recent literature results on the mechanical response of confined
pentamode structures behaving either in the stretching-dominated or the bending-dominated regimes.
Design/methodology/approach – The analyzed structures consist of multilayer systems formed by
pentamode lattices alternated with stiffening plates and are equipped with rigid or hinged connections.
Findings – It is shown that such structures are able to carry unidirectional compressive loads with
sufficiently high stiffness, while showing markedly low stiffness against shear loads. In particular, their shear
stiffness may approach zero in the stretching-dominated regime.
Originality/value – The presented results highlight the high engineering potential of laminated pentamode
metamaterials as novel isolation devices to be used for the protection of buildings against shear waves.
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1. Introduction
The peculiar mechanical behavior of confined pentamode lattices, which allows such structures
to carry unidirectional compressive loads with sufficiently high stiffness, while showing
markedly low stiffness against shear loads, has been illustrated in a series of recent studies
available in the literature (Amendola et al., 2016a, 2016b, 2016c, 2017). While many cell
unconfined pentamode lattices feature zero Young modulus in the stretch-dominated limit
(Milton and Cherkaev, 1995; Norris, 2014), the research presented in (Amendola et al., 2016a,
2016b, 2016c, 2017) has shown that single- andmulti-layer structures formed by the alternating
pentamode lattices and stiffening plates are able to oppose a noticeable degree of rigidity to
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unidirectional compression loads in the bending-dominated regime because of the confinement
effect provided by the stiffening plates. Such a feature is essential when developing mechanical
metamaterials that need to carry significantly large loads perpendicular to their outer surface
while exhibiting low (theoretically zero) rigidity against transverse shear forces (Amendola
et al., 2016a, 2016b, 2016c).

The present work reviews the theoretical and numerical results presented in (Amendola
et al., 2016a, 2016b, 2016c; Fraternali et al., 2015a, 2015b, 2015c) on the mechanical response
of layered pentamode lattices equipped with rigid and hinged connections. We first present
a collection of numerical results on the response of pentamode metamaterials in the bending-
dominated regime induced by the presence of rigid connections between the bars and the
plates forming the structure (Amendola et al., 2016a, 2016b, 2016c). In correspondence with
such a regime, we observe considerably high ratios between the effective compression and
shear rigidities because of the presence of the stiffening plates and to the nonzero bending
rigidity of nodes and rods (Amendola et al., 2016a, 2016b, 2016c).

We continue by reviewing available analytic formulae for the vertical and bending
stiffness properties of layered pentamode systems equipped with hinged connections
(Fraternali and Amendola, 2017), by studying the variation of such quantities with the
lattice constant, the solid volume fraction, the cross-section area of the rods and the layer
thickness (Amendola et al., 2016a, 2016b, 2016c).

The section of concluding remarks discusses potential engineering applications of confined
pentamode lattices as new-generation anti-seismic devices. The examined applications are
aimed to contribute to the diffusion of engineered pentamode lattices into the broad field of
structural engineering, which at present makes limited use of mechanical metamaterials.

2. Layered pentamode lattices
Throughout the manuscript, we examine laminated structures built by stacking layers of
pentamode lattices and stiffening plates in the vertical direction.

2.1 Face-centered-cubic lattices
We first consider lattices equipped with the typical extended face-centered-cubic (FCC) unit
cell of pentamode lattices [Figure 1(a)]. The latter is made of four primitive unit cells, each
one formed by four rods meeting at a point.

An example of the analyzed structures is illustrated in Figure 1. We examine FCC lattices
equipped with rigid connections, by assuming that the rods of such systems exhibit the
biconical shape shown in Figure 1 (Schittny et al., 2013). In particular, we assume that all the
members of the examined FCC structures exhibit uniform properties across the thickness.

Figure 1.
(a) Extended FCC cell
formed by rods with

variable cross-
section; (b) multilayer
system obtained by

alternating
pentamode lattices
and confinement

plates
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We refer the geometry the layered FCC structure to a (x, y, z) Cartesian frame, such that the
x-, y-axes lie in the horizontal plane [Figure 1(b)].

We let D denote the diameter of the generic rod forming the system at the middle span
and d denote the diameter of the rod at the extremities; a represents the characteristic length
of the unit cell [Figure 1(a)]. We refer to the edge lengths of the stiffening plates with the
symbols Lx, Ly and denote the number of the unit cells placed along the x-, y- and z-axes by
nx, ny and nz, respectively. Moreover, we denote the height of the generic pentamode layer by
Hi, and we compute the total height of the pentamode layer as H = nzHi. The total height of
the laminated structure is denoted by H , which includes the summation of the thicknesses t
of the stiffening plates. We assume that the rods of the pentamode lattices are formed by a
homogeneous and linearly elastic material with Youngmodulus E0.

2.2 SFCC lattices
A second class of confined pentamode systems examined in the present work considers
lattices formed by the repetition in the 3D space of a suitable sub-lattice of the FCC unit cell,
which consists of one half of the FCC cell [SFCC unit cell, cf. Figure 2(a)]. Layered structures
based on SFCC cells are illustrated in Figure 2(b). These structures are supposed to be
endowed with perfectly hinged connections, so as to respond in the pure stretching regime
(Amendola et al., 2016a, 2016b, 2016c; Fraternali et al., 2015a, 2015b, 2015c). Hinged
connections may consist, e.g. of the hollow ball joints commonly used in structural space
grids (Chilton, 2000). Also, in the case of SFCC systems, as well as in the case of FCC
structures, we assume uniform properties of the pentamode lattices and the stiffening plates
through the thickness.

The rods forming the SFCC structures are assumed to be cylinders with cross-section
area s, which are made of a homogeneous and linearly elastic material with Young modulus
E0. The stiffening plates forming SFCC systems are hereafter modeled as 2D rigid bodies.

3. Stiffness properties of multi-layer pentamode lattices
3.1 Bending-dominated regime
We first analyze the elastic response of the laminated FCC systems described in Section 2.1.
We focus our study on pentamode lattices formed by a single unit cell across the vertical
direction (nz = 1) and 2 � 2 unit cells in the horizontal plane (nx = ny = 2). Amendola et al.
(2016a, 2016b, 2016c) present parametric study on the variation of the elastic moduli of FCC
systems with suitable design parameters, which consist of the d/a ratio (microscopic aspect
ratio) and the H/a ratio (macroscopic aspect ratio). The quantity H/a gives the number of
layers forming the laminated structure because of the assumption nz= 1 in each layer.

Figure 2.
(a) Sub-lattice of the
FCC unit cell formed
by two primitive unit
cells (SFCC cell); (b)
multilayered
structure obtained by
alternating SFCC
lattices and stiffening
plates
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Let us now examine the effective shear modulus Gc and the effective compression modulus
Ec of a laminated pentamode structure, and let us compare such quantities to the Young
modulus Er and the shear modulus Gr of a rubber material typically used for the
manufacturing of rubber bearings (Amendola et al., 2016a, 2016b, 2016c).

Figure 4 of Amendola et al. (2016a) shows the distributions of the Ec/Er and Gc/Gr ratios
with H/a and d/a, which have been numerically obtained in such a study by making use of
finite element simulations and progressively increasing the number of the layers forming
the structure.

The results in Figure 4 of Amendola et al. (2016a) highlight that the Ec/Er and Gc/Grratios
significantly increase with decreasing values of the H = a aspect ratio (that is, in “thick”
systems), especially in presence of large d= a ratios (large size nodal junctions). ForH/a= 1, we
observe that it results Ec = 0.071Er and Gc � Gr/1,000 for d/a = 0.002; Ec = 0.92Er Gc = 0.67Gr
for d/a = 0.015; Ec = 70.17Er and Gc = 85.26Gr for d/a = 0.009. As the elastic moduli of many
cells, unconfined pentamode lattices are independent of the H/a ratio and are such that the
Young modulus is approximately equal to the shear modulus (Amendola et al., 2016a, 2016b,
2016c), we deduce that the above “stiffening” effects of EcandGc are because of the confinement
effect played by the terminal plates against the deformation of the pentamode lattice. For what
specifically concerns the compression modulus Ec, we note that such a property is almost
always larger than Er, with exception to cases with d/a # 0.015. When it results H/a � 3, Ec
asymptotically tends to a constant value, for d/a < 0.07 (small size nodal junctions) or a local
minimum at H/a = 5 (Ec � 8 � 16Er), for d/a � 0.07. The effective shear modulus Gc always
monotonically decreases with increasing values of H = a. When H/a = 4, it results Gc � 2/
10000Gr for d/a= 0.002, andGc= 7.15Gr for d/a= 0.09.

Figure 5 of Amendola et al. (2016a) analyzes the distribution of the Ec/Gc ratio with H/a
and d/a. The results illustrated in this figure show that Ec/Gc ratio significantly grows with
the number of layers (H/a) for any analyzed value of d/a.

3.2 Stretching-dominated regime
We now pass to study the effective elastic properties of the multilayer SFCC systems defined
in Section 2.2, by reviewing the analytic results presented in (Fraternali and Amendola, 2017).
Such a reference obtains the following analytic formulae for the effective compression and
bending stiffness properties of SFCC systems, on assuming that the layers forming the
laminated structure are connected in series:

Kv ¼ 1
Xnz

i¼1

1
Kvi

;Kw ¼ 1
Xnz

i¼1

1
Kw i

;

(1)

Here, Kvi and Kw
i
denote the vertical stiffness and the bending stiffness (about either the

x-or the y-axis) of the i-th layer. On assuming that Kvi and Kw
i
are constant from layer to

layer, we obtain the effective compression modulus of the generic layer (Eci ) as follows:

Ec ¼ KvH
A

¼ H
A

1
nz
Kvi

¼ KviHi

A
¼ Eci ¼

4Eos

3
ffiffiffi
3

p
a2

(2)

where:

A ¼ nxnya2 (3)

denotes the area of the stiffening plates covered by the pentamode lattices (“load area”).
Equation (2) shows that the compression modulus of a laminated SFCC system is equal to

Multilayered
pentamode

lattices

141



that of each individual layer, under the above assumptions. It is worth noting that SFCC
systems theoretically exhibitGc= 0 (Fraternali and Amendola, 2017).

We now focus our attention on a squaremultilayer system (nx= ny= na) such that it results:

a ¼ L
na

¼ 2H
nz

(4)

where L = Lx = Ly denotes the edge-length of the load area. By using equation (4) into
equation (2), the following expressions of the vertical stiffness Kv and the effective
compression modulus Ec of the multilayer system under consideration are obtained
(Fraternali and Amendola, 2017):

Kv ¼ 2

3
ffiffiffi
3

p E0sL
H2 nanz (5)

Ec ¼ 2

3
ffiffiffi
3

p E0s
LH

nanz (6)

When fixing values of L, H, E0 and s, equation (6) shows that the effective compression
modulus of such a system scale linearly with the number of unit cells in the horizontal plane
and the number of layers (cf. Figure 2). We can easily notice that Kv and Ec get four times
larger when doubling the number of cells in the horizontal plane and the number of layers. It
is worth noting that when doubling nz and keeping H fixed, equation (4) implies that one
needs to halve the lattice constant a. The same equation also implies that, in the same
conditions, one simultaneously needs to double na, to keep also L constant.

4. Concluding remarks
We have reviewed recent studies on the elastic response of multilayered structures obtained by
alternating pentamode lattices and stiffening plates. In particular, we have evaluated the
effective stiffness properties of confined pentamode lattices in the stretching and bending-
dominated regimes. We studied the variation of these values with the number of the unit cells
in the horizontal and vertical direction. The analyzed results highlight that layered pentamode
lattices exhibit high elastic stiffness against compression loads and, contemporarily, very low
or nearly zero rigidity against shear and twisting loads. In particular, it has been shown that
the ratio between the compression modulus and the shear modulus of FCC systems increases
with the number of layers stacked in the vertical direction. These results allow us to conclude
that such laminated metamaterials may be considered as innovative anti-seismic devices
(Fabbrocino et al., 2016; Fraternali et al., 2015a, 2015b, 2015c), offering several advantages over
other the available structural bearings (Kelly, 1993; Benzoni and Casarotti, 2009). Consider,
indeed, that the European Standard EN 15129, as well as other international seismic
engineering standards, defines a seismic isolator as a “device possessing the characteristics
needed for seismic isolation, namely, the ability to support a gravity load of superstructure, and
the ability to accommodate lateral displacements”.

One of the key advantages derives from the possibility to design such systems as
tension-capable and performance-based systems, whose mechanical properties are driven
largely by the geometry of the lattice microstructure (Titirla et al., 2017; Blesgen et al., 2012),
rather than the chemical composition of the material. Moreover, the choice of the material
offers additional design opportunities, both in terms of the elastic response and the energy
dissipation properties of the system. Future directions of the present work will be aimed at
exploring a variety of alternative design solutions for pentamode bearings, on considering
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different solutions in terms of the unit cell geometry (anisotropic design) and the component
materials (Fraternali and Feo, 2000; Barretta et al., 2017; Ascione et al., 1992; Daraio et al.,
2010; El Sayed et al., 2009; Fabbrocino et al., 2015; Farina et al., 2016; Fraternali and Bilotti,
1997; Fraternali et al., 2012; Fraternali et al., 2011; Fraternali and Reddy, 1993; Schmidt and
Fraternali, 2012).
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